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1. Introduction

Let X=(xl,x2,———,x ) denote a point in the k-dimensional

k
Euclidean space Rk kkgl) and "X" denote the norm of X.

x| =‘jxi+xé+———+xi.
The k-dimensional Lebesgue measure of a set S in Rk is denoted
by |S|. With a non-negative measurable function f(X) défined
on RM (m>1), we associate a non-increasing function n=Ff(£) on
the interval (0,+=) such that for every t>0 the m-dimensional
measure [Sf(t)[ of the set

Sg(t) = {XeR"| £(X)2t}
is equal to the one-dimensional Lebesgue measure of the set

{E] 0<E<4m, F.(E)2t}.
Such a function Ff(E) is obtained by considering the inverse
function of E=]Sf(ﬂ)| and is uniquely determined except on a

countable set. A non-negative measurable function f(X) on R™

is said to grow slimly, if

(1) (g—(m—l) m

0

We note that for a function f(x) defined on R (Rl is simply

log+Ff(€)d£ < 4o,

denoted by R), (1) is equivalent to the condition

+c
g log+f(x)dx <+

—

from the definition of the Lebesgue integral.
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Domar [4, Theorem 3] proved the following fact: Let a

function f (X) be a slimly growing function on a domain D in

R™ and u(P) be subharmonic on the cylinder

E = {P=(X,y)| XeD, O<y<c},

where c is a positive constant, such that

u(P) < £(X)
for any P=(X,y), XeD, 0<y<c. Then,
u(P) < K

on every compact subset of E, where K 1is a constant

independent of u(P).

'In this paper, given a slimly growing function f(X) on R™

and some function h(y) on (0,+x), we consider an analogous
problem to Domar’s with respect to a subharmonic function u(P)
defined on the (m+n)-dimensional Euclidean ‘space R™™  such
that

u(P) < £(x)n(|e]h

s
n

for any P=(X,Y), XeRm, YeR . Using an obtained result, we

give a sharpened Phragmen-Lindelof theorem which extends a
result of Deny and Lelong [1], [2] and a result of Brawn [3,

Theorem 1].
2. Statements of foundamental results
The proofs of all theorems in this section will be given in

the last section. Let yO;O be a constant. A positive

non-decreasing function h(y) defined for (yo,*w) is said to



grow regularly, if there is a constant p>1 such that

h(y+1l) < uh(y)
for any Y>Yq-

The following result 1s essentially based on Domar’s idea

in [47.

m

Theorem 1. Let f(X) be a slimly growing function on R

and h(y) be a reqularly growing function on (yo,ﬂn), yogo,

i.e.

h(y+l) < uh(y)
for any Y>Yy- Suppose that u(P) is a subharmonic function on
RO such that

u(P) < £(x)n(fyl)

for any P=(X,Y), XeR", YerR", [¥[>y,.

Then, there exists a constant K dependent only on f(X) and

U such that
u(P) < Kn(]x|)

at every P=(X,Y), xeRr™, ver", "Y">y0+2.

Remark 1. If a function h(y) grows regularly, we can find
two positive constants A and B.such that
h(y) < ae™
to every Y>Yq- In fact, let vy, Y>Yqr be any number and take
a non-negative integer n satisfying
n < y-y, < n+l.
Then,

n (y—yo)h

h(y) < h(yy+(n+l)) < u hi(y,+l) < u (yo+1) = ae®,

where




-4
(S

A =1u h(y0+l), B = log u.

But, the converse 1is not always true. Consider the

non-decreasing function h{y) on (0,+x) defined by

ey
n(y) = { e(t)at
0
where
t te(0,1)
b(t) ={
(n-1)1! te[(n-1)!,n!) (n=2,3,---).

Then, since ¢(t)<t, we have
h(y) < 27127

on the other hand, for a sequence {y_1}, y.=log n! (n>2),
n n =

en! 2n! 2
h(l+y ) = ( ¢(t)dt > | o(t)dt 2 (n!)
0 , n!
and
n!
nh(yn) = n f¢(t)dt < n(n-1)!n! = (nl)2.
0

This shows that h(y) does not grows regularly.

It follows from Remark 1 that h(y) in Theorem 1 must
satisfy the growth condition
(2) h(y)=0(e™)  (y+)
for some constant B>0. The following Theorem 2 analcogous to

Otsuka’s [6] shows that (2) is almost sharp.

Theorem 2. For any € >0, there exists a subharmonic

function u (P) on ROFR satisfying the following conditions (i)

o

and (ii);

(1) for a slimly growing function fe(X) on R™




at any P=(X,Y), XeR™, Yer",

1l+e
(ii) sup u_(Pe Il = 4o,
P=(X,Y), XeR™, YeR"
v , 1l+¢
Question. The function h(y)=ey does not grows regularly
because it grows quickly. Is it possible to find any result

similar to Theorem 2 for a slowly growing function h(y) which

does not grow regularly?
The following Theorem 3 shows that the éxponent -(m-1)/m of .
the condition (1) for slim growth of f(X) is best value in

Theorem 1.

Theorem 3. There exists a subharmonic function u(P)\gE

RN satisfying the following two conditions (i) and (ii);

(1) for a non-negative measurable function f(X) satisfying

foe]

(&)g

and a regularly growing function h(y) on (0,+x),

_Zlog+Ff(g)dg < 4w for any £<(m-1)/m

u(P) < £(xX)n(]¥])
at every P=(X,Y), XeR", YerR", |y[+o.

(ii) sup u@h () = 4e,

P=(X,Y), xeR™, ver", |y|o

3. Extended Phragmen-Lindelof theorems

By R+, we denote the set of positive real numbers. Let G

_— 5



pe a domain in Rk (k>2) and denote the boundary of G by 9dG.

When a function u(P) on G is given, we say that u(P) satisfies

the Phragmén-Lindelof boundary condition on 3G, if

1im u(pP) <0

PeG, P-Q
for every Qe€odG. When a domain D in R™ and a function

u(P)=u(X,Y) on
DxR® = {P=(X,Y)eR™™| xeD, ver"}

are given, the maximum modulus M(u,y) of u(P) is defined on rRY

by
u(X,Y),

M(u,y) = sup
xeD, YerR", |y|=y

Hardy and Rogosinski [5] proved:

Let D be an open interval (&,B) and u(Z) be a

Theorem HR.
subharmonic function in the half-strip
A = {z=x+iy| xeD, y€R+}

Phragmén-Lindelof boundary

such that u(z) satisfies the

condition on 3A and
-1
lim M(u,y)e—(B_a) Ty < 0.
yoe -
Then
u(z);O
on A.

Deny and Lelong [1], [2] generalized Theorem HR to a
function defined on a half-cylinder in the Euclidean space of
higher dimension. In the following, a bounded domain in R

having sufficiently smooth boundary an interval) is

(if m=1,

— 6 _—
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called a bounded regular domain. For a given bounded regqular

domain D, let XD>0 be the first eigenvalue of the boundary

value problem with respect to D:

A + A f =0 in D, £=20 on 3D
. d?
where A denotes the Laplace operator (if m=1l, A= 2)' If D

dx
is an interval (a,B) in R, we easily see

JX; = (B—a)_lﬁ.

Theorem DI..

Let D be a bounded regular domain ianm (m>1)

. . +
and u(P) be a subharmonic function in I' =DxR° such that u(P)

satisfies the Phragmén-Lindelof boundary condition on 3T' and

_ - Aoy
lim M(u,y)e < 0.

y-)OO

u(P)<0

On the other hand, Brawn [3, Theorem 1] generalized Theorem

. _ . n . n+l
HR to a subharmonic function in the strip (0,1)xR" in R

(n>1).

Theorem B. Let u{(P) be a subharmonic function in

Q= (0,1)xR"  (n>1)

such that wu(P) satisfies the Phragmen-Lindelof boundary

condition on 3Q and

Tim M(u,y)e Wy (n=1)/2 < 0.
y+oo
Then
u(P) <0
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. on §2.

Now, we shall give . a generalized form of Theorem DL and

Theorem B.

Theorem 4. ~Let D be a bounded regular domain in R™ (m2>1)

and u(P) be a subharmonic function on the domain H=D><Rn i&

R™™ such that u(P) satisfies the Phragmen-Lindelof boundary

condition on 9l and

’Jisyy(n—l)/z

lim M(u,y)e < 0.
y'—)OO
Then,
u(pP) < 0
on I.

Now, we shall give an extension of Theorem 4.

Theorem 5. Let D be a bounded reqgular domain in Rm,(m;l)

and u(P) be a subharmonic function on the domain n=DxR™ such

that u(P) satisfies the Phragmen-Lindelof boundary condition

on JIl. Suppose that for a slimly growing function f(X) on R™

‘!_):)"Y" nY“ (1-n)/2

u(P) < e(flyhfx)e

at every P=(X,y), Xe€D, Y€Rn, “Y”%O, where €(t) is a function

on RV satisfying
e(t) - O (troo ).
Then,

u(bP) < 0



Remark 2. If n=1, Theorem 5 extends Theorem DL. If D is

(0,1) in R, Theorem 5 extends Theorem B.

The following Theorem 6 shows that the exponent -(m-1)/m in
the condition (1) for slim growth of f(X) is best value in

Theorem 5.

Theorem 6. There exists an unbounded subharmonic function
u(P) on the domain H0=D0><Rn (n>1),
Dy = {xer™| || <2713 (m>1)

which satisfies the following conditions (i) and (ii):

(1) u(P) satisfies the Phragmén-Lindelof boundary condition
on oI,
(ii) for a function ¢€(t) on rY satisfyihg

e(t) » 0 (y-==)

and a non-negative measurable function f(X) on R™ satisfying

[ee]

j E-Zlog+Ff(€)d€ < 4o for any 2<(m-1)/m,
0

Dol
u(pP) < (el £(x)e D™ ”Y”(l—n)/z

at every P=(X,y), XeD, YeR", |y|%o0.

4. Proofs of theorems

By C (P,r), we denote the (m+n)-dimensional ball having a

m+n

n

m+ ‘ :
- center PER and a radius r. To prove Theorem 1, we need

‘the following Lemma which 'is analogous to Domar’s [4, Lemma
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21].

Lemma. Let f(X) be a slimly growing function on R™ and

h(y) be a regularly growing function on (y0,+m), Y420, i.e.

0
h(y+1l) < uh(y)

for any Y>Yq- Suppose that u(P) .-is a subharmonic function on

Rm+n such that

(3) u(P) < £(x)h(fx)

for any P=(X,Y), XeRm, YeRn, "Y">y0. Let Q and A be positive

integers satisfying

eAnA;inQ_m r e < pt
where
A = 752/ r27 sy
If there are an integer Vv satisfying
0 < lef(ev—k)ll/m <1

. m n

= >
and a point P (Xv,Yv), XveR ’ YveR ' ”Yv“ y0+l
such that

\%
ue ) 2 &ndy |,

then there also exists a point Pv+l=(xv+l’Yv+l)€Cm+n(R)'R))’
m n
Xv+l€R’Yv+l€R' L
_ v=A,;1/m

r, O s, ) | /

such that
v+1
u(P\)+l) z e h("Y\)+l”)
Proof. First of all, we note that
v . -1 —-(m+n) S

< <

(4) e'n(ly ) < u(e)) 2 A, u(P)dP

Cm+n(Pv’rv)r
where dP denotes the (m+n)-dimensional volume element (see

e.g. Rado [7]).



Now, assume that‘
u(P) < eV+lh(“Y”)

m n
for every Pz(X’Y)ecm+n(Pv’R))’ XeR ', YeR . Then,

(5) u(P) < e\)+lh("Yv"+r\) ) < uev+lh(”Y\) I
for every PeCm+n(Pv'R))' If we put
- V-2 n
S = Chyn (P, 5, N8 (e” HxrTY,
we have
n v =A _ -m_m+n
(6) Is| < Anrv[Sf(e ) =a0 r,
and

(7) u(P) < ev—xh("Y”) < ev_Ah("Yv”+R)) é}Jev—Ahk"Yv")

for every P=(X,Y)ecm+n(g),g))-s, from (3). Thus, we obtain

A—l r—(m+n) g

m+n v
Cm+n(PV'R))

u(P)dp =

u(P)dp + Afl r—(m+n)

m+n- v u(p)dp

m+n v
(P\) lr\) )_S

Al o (m+n) £
Cm+n

-1 -{m+n) v
r ne

+1
n(ly, s

HA

-1 r—(m+n) V-2

ne h(IIY\)“) | Copny (B, + 5, ) =S|

m+n v m+n
< (eAginAnQ_m + e_l)uevh("Yv”) < evh("YV”)r
from (5), (6) and (7). But, this contradicts (4).
Proof of Theorem 1. If we put
k
a, = |sg(eM)],
then
: a
o) <] k © ak
. ISf(ek){l/m -mz (¢ (m l)/mdg - g kg_(m—l)/mdg
k=1 k=10 k=1 a1
= x -(m-1)/m, __+ -(m-1)/m, +
smz o (g log Fg(£)dE < mf & log F . (£)cE .
k=1 a

k+1 0

Hence, we see that the series:
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k
converges.

Now, we shall prove by dividing into two cases.
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(Case 1) We consider the case where
k
|sg(e™)| >0
for any positive integer k. For the integer Q and )\ (which

are dependent on i) chosen in Lemma, take a sufficiently large

integer Vo such that

(8) I |sce’ Mmoot

\)\)O

f
Here, we remark that Vo depends on f(X) and u.

Now, assume that there is a point Pv =(Xv ’Yv ), X._ € R,
Y eR%, |y | >y.+2, such that
Vo Vo 0

If we put

rVo =»Q!Sf(e
and apply Lemma, we can find a point

p
Vo

such that

+l’Yv +l)€Cm+n(Pv Ty ) X

:(X
AR 0 o Vo Vo

0

Here, if we see
e, .l
\)0+l
and put
v0+l-k
r\)0+l - lef(e
we can also apply Lemma and find a point

y| /e,

Py 27 Xy yor ¥y ()€C L (RPy 10Ty 41)7 Xy L€ R Y €R

0 0 0 -0 0 0 0
such that

— 12



u (P ) > e hi|y I .
v0+2 = v0+2
Here, we see
Ie -P | g +rx
Vot2 Voo T Vo votl
Va— A vatl-)
= a(lsgte MM w s e O D)

from (8), which gives

b's
0

T

ll/m

)

<1

Thus, if we continue this process, we can obtain a sequence of

points
0 ' m n
{pP .}. ., P . =(X .Y L), X .€R", Y .€ER",
v0+1_1-0 v0+1 v0+1 v0+1 v0+1 , v0+1
such that
le, .. -2, <1
V0+1 VO
and
' v0+i Vot
ulBy 4i) 2@ h(l!YVO+ill> > e hiygtl) @ (bw).
These show that u(P) is unbounded above on C (p ,1). This
m+n VO
contradicts the boundedness of u(P) on C (p ,1).
m+n \)0
Vo
Thus, if we put K=e ~, we have
u(P) < kh(fy])
for any P=(X,Y), XeR™, Yer", "Y”>YO+2-
(Case 2) Suppose that Case 1 does not happen i.e., there is
a k. such that
0 K
0
|sgle )| = 0.
Take any P'=(X',Y'), X'eR™, Y'er", lv*I>y,, and a positive
number §', &<min(l,”Y'"—y0).
If we put
k
[ ' m n 0
§' = Cryn (P89 (1 LX,¥) | XeRT, YeR", XeSg(e )1,
we have
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k0 n
(9) [s'|<]sge )[a 87 =0
and
k0 ‘kO
(10) u(P) < h(lyhEx) < hfy f+6)e 7 < uh(fy e
for any P=(X,Y)eC_, (P',§')-S', XeR", YeR'. Hence, if we
denote by M' the maximum of u(P) on Cm+n(P',6'),
u(p') < AL g+ (mn) { u(P)dp
= “m+n c (P, &)
m+n !
=t 6"(m+n)§ u(p)dp + AL g (mtn) § u(p)dp
. tm+l’1 g m+n C (P! 61)_5!
m+n !
k k
a1 ¢~ imt [ 1 0 - ]
swal s T ) g L yngvehe © = undfyt e ©
from (9) and (10).
k0
- Thus, putting wue "=K, we have
u(P) < Kh([¥[)
for any P=(X,Y), XeR", YeR", "Y">Y0-
Proof of Theorem 2. Given any €>0, consider the function

u*(P) on R™" defined by
I¥1€ (coslixlexp (|5~ Ix 2 1))
ur(p) = on {P=(X,Y)| xerR", Ixl<271r, ver®}
0 elsewhere. '
1f we write |x|=x, |¥|=y and
g(x,y) = exp(yl+€—x2y€)

for simplicity, we have
2

3%ux . du* _, dur  3%ux
Au* = € . I . e . D € . £
€ 2 X oX 'y 9y oy
2€

g(x,y)[y3€{(l+e)2—0(1)}005 X +y {4—x_2(m-l)y—€}]xsin X

v



g

Vi

-1

g(x,y)[y3€{(1+e)2—o(l)}cos X + y2€{2 2 -—o(1)1}]

1

frexc2Thn, )

(4~
-2 -1
X

v

g(x,y)y3€{2_%fg(l+€)2—0(1)—(m—l)y sin x}

> g(x,y)y 2 21402 0(1) ) (0<x<aThr, yaw)
by an elementary computatidn. This s@ows that u;(P) is
subharmonic on {P=(X,Y) | xeR™, ver", |y|>a} for a sufficiently
large a. Here, choose a constant M€ so that

u;(P) < M_ on {P=(X,Y)l xer™, YCRn: "Y"<2a}
and define ue(P) by
uE(P) = max{ug(P), Me}'
Then, ue(P) is a subharmonic function on R™? which is
requested in Theorem 2.
First, for the function

(11) f (X) = max{“Xﬂ_z, M_}

€

on Rm, we shall show the inequality of (i) in Theorem 2.

Set
-2 € €
Y(x,y) = x “-y Q}p(—xzy )
+ +
for (x,y), x€R , yeR . Then, we have
Y _ (—eyg_l " €x2y2€—1)exp(_x2ye)
Y
which vanishes at yozx_z/s. Further,
w(x,yo) = x_z—e—lx_2 >0
and
_2 - )
P(x,y)~>x as y>0 and ysw .
Hence,
. -2 € 2 €
plx,y) >0, i.e. x "> y-exp(-x"y~)
on R'xRrT. From this fact, the required inequality

immediately follows.

Here, it 1s easy to see that f.(X) in (11) is a slimly



. . m
- growing function on R, because

_ -1.2/m
Fe (g) = (AmE )

~-m/2 =

£<
at every §& AmM€

To obtain (ii) in Theorem 2, observe

l+€
uE(O,Y)e_”Y" > too
uniformly as ”Y“—>+w.
Proof of Theorem 3. Put
vV(pP) = exp(e"Y"cos"X")cos(e"Y"sinHXH)

for any P=(X,Y), XeRm, YeR"™ and consider the function

u*(p) = (v(p)}*™ L
defined on R™xR". If we write “X”=x and "Y”=y, we have
wr = 2r-DVP 202 (@592 + ()2} svav]
y
_ 2m-2 y
= (2m-1)V exp(y+2e‘cos x)g(x,y)

where

g(x,y) = (2m-2)eY

+ cos(eysin xX) %%;lcos(x+eysin X)- m'-;-lsin(x+eysi‘n x)}.

Here, if
0 < x < w/2 and x + e¥sin x < n/2,

we see that

y

sin(x+etsin x) < x+e¥sin x < x(l+ey)

and hence

g(x,y) 2 (m—l)(ey—l) +-E§;cos(eysin x)cos (x+e¥sin x) > 0.

Hence, we have

AU* > 0

m

for any P=(X,¥), xeR™, ver®, |x|<w2, |xl+el®lsin|x] < /2.

Let
D, = {xer™| |x[<mn/2}
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and

m+n l

S = {(X,Y)eR XeD,., YeR", sinMxM<2'lne'“Y", ﬂYH>yO},

OI
where y0=log 2—lﬂ. Choose a positive constant M such that
U*(P) <M

on DOX{YeRnl “YH<2yO} and define the function u(P) on g bY;

- M-lmax{U*(P), M} on S
u(P) = {
1 elsewhere,
which is a subharmonic function requested in Theorem 3.
Now, if we define f(X) on rR™ by

(12) f(X) = sup u(X,Y)

YeRn

and h(y) on rRY by

h(y) = 1,
we have the inequality of (i) in Theorem 3. Here, it is
evident that h(y) 1s a regularly growing function on rY,

Hence, we shall show that

[0}

(13) (109" F (6)d < +=  for any %, £<(m-1)/m.
Put ’
vix,y) = exp(eycos x)cos(eysin X)
for xeR, yeR, y>y0=log 2—1w. Then, for any fixed y, v(Xx,y)
increases from 0 to exp(eY) as x decreases from sin (27 1re7Y)
to 0. This fact gives that
u(P) > t
on the domain which is surrounded-by the set
{PeD xR"| PeS, V(P)=t}
for a sufficiently large t. For a given t, consider the

curve
L = {(x,y)eR’| v(x,y)=t, O<x<m/2}
in the plane and put

_ 17 —
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X, = max X.
(x,y)eL
since

-%§-= —tan(x+eysin X)

along L, we have

Yos -
xO + efsin xO /2.
Hence, X, satisfies
-1 h o 5
exp{ (2 "7~ xO)cot x0}81n X, = t.
Since
m
|sc(0) | = A x,

for a sufficiently large t from the definition (12) of £(X),
we have

1 -1
}cot{(Am €)

1/m 1/m

_ -1 -1 . -1,.,1/m
Fe(8) = expl{2 "m-(A "¢) Hsin{ (A "€) }.
Thus, for a suffiently small £ >0,
-1/m ' -1/m
K1€ < log Ff(E) < KZE

where Kl and K2 are two positive constants. This gives (13).

The conclusion (ii) in Theorem 3 immediately follows for
these u(P) and h(y) from the fact

| u(0,Y) = M-lexp{(Zm—l)e"Y"}

at any yeR" having sufficiently large “Y“.

Proof of Theorem 4. This theorem is proved by following
both methods used to prove Thedfem DL and Theorem B. For a
given Dbounded regular domain D, we denote the positive
eigenfunction corresponding to the eigenvalue AD by fD(X) and

define hD(P) on

DxR" = {P=(X,y)| XeD, Yer"}

by



o
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_ 1-n/2
hy(P) = £, (x)]¥] I -1l

where In/z—l(y) is the Bessel function of the third kind, of

order n/2-1 (see e.g. Watson [8, p.77]). It is easy to see
that hD(P) is harmonic on.DxR™.

We also remark that
_ -1/2_y
In/2—l(y) = (2my) e’ (1+o(1))

(y2+00)
(see Watson [8, p.203]).

Now, consider the subharmonic function u

l(P) on II defined
by .

ul(P) = u(P) nlhD(P) (n1>0).
Take a closed ball BCD and choose a positive constant e

1 such
that

fD(X) > €1 on B.

If we choose a positive constant Y, such that

- ApY (1-
M(u,y) < 2 lelnlCDe D y(1 n)/2
for any Y2Yqs where

_ ~—.-1/2
CD = (ZWJXD) ’
we see that

- PN e _
uy(P) < egmCphi-2 L o(1yze” P ”Y"(l n)/2
for any P=(X,Y), XeB, "Ynéyl'

Hence,
a point P

there are a value M and
€ BxR" such that

(14) ul(PO) =M and u, (P)

Next, take a bounded regular domain D*, D* Rm such that

3(D-B) (J (D-B)C D* and A< A

| p< Mp*< Ap_p-
Consider the subharmonic function u2(P) on (D*—B)XRn defined
by

u,(P) = uy(P) - n,yhy, (P)

(n2> 0).
If we take a positive number €, such that

fy«(X) 2 e, on 3(D-B) U (D-B)
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. and a number Y, such that

ALY
D 1- 2
M(u,y) < eznZCD*e y( n)/

for any y2y,, we have that

uZ(P) < u(pP) - ﬂth*(P) 4
(Jr - oo lyl 2 ¥l -
< gynCpede PP Loy ge’ DTy (AR
for any P=(X,Y)eDXRn¥B, "Y"iyz. Hence, with (14) the maximal

principle gives that
uZ(P) < max(0,M) on D-B.

Thus, we have that

ul(P) < max(0,M) on D-B,
because n, is chosen arbitrarily small. Further, we have
from (14) that
ul(P) < max(0,M) on D,

By (14) and the maximal principle, this gives that
M <0 and hence ul(P) < 0 on D.

As nI+0, we can conclude that

u(P) < 0 on D.
Proof of Theorem 5. For each positive integer m, take a
number tm such that
e(t) £ 1/m
for every t;tm. Then

_leJ)‘—DuY” "Yu (l—n)/Z}

u(P) < £(X){m

at every P=(X,Y), XeD, YeRn) “Y“gtm. If we put

1 ANY o
b (y) = mobe DYy (1om)/2
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it is easy to see that hm(y) is a regqularly growing function
on (tm,+m), i.e. =
D
<
h (y+1) S e h (y)
for every y>tm. Hence, if we also put u(P)=0 on RO and
apply Theorem 1, there exists a constant K independent of m

L Il

kh_(J¥]) = m ke Iy

such that

a(P) | (1-n)/2

A

for every P=(X,Y), XeD, YeR", ”Y”>tm+2. This gives that
“ A5y (-
J—; y(n 1)/2 <

lim M(u,y)e 0.

y—)m

Hence, from Theorem 4, the conclusion follows.

Proof of Theorem 6. For the function u(P) and the
constant taken in the proof of Theorem 3, consider the
function u(P)-1 on H0=DOXRn. When we reéresent this function
by u(P) again, we shall show that u(P) 1is the subharmonic
function requested in Theorem 6. The statement (i) in

Theorem 6 1s evident. To prove the statement (ii) in Theorem

6, define f(X) on R™ by

sup_ u(X,Y) on D
YerR™
£(X) =

0 elsewhere

and e(t) on rR* by
- At
e(t) = e J—; g (a1 /2
Then, ” "
"'Fr— v
u(p) < ellyhexre 7 P ) 2

for any P={X,X); XeD ver”, |v[4o. The finiteness of the.

OI

integral

[ e %109%F, (61
0
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for any 2 <(m-1)/m follows immediately from the proof of

Theorem 3.
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