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Value distribution of finely harmonic morphisms

and applications in complex analysis

Bent Fuglede

Introduction

The aim of this article is to generalize (e.g. to several
complex variables) and in part to strengthen the following
three classical results on removable singularities of meromor-
phic functions in which either the singularity set or the
erreSponding cluster set is polar, i.e. locélly of zero outer
(logarithmic) capacity.

Let U denote a domain in € (or on a Riemann surface),
and F a relatively closed proper subset of U. A meromorphic

T u {»}) extends then uniquely to

function ¢ : U\F » T (
a meromorphic function on all of U 1in each of the following
3 situations [of which a) is subsumed in b) here, but not

always in our generalizations]:

a) F 1s polar, and the cluster set C&(¢p,z) is distinct

from € for every =z ¢ F.

b) F 1is polar, and every 2z ¢ F has a neighbourhood W in

U such that ‘T_\@(W\F) 1is non-polar.

c) Ca(o,F) is polar (in T_), and o' £Z 0 in U\F. (It

follows that F 1itself is likewilse polar.)

Here C2(9,F) denotes the cluster set of ¢ at F, that is

the union of all C&(¢,z) as z ranges over the boundary of
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F relative to U.

Our strengthening of the results a) and c¢) consists
essentially in replacing the cluster sets by the corresponding
(a priori smaller) fine cluster sets. This means that the
standard topology on € for the independent variable 1is
replaced by the Cartan fine topology (the weakest topology
making all subharmonic fuﬁctions continuous). — For a survey
of the fine topology and some of its applications see [141.

We shall likewise give a fine topology analogue (not an
extension) of the Riesz-Frostman-Nevanlinna-Tsuji theorem
concerning boundary cluster sets of a meromorphic function on
the disc.

In the case where F reduces to a single point, a) is
the ciassical Casorati-Weilerstrass theorem. It was strength-
ened by Doob [8] in 1965 who replaced the cluster set by the
fine cluster set (in the case where F 1is a singleton).

The result in the situation b) is due to Nevanlinna [21,
Kap. V, §4, Satz 3] (1936) for U = Em,kand to Kametani [17]
(1941) for any U (both for compact F only).

The result in the situation c¢) is Raddé's theorem, essen-
tially as established in [27] (1924) in the case where C(o,F)
= {0}. In that case the result asserts that a continuous func-
tion ¢ : U » T is holomorphic in U 1if it 1s holomorphic in
U\w_l(o). This was extended by Cartan [3] (1952) to holomor-
bhic functions of several variables. And this n-dimensional
version was further extended by Lelong [20] (1957) who replaced
w_l(O) by w—l(E) for any closed polar set E < T. The still

more general cluster set version (now again in one complex



variable, essentially as stated in c) above) 1is due to Stout
[29] (1968). TFurther extensions were given by Goldstein and
Chow [15], Jér&i [16], Boboc [2], Cole and Glicksberg [5],
Cegrell [41, Oja [22], Riihentaus [28] and @gksendal [23].

The Radd type results announced in the present paper
(notably Theorems 2,3,5,7 and 8) can be regarded as generaliza-
tions of almost all the results of this type quoted above.

The starting point is Cartan's simple proof [3] of the original
Rado theorem, based on the subharmonicity of logl|e| in all

of U when ¢ 1s non-constant and continucus in U and
holomorphic in U\w_l(O). This allowed Cartan to reduce Radd's
theorem to the removabillty of closed polar sets as singularity
sets for bounded holomorphic funCtions, that is, the result a)
stated above. As noted by Aupetit [1], the same method carries
over to give a simple proof of Stout's cluster set version of
Raddé's theorem stated in c¢) above.

‘Briefly speaking the idea in Cartan's proof of Radd's
theorem rests on the following potential theoretic property of
a holomorphic function ¢ defined in a domain in En: @ 1is
continuous, and uo® 1s harmonic in w_l(V) for any harmonic
function u 1in a domain V in T. Continuous mappings with
this property are now called harmonic morphisms.

The quoted paper of Boboc [2] (1978) seems to be the
first in which the Radé-Stout theorem 1s extended to hérmonic
morphisms. In the same spirit we shall in the present paper
extend the above results a),b);c) to finely harmonic morphiéms
(82), that is, the generalization of harmonic morphisms to

certain mappings from a finely open subset of one harmonic



space‘ X satisfying the axiom of domination into another
harmonic space X'. (In particular X and X' could be
Riemannian manifolds.) Finely harmonic morphisms were studied
py Laine [18], [19], Fuglede [10], [12] and @Pksendal [24].
Subsequently we specialize to usual harmonic morphisms.
In 83 we apply the results to finely meromorphic and in par-
ticular to usual meromorphic functions, and in §4 to holomor-
phic functions of several variables.
A detailed exposition (with proofs) will appear elsewhere.
I wish to thank J. Kral, I. Laine, B. @ksendal, M. Shiba

and H. Tornehave for valuable informatioh.

1. thations and preliminaries.

In sections 1 and 2, X and X' denote two harmonic
spaces in the sense of [7] with a countable base for their
topology; Except when otherwise stated it 1s further supposed
that X satisfies the axiom of domination (axiom D), and that
X' is weakly P—ha;monic (cf. Definition 1 below). Theée
basic hypotheses will not be repeated. ‘They'are satisfied
e.g. if X and X' are Riemannian manifolds (each endowed
withrthe sheaf of solutions of the Laplace-Beltrami equation).
Particular situations are considered in §3 and §4.

Recall that a harmbnic space with countable base is a P-
harmonic space if and only if it admits a potential > 0. An
open subset of a harmonic space is called a P-set if it is
P-harmonic as a harmonic subspace. Every union of pairwise

disjoint P-sets of a harmonic space is a P-set. Every harmonic

space admits a covering by P-sets. A Riemannian manifold is



a P-harmonic space 1if and only if it has a Green function.
A subset E of a harmonic space is called polar if
locally (hence actually on every P-set) there exists a super-

harmonic function 2 0 equal to +» 1in E.

Definition 1. A harmonic space X' will be called weakly

P-harmonic 1if any open subset W' of a component Y' of X'
is a P-set provided that Y'\W' dis non-polar (thus in particu-
lar when Y' 1s non-compact and W' 1is relatively compact

in Y').

Every elliptic $-harmonic space 1s weakly P-harmonic,
cf. [7, Exerc. 6.2.5]. 1In particular, every Riemannian mani-
fold is a weakly P-harmonic space, being a Brelot space (hence
elliptic) admifting a superharmonic function > 0 (e.g. the
constant 1 which is harmonic).

On the first harmonic space X we shall primarily use
the fine topolégy, but sometimes also the usual (= initial)
topology. Qualifications pertaining to the fine topology are
indicated by "fine(ly)". The fine boundary of a set F c X

f

closed and finely isolated and has no finely interior points,

is denoted by 9d.F. Recall that every polar set F is finely

whence BfF = F.

On the second harmonic space X' we shall always employ
the usual topology. The closure A' of a subset A' of X'
is always taken in the one-point compactification X! (= X'
u {*} or X') of the locally compact (possibly compact)

space X'. (Any other compactification of X' could be used

instead with exactly the same results.)
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Since the fine topology 1is generally not even 1lst counta-

ple, filters must be used 1in the definition of fine cluster

sets.

pefinition 2. For any mapping ¢ of a finely open set V ¢ X

Dellnit 1O <

into X' and for any x ¢ BfV the fine cluster set sz(w,x)

of ® at x 1s defined as the set of all points x' e X! for

which there exists a filter F on V converging finely to x

such that o(F) - x' in X'. Equivalently,

Colpl@,x) = Mo (WaV)

as W ranges over a fundamental system of fine neighbourhoods

of x in X.

Recall that, for a usual open set U < X, the fine compo-
nents of U are the same as the usual components of U, see

[9, §9.8].

Definition 3. For any mapping ¢ of a finely open set V c X

into X' and for any set F c¢ X not meeting V the fine
cluster set of ¢ at F (more precisely at F n BfV) is
defined as

sz(co,F) = U C2.(0,x).

xanBfV

For a mapping ¢ of a usual open set V < X 1into X'
and for any point x e 9V, resp. any set F < X\V, the usual
cluster sets CR2(9,x) and CL(®,F) are defined in analogy
with the above definitions, replacing throughout the fine

topology on X by the usual topology.



2, Finely harmonic morphisms.

Definition 4. A finely continuous mapping ¢ of a finely open

set U c X 1into X' 1is called a finely harmonic morphism if
s'op 1s finely hyperharmonic in m—l(V') for every (usual)

hyperharmonic function s8' 1n an open set V' < X',

Ir X has’a base (for the usual topology) formed by
regular sets then this definition is equivalent to the original
one in [10] in which s' was required to be harmonic in V!
and s'og finely harmonic in m—l(V'), cf. [12, §2.3]. (In
[10], X' was supposed to satisfy axiom D and hence to haveAi
a base of regular sets.)

The following theorem extends a)and b) in the introduction

Theorem 1. Let U denote a finely open subset of X, and F
a polar set contained in U. A finely harmonic morphism @ : U\F
+> X' extends to a unique finely harmonic morphism of U into X'

2f (and only if) the following two conditions are fulfilled:
i) sz(w,F) c X',

ii) For every x € F such that the component Y' of X!
containing CRf(w,x) is compact and not a P-set, there
18 a fine neighbourhood W of x im U such that

Y'\@(W\F) <s non-polar.
We next bring a corresponding Raddé-Stout type result.

Theorem 2. Let U denote a fine domain inm X, and F a
relatively finely closed proper subset of U. Let @ be a

finely harmonic morphism, not finely locally constant, of



U\F into X'. If Cif(@,F) 18 a polar subset of X', then
F is polar (in X), and @ extends to a unique finely

harmonic morphism of U 1into X'.

The beginﬁing of the proof of the above theorem carries
over to establish the following fine topology version of the

Riesz—Frostman—Nevanlinna—Tsuji theorem.

Proposition 1. Suppose that X' <is P-harmonic. Let V

denote a finme domain in ‘X, and E a subset of the fine bound-
ary afV. Let @ be a non-constant finely harmonic morphism
of V. iZnto X'. If Cﬁf(w,E) 18 a polar subset of X', then
E has zero harmonic measure with respect to V in the sense
that there exists a finely superharmonic function s 2 0 on
V  such that
fine 1im s(y) = + © for every x € E.
VX

If X dis P-harmonic, the existence of s as stated is

equivalent to E Dbeing a null set with respect to the (fine)

. Cv
harmonic measure EX at some (hence any) x € V.

In the next result (to be applied in subsequént sections)
we need not assume that X' Dbe weakly P-harmonic. On the
other hand we impose on X' the axiom of polarity, cf. [7,
§9.1]. It is a bonsequence of axiom D and hence fulfilled,

in particular, by any Riemannian manifold.

Proposition 2. Suppose that X' satisfies the axiom of pola-

rity and that the points of X' are polar. Let U and V
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denote finmely open subsets of X such that V c U, and let
© be a finely harmonic morphism of U into X'. If U\V <s

polar (in X) then @(U)\o(V) <Zs polar (in X').

We close this section with some indications about the
particular case of wusual harmonic morphisms, cf. [6; §3].
Since we maintain the basic hypotheses on X and X', in
particular that X satisfies the axiom of domination, every
usual harmonic morphism ¢ : X - X' dis in particular a finely
harmonic morphism. In the opposite direction Laine [18] has
shown that every finely harmonic mofphism @ ¢ X > X' is
continuous (in the usual topologies on X and X') and hence
is a usual harmonic morphism, provided that X' 1s P-harmonic
and the points of X' are polar. With this in mind we obtain
for example from Theorem 2 the following Radd-Stout type result

with fine cluster set:

Theorem 3. Suppose that X 1is connected, that X' is
P_nharmonic, and that the points of X' are polar. Let FA
denote a closed proper subset of X, and ¢ a harmonic mor-
phism, not locally constant, of X\F into X'. If Cﬂf(m,F)
18 a polar subset of X' them F <is polar (in X), and @

extends to a unique harmonic morphism of X into X',

Remarks. 1) The hypothesis that X' be P-harmonic can be dropped
at. the expense of replacing sz(w,F) by the usual cluster

set C(p,F), but otherwise not, cf. the example on p.l3

below. — This weaker version of Theorem 3 in which the usual
cluster set Cz(w;F) is assumed polar is due to Bobocb[2] for

slightly more general harmonic spaces X and X' than here



(although X' 1is P-harmonic in [2]). See also Oja [22] for
further generalizations.

2) It would be only apparently more general to allow
ct(9,F) in Theorem 3 to be just immer polar (rather than
polar), for C&(e,F) 1is always a K0 in X'.

3) Suppose that X' 1is a P-Brelot space and that all
points x' e X' are strongly polar in the sense of (117,
that is, every non-zero potential on ;X'v harmonic off {X'}
should take the valﬁe +o at x'. (Every Riemannian manifold
X' 1s a Brelot space, and the points of X' are strongly
polar if dim X' > 1.) Under this hypothesis, every non-
constant harmonic morphism of X (connected) into X' 1is an
open mapping (with respect to the usual topologies on X and
X'), see [11]. In Theorem 3 above the hypothesis that
sz(@,F) be polar can then be weakened in the spirit of
pksendal [23], [24] as follows: Let V denote a component
of X\F on which ¢ 1is not constant, and suppose that
le(m,F) (or just that le(@{V, U\V)) 1is polar with respect

to the domain (V) according to the following definition:

Definition 5. Let U' be a P-set in X'. A set F'c X' is
said to be polar with respect to U' if F'n U' 1is polar,

while F' n 3U' has zero harmonic measure with respect to U'.

3. Applications to finely holomorphic and finely meromorphic
functions. |
First an easy extension to Riemann surfaces of the notion
of finely holomorphic function defined on a finely open subset

of T and taking values in T, cf. [13] and the survey [14].
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We only consider connected Rlemann surfaces.

A Riemann surface X Dbecomes é Brelot harmonic space
with a countéble base when the sheaf of harmonic functions
is taken as the functions which locally are real parts of
holomorphic functions from (open subsets of) X into C.
Equivalently, the harmonic functions on an open subset of
X are the solutions on that set to the Laplace-Beltrami
equation with respect to a.Riemannian metric on X chosen
— as it may be done — so that every holomorphic function (on
any open subset of X) becomes complex harmonic.

Since the constant functlons are harmonic, a Riemann
surface X dis thus an's—Brelot space. 1t is known that
axiom D holds for any Riemann surface, and that its points
are polar. |

Now consider two Riemann surfaces X, X'. A mapping ®
of a finely open subset U of X 1into X' 1is termed finely
holomorphic if ¢ is finely continuous (i.e., continuous from
U with the fine topology to X' with the usual topology)
and if moreover z'oq)oz_1 is finely holomorphic (on the
finely open subset z(V n ¢_1(V')) of T into &) for every
choice of complex coordinates =z, z' on coordinate neighbour-
hoods V, V' in X, X', rgspectively.

Every finely holomorphic mapping ¢ : U - X' as above 1s,
in particular, a finely harmonic morphism. If U 1is a fine
domain and ¢ 1is non-constant then the pre-image m_l(a') of
any point a' e X' 1is not only polar, but even countable,

cf. [13, §15] for the typical case X = X' = [.

11
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Via local coordinates =z, z' for X, X' the following
proposition reduces immediately to the corresponding result
for the case X = X' = T which in turn is contained in [13,

cor. 3].

proposition 3. Zet @ denote a finely continuous mapping of

a finely open subset U of a Riemann surface X 1into a Rie-
mann surface X'. If ¢ is finely holomorphic in U\F for
some polar set F in X then ¢ <is finely holomorphic in

all of U.

It follows from this pfopositidn that, in the case of
Riemann surfaces X, X', one may replace the term "finely
harmonic morphism" by "finely holomorphic mapping" in the
results of §2.

While retaining X as an arbitrary Riemann surface we
shall henceforth specialize to X' = C_, the Riemann sphere.
Finely holomorphic mappings of a finely open set U < X into
T or C€_ will be called finely holomorphic functions or
finely meromorphic functions, respectively.

Consider a finely meromorphic function ¢ : U > C_. For
any point‘ a € U and any coordinate z : V> T on X near
a such that z(a) = 0 there 1s a unique integer n such
that wz_n extehds by fine continuilty to a finely holomorphic
function U n V » T taking a non-zero value at the given
point a. If n < 0 then a is called a pre of order |n|
for o.

On.a usual open subset U of a Riemann surface X  the

holomorphic and the finely holomorphic functions U » T are

12



the same, cf. [13, p.63] for the typical case X = C.

Proposition 4. A finely meromorphic function ¢ : X > U is

(o]

meromorphic 1f ©(X) # T_, or more generally if every point

of X has a (usual) neighbourhood W such that o(W) # CT_.

, and choose a sequence

Example. In X = T write Z, = 2
of constants an tending to 0 sufficiently rapidly as

'n > o so that Z|an| < @ and the series I a /(z-z_ ) con-
verges uniformly in some fine neighbourhood of 0. The séries
converges locally uniformly off 0 and the points Z hence
determines altogether a finely meromorphic function ¢ 1in all
of T, cf. [13, p.74]. (Farlier this example was used by Doob
[8, p.125f.].) Clearly ¢ 1is not meromorphic in the whole

of T.

From Theorem 1 combined with Propositions 2 and 3 we
immediately obtain the following result of Nevanlinna-Kametani

type for finely meromorphic functions:

Theorem 4. Let U denote a finely open subset of a Riemann
surface X, and F a polar subset of U. A finely meromor-
phic function © on U\F extends to a unique finely meromor-
phic function ©¥ on U <f (and only if) every point of F
has a fine neighbourhood W in U such that C\O(W\F) <s
non-polar. If even T _\Q(U\F) <is non-polar then @*¥ s
globally finely meromorphic, that is, a Quotient of two finely

holomorphic functions.

Remark. This result (for the case X = T) was announced iﬁ

13



[147. The typical case where TF reduces to a single point

g € U was obtained in conversation with T.J. Lyons and

A.G. O'Farrell. — In the case of a usual holomorphic function
o : X\{a} » T such that T\e(W\{a}) is non-polar for some

- fine neighbourhood W of a we conclude that ¢ extends to
a usual meromorphic function in all of X (with a as its
only possible pole), viz. to a finely meromorphic function in
¥ with at most one pole. — This consequence of Theorem 4 was
pointed out by Lyons (in a letter to the author). It is
stronger than the otherwlise similar result of Casorati-
Weierstrass type obtained by Doob [8, Theorem 7.3] (prior to
the appearence of finely harmonic or finely holomorphic func-

tions).

Corollary. Let F denote a polar reZativeZy closed subset of
an open set U <in X. A holomorphic function @ : U\F » T
extends to a unique holomorphic function om U <1f (and only

1f) CQf(w,F) < C.

Another consequence of Theorem 4 involves the irregular

part of the boundary of an irregular open set.

Corollary. Let @ be meromorphic in a usual open set V c X
and let F denote the set of irregular points for the
Dirichlet problem in V. If T _\@(V) <is non-polar then @
extends by fine continuity to a unique finely meromorphic

function ©* on the finely open set V u F < X.

Like in Theorem 4 it suffices to suppose that every point

of F has a fine neighbourhood W in X such that o(WnV)

14
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is not co-polar. — Note that, in thé affirmative case, very
precise information is available as to the behaviour of ¥
in a suitable fine neighbourhood of each point of F, cf.
[13, théoréme 11] (for a typical case). — To derive this
coroliary from Theorem 4, observe that ¢ 1is, in particular,
finely meromorphic in V = U\F, and that U: =V v F 1s
finély open, thé irregular points for V Dbeing precisely the

finely isolated points of (V.

Next we derive from Theorem 2 and Proposition 3 a Radé-

Stout type theorem for finely meromorphic functions:

Theorem 5. Let U denote a fine domain in a Riemann surface
X, and ¥ a relatively finely closed proper subset of U.

Let @ be finely meromorphic in U\F with o' Z 0, and
suppose that Ckf(w,F) is polar (in T_). Then F <is polar
(in X), and @ extends to a unique finely meromorphic funct-

ion on U.

For bounded finely holomorphic functions a stronger resul
has quite recently been obtained by @ksendal [24].

For usual holomorphic functions we obtain the following

Corollary. Let‘ F denote a relatively closed proper subset
of a domain U in X. If @ is holomorphic in U\F with
o' 20 and‘if sz(w,F) 18 polar and contained in T, then
F is polar and @ extends to a unique holomorphic function

in U.

In fact, the finely meromorphic extension of ©® to U

omits the value « and is therefore holomorphic, by

15
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proposition 4.

Remark. 7The example on p.l3 shows that one cannot in generai
in the meromorphic case omit the word "fine(ly)" (4 times)

in Theorem 5 and still kecep the fine cluster set le(m,F).
But.if one also replaces the fine cluster set by the usual
cluster set then one recovers the Lelong-Stout extension

of Radd's theorem mentioned in c) in the introduction.

4, Applications to holomorphic functions of several variables.

Let us specialize the results of 8§82 to holomorphic
mappings X » X' where X 1is a domain in mn, n =2 1, or more
generally a Kdhler manifold of complex dimension n, and where
x* is € or C_, or just any Riemann surface. Then X and
X' are connected 5—Breiot space (hence weakly P-harmonic)
with countable base satisfying axiom D (in particular the
axiom of poiarity), and all points of X or X' are strongly
polar.

Every holomorphic mapping ¢ : X - X' is clearly a
harmonic morphism, in particular a finely harmonic morphism.
It is well known that a continuous mapping ¢ : X - X' which
is holomorphic off some closed polar subset of' X is holomor-
phic in all of X, cf. Lelong [20]. With these circumstances
in mind we obtain from the results of §2 the following

Theorems 6 and 7 generalizing the classical results a), b) and

c¢c) from the introduction to several complex variables.

Theorem 6. Let F denote a closed polar subset of X. A

16



holomorphic mapping @ : X\F > X' extends tc a unique holomor-
phic mapping of X into X' in each of the following 3 situ-

ations:
a) X' 1is P-harmonic and sz(w,F) c X'.
b) X' <s non-compact and CL(@,F) < X'.

c) X' is compact and every point of X has a neighbourhood

W in X such that X'\@(W\F) <Zs non-polar.

Remark. If n =1 (so that X too i1s a Riemann surface),
c2(9,F) may be replaced by le(m,F) in b). This is
presumably no longer true when n > 1. — Even if n = 1,

W cannot be allowed to be just a fime neighbourhood in c),

as shown by the example on p.1l3.

Theorem 7. Let F denote a closed proper subset of X, and
© : X\F » X' a holomorphic mapping, not Llocally constant.

In either of the 3 situations a), b) or c) in Theorem 6,
suppose that CQf(w,F) is polar (in X'). Then F is pluri-
polar, and ©® extends to a unique holomorphic mapping of X

into X'.

Remarks. 1) Let V denote a component of X\F on which o

1s not constant. Instead of supposing that Cﬂf(m,F) be polar
it suffices in Theorem 7 in the situation a) where X' is
P-harmonic to assume that Cgf(@,F) (or even just sz(mlv,
U\V)) be contained in X' and polar with respect to the
domain @(V), cf. Def. 5 and Remark 3 to Theorém 3.

2) The fact that F must pluripolar (rather than just

17
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‘polar) was noted by Riihentaus [281].

3) Let X' = I, so that we are in the situation b). The
nypothesis that C(¢,F) be contained in € (that is, * is
not a cluster value) may be replaced in Theorem 6 b) and hence
in Theorem 7 b) by the priori weaker hypothesis that ¢ be of
Hardy class gP (see Definition 6 below) in W\F for some
open neighbourhood W of each point of ©dF, and for some D,
0 <p < +eo, In the case n = 1 this goes back to Parreau [26]
as to Theorem 6 b); and to Goldstein and Chow [15] (cf. also
0sada [25]) as to Theorem 7 b), though with the usual cluster
set C&(@,F) being assumed polar. The alternative proof éf
Parreau's theorem given by Yamashita [30] carries over to the

n-dimensional case.

Definition 6. A holomorphic function ¢ : U+ T (U open in

X) is said to be of class g irf ® 1s bounded, and of
class HP (0 < p < +») if the subharmonic function [wlp has

a superharmonic (hence also a harmonic) majorant in U.

For U = the unit disc in € this definition agrees with
the classical one. For the sake of simplicity we enunciate
below the Hardy class version of Theorems 6 b) and 7 b) only

in the case where ¢ 1is globally of class uP .

Proposition 5. Let F denote a closed polar subset of X,

and let ¢ : X\F>T be holomorphic of class 1P for some p,
0 < p < 4o, Then ¢ extends to a unique holomorphic function

on X, likewise of class uP,

Theorem 8. Let F denote a closed proper subset of X, and

18
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let @ : X\F > & be holomorphic of class uP for scme p,
0 <p<+o If @' Z 0 and if le(w,F) is polar (in C_)
then F 18 pluripolar, and ¢ extends to a unique holomorphic

function on X, likewise of class P,

Remark. In the case p = +o Proposition 5 is due to Lelong
[20], and Theorem 8 to Cegrell [4] except for our use of the

ffine cluster set.
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