ON THE EXISTENCE OF CONDENSER-TYPE MEASURES WITH RESPECT TO FUNCTION-KERNELS

お茶姓渡辺ヒサ子 (Hisako Watanabe)

§1. Introduction.

Let X be a locally compact Hausdorff space with a countable base, G be a continuous function-kernel on X and N be a lower semicontinuous function-kernel which is locally bounded outside the diagonal set. Further, assume that each non-empty open set is not G-negligible and not N-negligible. On this note we shall ask necessary and sufficient conditions in order that for any pair <K, F> of disjoint compact sets there exists a (G, N)-condenser-type measure α of each $\lambda \in M_K^+$ of which N\(\lambda\) is locally bounded on K, i.e., there exists a measure $\alpha = \mu_O - \mu_1$ such that

$$\begin{split} & \text{supp}(\mu_0) \subset K, & \text{supp}(\mu_1) \subset F, \\ & \text{G}\alpha = N\lambda \quad \text{G-n.e. on } K, & \text{G}\alpha = 0 \quad \text{G-n.e. on } F, \\ & 0 \leq \text{G}\alpha \leq N\lambda \quad \text{on } X. \end{split}$$

In case N = 1 (the constant kernel) this problem has been solved in [6], i.e., G satisfies the condenser principle if and only if, G is non-degenerate and it satisfies the domination and the classical maximum principles.

In §3 we shall show that for any pair <K, F> of a non-G-negligible compact set K and a compact set F with A(K) \cap F = ϕ , there exists a (G, N)-condenser-type measure of each $\lambda \in M_K^+$ of which N λ is bounded on K if and only if, G satisfies the domination principle and the relative domination principle with respect to N.

It is well-known that in Dirichlet spaces there exists a condenser measure for any pair $\langle \overline{U}, \overline{V} \rangle$ of a relatively compact open set U and an open set V with $\overline{U} \cap \overline{V} = \phi$. Further, C. Berg has proved in [1] the existence of the condenser measure for any above pair $\langle \overline{U}, \overline{V} \rangle$ with respect to the kernel $\kappa = \int \mu_t dt$, where $(\mu_t)_{t \geq 0}$ is a transient convolution semigroup on a locally compact abelian group.

In §4 we shall ask similar problems for any pair <K, F> of a non-G-negligible compact set K and a closed set F with A(K) \cap F = ϕ .

§2. Various domination principles.

Let X be a locally compact Hausdorff space with a countable base. A lower semicontinuous function-kernel on X is a non-negative lower semicontinuous function defined on X \times X which is strictly positive on the diagonal set Δ of X \times X. A continuous function-kernel is a lower semicontinuous kernel which is continuous in the extended sense in X \times X and finite-valued outside Δ . We use G and N for denoting lower semicontinuous function-kernels and introduce various domination principles.

Definition 1. We say that G satisfies the relative domination principle with respect to N, if for μ , $\nu \in M_K^+$ with $\int G \mu d\mu < +\infty$ $G\mu \leq N\nu$ on $supp(\mu)$ implies $G\mu \leq N\nu$ in X.

We use the symbol $G \prec N$ for this principle.

" $G \prec G$ " is said to be simply the domination principle.

" $G \prec 1$ " is said to be the classical maximum principle. Further, we say that G satisfies the elementary relative domination principle with respect to N if for $\mu \in M_K^+$ with $\int G \mu d\mu < +\infty$ and for $x_O \in Csupp(\mu)$

$$G\mu \leq N\epsilon_{X_{O}}$$
 on $supp(\mu)$ implies $G\mu \leq N\epsilon_{X_{O}}$ on X .

Definition 2. We say that G satisfies the transitive domination principle with respect to N, if for μ , $\nu \in M_K^+$ with $\int G\mu d\mu < +\infty$ $G\mu \leq G\nu$ on $supp(\mu)$ implies $N\mu \leq N\nu$ in X. We use the symbol G [N for this principle.

Definition 3. We say that G satisfies the relative balayage principle with respect to N, if for every compact set K and every $\mu \in M_K^+$ such that $N\mu \neq +\infty$ on K there exists $\nu \in M_K^+$ such that

supp(v) c K, Gv = Nµ G-n.e. on K, Gv ≤ Nµ in X. Here "Gv = Nµ G-n.e. on K" means that the set $\{x \in K; Gv(x) \neq Nµ(x)\}$ is a G-negligible set and a Borel measurable set A of X is called G-negligible if any measure $\lambda \in M_K^+$ with $supp(\lambda) \in A$ and $\int G\lambda d\lambda < +\infty$ is equal to 0. Such a measure v is called a relatively balayaged measure of μ onto K with respect to (G, N). If G satisfies the relative balayage principle with respect to G, we say that G satisfies the balayage principle and a relatively balayaged measure with respect to (G, G) is called a G-balayaged measure, simply a balayaged measure. If G satisfies the relative balayage principle with respect to the constant kernel 1, we say that G satisfies the equilibrium principle.

Definition 4. We say that G satisfies the continuity principle if for $\mu \in M_K^+$ G μ is finite and continuous everywhere whenever it is finite and continuous on $supp(\mu)$.

We denote by $\mathcal{L}(G)$ (resp. $\mathcal{F}(G)$) the set of measures $\mu \in M_K^+$ such that $G\mu$ are locally bounded (resp. $G\mu$ are finite and continuous).

Hereafter we shall assume that G is a continuous function-kernel on X and N is a lower semicontinuous function-kernel on X which is locally bounded outside the diagonal set Δ of X \times X.

Proposition 1. Assume that each non-empty open set is not genegligible and not N-negligible. If G [N, then $\mu \in \mathcal{L}(G)$ implies $\mu \in \mathcal{L}(N)$.

<u>Proof</u>. Let μ be a measure in $\mathcal{I}(G)$. Obviously the potential $N\mu$ is locally bounded outside $supp(\mu)$. Let x_0 be an arbitrary point in $supp(\mu)$. Since $G(x_0, x_0) > 0$, we can find a compact neighborhood K of x_0 and a constant c such that $cG(x, y) \ge 1$ on $K \times K$. Denote by μ_0 the restriction of μ to K. Since $G\mu_{_{\mbox{\scriptsize O}}}$ is also locally bounded, there are a neighborhood K of x and a constant b such that K c K and G μ_0 \leq b on K_1 . First, assume that x_0 is an isolated point. Then $\{x_0\}$ is not G-negligible and not N-negligible by the assumption and we have $G(x_0, x_0) < +\infty$ and $N(x_0, x_0) < +\infty$. Denote by μ_1 the restriction of μ_0 to K_1 . Then $G\mu_1 \leq bcG\epsilon_x$ on K_1 and hence $N\mu_1 \leq bcN\epsilon_x$ on X by G [N. Since Ne and N(μ - μ_1) are bounded on K $_1$, N μ is also bounded on K $_1$. Secondly, we consider the case where $\mathbf{x}_{_{\mathbf{O}}}$ is not an isolated point. Take $\mathbf{x}_1 \in \mathbf{K}_1 \backslash \{\mathbf{x}_0\}$ and find a compact neighborhood \mathbf{K}_2 of \mathbf{x}_0 satisfying $\mathbf{K}_2 \subset \mathbf{K}_1 \backslash \{\mathbf{x}_0\}$ \mathbf{K}_1 and $\mathbf{x}_1 \notin \mathbf{K}_2$. If we denote by $\boldsymbol{\mu}_2$ the restriction of $\boldsymbol{\mu}_0$ to \mathbf{K}_2 , we have $G\mu_2 \leq bcG\epsilon_{x_1}$ on K_2 and hence $N\mu_2 \leq bcN\epsilon_{x_1}$ on X. Since $N\epsilon_{x_1}$ and N(μ - μ_2) are bounded on K $_2$, N μ is bounded on K $_2$. Thus we obtain that N μ is locally bounded.

Proposition 2. Assume that each non-empty open set is not G-negligible and not N-negligible. If G satisfies the continuity principle and G [N, then G satisfies the relative balayage principle with respect to N. Here G (resp. N) is the adjoint kernel of G (resp. N).

<u>Proof.</u> Let K be a non-G-negligible compact set and μ be a measure in M_K^+ with N_μ \neq + ∞ on K. Put

 $S:=\{u=G\sigma-G\tau;\ \sigma\in M_K^+,\ \tau\in\mathcal{F}(G),\ supp(\tau)\subset K\}$ and define for each $f\in C(K)$

 $p(f) \colon = \inf\{ \int N\sigma d\mu - \int N\tau d\mu \; ; \; u = G\sigma - G\tau \in S, \; u \geq f \; \text{on} \; K \}.$ We remark that $N\tau$ is locally bounded by Proposition 1 and $\int N\tau d\mu < +\infty$. By the assumption we can find, for each $f \in C(K)$, $\sigma_O \in \mathcal{F}(G)$ satisfying $|f| \leq G\sigma_O$ on K. Then $p(f) \leq \int N\sigma_O d\mu < +\infty$. Take $u = G\sigma - G\tau \in S$ with $u \geq f$ on K and supp $(\tau) \subset K$. Then $G\tau \leq G\sigma + G\sigma_O$ on K and $G \in N$, we have $N\tau \leq N\sigma + N\sigma_O$. Consequently $p(f) \geq -\int N\sigma_O d\mu > -\infty$. Since the mapping $f \to p(f)$ is sublinear on C(K), there exists a linear functional ν on C(K) such that

$$v(f) \leq p(f)$$
 for all $f \in C(K)$.

If $f \le 0$, it follows that $\nu(f) \le p(f) \le 0$. Hence ν is a positive measure on K. For each $\sigma \in M_K^+$, we have

Especially, $\int G\epsilon_X d\nu \leq \int N\epsilon_X d\mu$ and hence $\check{G}\nu(x) \leq \check{N}\mu(x)$ for each $x \in X$. For each $\tau \in \mathcal{F}(G)$ with $supp(\tau) \subseteq K$, we have

$$\int -G\tau\,d\nu \ \le \ p(\,-G\tau\,) \ \le \ \int -N\tau\,d\mu\,.$$

Thus $\int \check{G} \nu d\tau = \int \check{N}_{f} v d\tau$ for each $\tau \in \mathcal{F}(G)$ with $supp(\tau) \subset K$. Since G satisfies the continuity principle by the assumption, it follows that $G\nu = N\mu$ G-n.e. on K.

§3. Condenser-type theorems for disjoint compact sets.

Hereafter we assume that <u>G</u> is a continuous function-kernel and N is a lower semicontinuous function-kernel which is locally bounded outside Δ . Further, assume that each non-empty open set is not G-negligible and not N-negligible.

For each $x \in X$ and for a closed set K, we define

$$A(x): = \{y \in X; b > 0, G(z, y) = bG(z, x) \text{ for all }$$

$$z \in X\},$$

$$A(K); = \bigcup_{x \in K} A(x).$$

We shall consider the necessary and sufficient conditions in $_{
m order}$ that (G, N) has the following property:

- (b) Let K be a non-G-negligible compact set, F be a compact set with A(K) \cap F = ϕ and λ be a measure in M_K^+ of which N λ is bounded on K. Then there exists a (G, N)-condedser-type measure α = μ_O μ_1 of λ onto <K, F>, i.e., there exist μ_O ϵ $\text{$\mathcal{L}$}(G)$ and μ_1 ϵ $\text{$\mathcal{L}$}(G)$ such that
 - b_1) $supp(\mu_0) \subset K$, $supp(\mu_1) \subset F$,
 - b_2) $G_{\alpha} = N_{\lambda}$ G-n.e. on K, $G_{\alpha} = 0$ G-n.e. on F,
 - b_3) $0 \le G_{\alpha} \le N_{\lambda}$ on X.

Theorem 1. Let N and G be continuous function-kernels. Then the following assertions (1), (2) are equivalent:

- (1) (G, N) has the property (b),
- (2) $G \prec G$ and $G \prec N$.

Proof. (1) \rightarrow (2): Let K be a non-G-negligible compact set and λ be a measure in M_K^+ such that $N\lambda$ is bounded on K. Then there exists a (G, N)-condenser-type measure μ_O - μ_1 of λ onto $\langle K, \phi \rangle$ by the assumption. Since μ_1 = 0, μ_O is a relatively balayaged measure of λ onto K with respect to (G, N). Using this, we can show that G satisfies the elementary relative domination principle (cf. Proof of Lemma 2 in [3]). By Theorem 1 in [3], we have $G \prec N$. Next, we shall show that $G \prec G$. Assume that $\check{G}\mu \leq \check{G}\varepsilon_X$ on $\operatorname{supp}(\mu)$, where $\mu \in M_K^+$ with $\int G\mu d\mu < +\infty$ and $x \in C(\operatorname{supp}(\mu))$. If there is a point $x_1 \in X \backslash \operatorname{supp}(\mu)$ such that $\check{G}\mu(x_1) > \check{G}\varepsilon_X(x_1)$, we can find a compact neighborhood K of x_1 such that $\check{G}\mu(y) > \check{G}\varepsilon_X(y)$ for all $y \in K$. Remark that $A(K) \cap \operatorname{supp}(\mu)$

= ϕ . By the assumption there exists a (G, N)-condedser-type measure $\mu_O - \mu_1$ of ϵ_Z for $z \in \text{supp}(\mu)$ onto <K, $\text{supp}(\mu)$ >. It is obvious that $\mu_O \neq 0$. We obtain

$$0 = \int (G\mu_O - G\mu_1)d\mu = \int \check{G}\mu d\mu_O - \int \check{G}\mu d\mu_1 > \int \check{G}\varepsilon_X d\mu_O - \int \check{G}\varepsilon_X d\mu_1$$
$$= G\mu_O(x) - G\mu_1(x) \ge 0.$$

This is a contradiction. Thus we have $\check{G}\mu \leq \check{G}\epsilon_X$ on X. Since G < N implies that G satisfies the continuity principle (cf. [3]). Consequently \check{G} satisfies the domination principle (cf. [5, Theorem II.3]) and G does (cf. [2]).

- Let K be a non-G-negligible compact set, F be a compact set with A(K) of F = ϕ and λ be a measure in M_K^+ such that N λ is bounded on K. The assumption $G \preceq N$ implies \check{G} [\check{N} . By Proposition 2, G satisfies the relative balayage principle with respect to N. If ν_O is a relatively balayaged measure of λ onto K with respect to (G, N), $G\nu_O$ is bounded on K. Since there is $\alpha_O \in \mathcal{F}(G)$ satisfying $G\nu_O \leq G\alpha_O$ on X, $G\nu_O$ is locally bounded. Further we can choose successively a sequence $\{\nu_n\}$ of measures in $\mathcal{L}(G)$ with the following properties:
 - (i) $supp(v_{2m}) \in K$, $supp(v_{2m+1}) \in F$,
 - (ii) v_{2m+1} is a G-balayaged measure of v_{2m} onto F,
- (iii) ν_{2m+2} is a G-balayaged measure of ν_{2m+1} onto K. Then $\{G\nu_n\}$ is decreasing and $\lim_{m\to\infty} G\nu_{2m} = \lim_{m\to\infty} G\nu_{2m+1}$. Since $G \prec G$, we have $\check{G} \prec \check{G}$. Let β be an arbitrary measure in $\mathring{T}(\check{G})$. Then we can find $\sigma \in \mathcal{L}(\check{G})$ and $\tau \in \mathcal{L}(\check{G})$ satisfying

Remarking that $supp(v_{2m}) \in K$ and $supp(v_{2m+1}) \in F$, we have

$$\begin{split} & \int \! \lim_{m \to \infty} \; \mathsf{G} \mathsf{v}_{2m} \mathsf{d} \beta \; = \; \lim_{m \to \infty} \; \int \! \mathsf{G} \mathsf{v}_{2m} \mathsf{d} \beta \; = \; \lim_{m \to \infty} \; \int \! (\check{\mathsf{G}} \mathsf{d} \mathsf{v}_{2m} \; = \; \lim_{m \to \infty} \; \int (\check{\mathsf{G}} \mathsf{o} \; - \; \check{\mathsf{G}} \mathsf{\tau}) \mathsf{d} \mathsf{v}_{2m} \\ & = \; \int (\lim_{m \to \infty} \; \mathsf{G} \mathsf{v}_{2m}) \mathsf{d} \mathsf{o} \; - \; \int (\lim_{m \to \infty} \; \mathsf{G} \mathsf{v}_{2m}) \mathsf{d} \mathsf{\tau} \\ & = \; \int (\lim_{m \to \infty} \; \mathsf{G} \mathsf{v}_{2m+1}) \mathsf{d} \mathsf{o} \; - \; \int (\lim_{m \to \infty} \; \mathsf{G} \mathsf{v}_{2m+1}) \mathsf{d} \mathsf{\tau} \\ & = \; \lim_{m \to \infty} \; \int (\check{\mathsf{G}} \mathsf{o} \; - \; \check{\mathsf{G}} \mathsf{\tau}) \mathsf{d} \mathsf{v}_{2m+1} \; = \; 0 \, . \end{split}$$

consequently $\lim_{m \to \infty} G v_{2m} = 0$ G-n.e. on X and hence $\lim_{n \to \infty} G v_n = 0$ G-n.e.

on X. Thus we see that the alternative series $\overset{\infty}{\Sigma}\left(-1\right)^{n}Gv_{n}$

converses G-n.e. on X. Put

$$g: = \sum_{m=0}^{\infty} (Gv_{2m} - Gv_{2m+1}).$$

Since $Gv_{2m} - Gv_{2m+1} = 0$ G-n.e. on F and $Gv_{2m+1} - Gv_{2m+2} = 0$ G-n.e. on K, we have

$$g = G\nu_O = N\lambda \text{ G-n.e. on } K, \qquad g = 0 \quad \text{G-n.e. on } F,$$

$$0 \le g \le G\nu_O \le N\lambda \quad \text{on } X$$

Further we can choose γ , $\delta \in \mathcal{I}(\check{G})$ satisfying

$$\check{G}\gamma - \check{G}\delta \geq 1 \quad \text{G-n.e. on } K, \qquad \check{G}\gamma - \check{G}\delta = 0 \quad \text{G-n.e. on } F,$$

$$0 \leq \check{G}\gamma - \check{G}\delta \quad \text{G-n.e. on } X.$$

For any natural number p, it follows that

$$\sum_{m=0}^{p} \int d\nu_{2m} \leq \sum_{m=0}^{p} \int (\check{G}\gamma - \check{G}\delta) d\nu_{2m} - \sum_{m=0}^{p} \int (\check{G}\gamma - \check{G}\delta) d\nu_{2m+1}$$

$$= \sum_{m=0}^{p} \int (G\nu_{2m} - G\nu_{2m+1}) d\gamma - \sum_{m=0}^{p} \int (G\nu_{2m} - G\nu_{2m+1}) d\delta$$

$$\leq \int g d\gamma = \int G\nu_{0} d\gamma < +\infty$$

and hence $\sum\limits_{m=0}^{\infty}\int d\nu_{2m}<+\infty$. Put $\mu_{O}=\sum\limits_{m=0}^{\infty}\nu_{2m}$. Then μ_{O} is a positive measure supported by K. If we can choose $\beta_{O}\in f(\check{G})$ satisfying $\check{G}\beta_{O}\geq 1$ on F, we have

$$\sum_{m=0}^{\infty} \int \!\! d \, \nu_{2m+1} \quad \leq \quad \sum_{m=0}^{\infty} \int \!\! \check{G} \, \beta_O \, d \, \nu_{2m+1} \quad = \quad \sum_{m=0}^{\infty} \int_G G \nu_{2m+1} \, d \, \beta_O \, d \, \nu_{2m+1} \, d \,$$

$$\leq \sum_{m=0}^{\infty} \int Gv_{2m} d\beta_0 = \sum_{m=0}^{\infty} \int G\beta_0 d\nu_{2m} < +\infty.$$

Consequently μ_1 : = $\sum_{m=0}^{\infty} v_{2m+1}$ is a positive measure supported by F.

Obviously it follows that $\sum\limits_{m=0}^{\infty} Gv_{2m} = G\mu_{o}$, $\sum\limits_{m=0}^{\infty} Gv_{2m+1} = G\mu_{1}$ and $g = G\mu_{o} - G\mu_{1}$ on X. Since $G\mu_{o} \leq G\mu_{1} + Gv_{o}$ and $G\mu_{1}$ is a continuous on K, $G\mu_{o}$ is bounded on K and hence it is locally bounded on X. Using $G\mu_{1} \leq G\mu_{o}$, $G\mu_{1}$ is also locally bounded on X. Therefore $\mu_{o} - \mu_{1}$ is a (G, N)-condenser-type measure of λ onto $\langle K, F \rangle$. Thus Theorem 1 has been proved.

Putting N = G in Theorem 1, we obtain the following corollary.

Corollary 1. G satisfies the domination principle if and only if (G, G) has the property (b).

Definition 5. We say that G satisfies the condenser principle if for each non-G-negligible compact set K and each compact set F with K \cap F = ϕ , there exists a measure α = μ_{0} - μ_{1} ($\mu_{0} \in \mathcal{I}(G)$, $\mu_{1} \in \mathcal{I}(G)$) such that

$$supp(\mu_O) \subset K \quad and \ supp(\mu_1) \subset F,$$

$$G\alpha = 1 \quad G\text{-n.e. on } K, \quad G\alpha = 0 \quad G\text{-n.e. on } F,$$

$$0 \leq G\alpha \leq 1 \quad on \ X.$$

If $A(x) = \{x\}$ for any $x \in X$, we say that G is non-degenerate. Putting N = 1 (the constant kernel) in Theorem 1, we have easily the following well-known result (cf. [6]).

Corollary 2. Let G be non-degenerate. Then G satisfies the condenser principle if and only if $G \prec G$ and $G \prec 1$.

Corollary 3. If $G \prec G$, $G \prec N$ and G is non-degenerate, then for any pair of a non-G-negligible compact set K and ϵ

F with K \cap F = 0, there exists uniquely a measure α = μ_0 - μ_1 (μ_0 , μ_1 \in $\mathcal{I}(G)$) satisfying b_1), b_2), b_3) in Theorem 1.

Proof. Let K be a non-G-negligible compact set and F be a compact set with K \cap F = ϕ . Since G is non-degenerate, we have A(K) \cap F = ϕ . By Theorem 1 there exists a measure $\alpha = \mu_0 - \mu_1$ (μ_0 , $\mu_1 \in \mathcal{L}(G)$) satisfying b_1), b_2), b_3). Let $\beta = \nu_0 - \nu_1$ (ν_0 , $\nu_1 \in \mathcal{L}(G)$) be another measure satisfying b_1), b_2), b_3). Since G \prec G and G is non-degenerate, $\check{G} \prec \check{G}$ and \check{G} in also non-degenerate. By Corollary 1 there exists, for each $\gamma \in \mathcal{L}(\check{G})$, a measure $\delta = \sigma - \tau$ (σ , $\tau \in \mathcal{L}(\check{G})$) such that

$$\check{G}\delta = \check{G}\gamma$$
 G-n.e. on K, $\check{G}\delta = 0$ G-n.e. on F, $0 \le \check{G}\delta \le \check{G}\gamma$ on X.

Then we have

$$\begin{split} \int & \check{\mathsf{G}} \gamma \, \mathrm{d} \mu_{o} = \int (\check{\mathsf{G}} \sigma - \check{\mathsf{G}} \tau) \, \mathrm{d} \mu_{o} - \int (\check{\mathsf{G}} \sigma - \check{\mathsf{G}} \tau) \, \mathrm{d} \mu_{1} \\ &= \int (\mathsf{G} \mu_{o} - \mathsf{G} \mu_{1}) \, \mathrm{d} \sigma - \int (\mathsf{G} \mu_{o} - \mathsf{G} \mu_{1}) \, \mathrm{d} \tau \\ &= \int (\mathsf{G} \nu_{o} - \mathsf{G} \nu_{1}) \, \mathrm{d} \sigma - \int (\mathsf{G} \nu_{o} - \mathsf{G} \nu_{1}) \, \mathrm{d} \tau \\ &= \int (\check{\mathsf{G}} \sigma - \check{\mathsf{G}} \tau) \, \mathrm{d} \nu_{o} = \int \check{\mathsf{G}} \gamma \, \mathrm{d} \nu_{o}. \end{split}$$

Let f be a non-negative continuous cunction on X with compact support. Since G is non-degenerate, we can find sequences $\{\sigma_n\}$, $\{\tau_n\}$ in $\mathcal{L}(\check{G})$ satisfying

$$\begin{array}{lll} 0 & \leq & \check{G}\sigma_n & - & \check{G}\tau_n & \leq & \check{G}\lambda & \text{ on } X \text{ for some } \lambda & \in & \mathcal{F}(\check{G}) \text{,} \\ \lim_{n \to \infty} & (\check{G}\sigma_n & - & \check{G}\tau_n) & = & f & \text{G-n.e. on } X. \end{array}$$

Consequently we have $\mu_O = \nu_O$. If F is non-G-negligible, we have $\mu_1 = \nu_1$ analogously. If F is G-negligible, it follows that $\mu_1 = \nu_1 = 0$. Thus we have $\mu_O = \nu_O$ and $\mu_1 = \nu_1$.

§4. (G, N)-condenser-type theorem for a pair $\langle K, F \rangle$ of a compact set K and a closed set F.

We say that (G, N) has the property (b') if the following property (b') is satisfied:

- (b') Let K be a non-G-negligible compact set and F be a closed set with A(K) \cap F = ϕ . Then for each λ \in $\mathcal{L}(N)$ there exists a measure α = μ_O μ_1 satisfying
 - b_1') supp $(\mu_0) \in K$, supp $(\mu_1) \in F$,
 - b_2') $g_{\mu_1}d\beta < +\infty$ for each $\beta \in \mathcal{L}(\xi)$,
 - b_3') $\mu_0(B) = \mu_1(B) = 0$ for each G-negligible set B,
 - b_4') $G\alpha = N\lambda$ G-n.e. on K, $G\alpha = 0$ G-n.e. on F,
 - b;) $0 \le G\alpha \le N\lambda$ on X if F is compact and $0 \le G\alpha \le N\lambda$ G-n.e. on X if F is not compact.

In this section we ask a necessary and sufficient condition in order that (G, N) has the property (b').

- Theorem 2. Assume that $G \prec G$ and $\mathcal{L}(N) \neq \{0\}$. Then (G, N) has the property (b') if and only if (G, N) has the following three properties (c), (d), (e):
- (c) Let K be a non-G-negligible compact set. Then for every $\mu \ \in \ \pounds(N) \ there \ exists \ a \ measure \ \nu \ \in \ M_K^+ \ such \ that$

 $\mbox{supp($\nu$) \subset K,} \qquad \mbox{G_{ν} = N_{μ} $G-n.e.$ on K,} \qquad \mbox{G_{ν} \leq N_{μ} on X.} \label{eq:suppless}$

(d) Any μ $\ \epsilon \mbox{\it L}(G)$ is balayable onto any closed set F, i.e., there exists a positive measure ν such that

 $G_{V} = G_{\mu}$ G-n.e. on F, $G_{V} \leq G_{\mu}$ on X.

(e) Let K be a non-G-negligible compact set and F be a closed set with A(K) \cap F = ϕ . Then there exist sequences $\{\sigma_n\}$, $\{\tau_n\}$ $\{\sigma_n, \tau_n\}$

 $_{\ell} \not \perp (\overset{\mathsf{V}}{\mathsf{G}}))$ satisfying

$$\begin{array}{lll} \mathbf{e_1} & \lim_{n \to \infty} \ (\check{\mathbf{G}} \boldsymbol{\sigma}_n \ - \ \check{\mathbf{G}} \boldsymbol{\tau}_n) \ = \ 0 & \text{G-n.e. on } \mathbf{F}, \\ \\ \lim_{n \to \infty} \ (\check{\mathbf{G}} \boldsymbol{\sigma}_n \ - \ \check{\mathbf{G}} \boldsymbol{\tau}_n) \ \ge \ 1 & \text{G-n.e. on } \mathbf{K}, \end{array}$$

$$\mathbf{e}_2) \qquad 0 \leq \lim_{n \to \infty} (\breve{\mathsf{G}} \sigma_n - \breve{\mathsf{G}} \tau_n) \leq \breve{\mathsf{G}} \eta \qquad \mathsf{G-n.e.} \text{ on } \mathsf{X} \text{ for some } \eta \in \mathcal{L}(\breve{\mathsf{G}}),$$

$$\mathbf{e_3}) \qquad \overset{\checkmark}{\mathsf{G}} \sigma_n \ \leq \ \overset{\checkmark}{\mathsf{G}} \sigma_{n+1} \ \text{and} \ \overset{\checkmark}{\mathsf{G}} \tau_n \ \leq \ \overset{\checkmark}{\mathsf{G}} \tau_{n+1} \ \text{for each natural number n,}$$

$$\mathbf{e}_4) \quad \underset{n \to \infty}{\text{liminf}} \int \check{\mathbf{N}} \sigma_n d\beta < +\infty \text{ and } \underset{n \to \infty}{\text{liminf}} \int \check{\mathbf{N}} \tau_n d\beta < +\infty \text{ for each } \beta \in \mathcal{L}(\check{\mathbf{N}}).$$

<u>Proof.</u> Suppose that (G, N) has the property (b'). First, we shall show that (G, N) has the property (c). Let K be a non-G-negligible set and μ be a measure in $\mathcal{L}(N)$. Then there exists a (G, N)-condenser-type measure $\alpha = \mu_O - \mu_1$ of μ onto $\langle K, \phi \rangle$. Since $\mu_1 = 0$, we have

$$G\mu_{O} = N\mu$$
 G-n.e. on K, $G\mu_{O} \leq N\mu$ on X.

Secondly, we shall show that any measure in $\mathcal{L}(G)$ is balayable onto any closed set F. For this purpose it is sufficient to prove that for each closed set F

 $\overset{\checkmark}{G}\sigma_{n+1} - \overset{\checkmark}{G}\tau_{n+1} \leq \overset{\checkmark}{G}\sigma_{n} - \overset{\checkmark}{G}\tau_{n} \quad G-\text{n.e. on } F \quad (cf. [8, Theorem 1])$

To show (4.1), we suppose that it does not hold that $\lim_{n\to\infty} (\check{\mathsf{G}}_n - \check{\mathsf{G}}_n)$ = 0 G-n.e. on X. Since $0 \le \check{\mathsf{G}}_n - \check{\mathsf{G}}_n$ on X, there exists a non-G-negligible set contained in $\{x \in \mathsf{CF}; \lim_{n\to\infty} (\check{\mathsf{G}}_n(x) - \check{\mathsf{G}}_n(x)) > 0\}$.

We remark that A(K) \cap F = ϕ . By the assumption there exists, for λ \in $\mathcal{L}(N)$ ($\lambda \neq 0$), a measure μ_0 - μ_1 satisfying b_1') $\sim b_5'$). Since $\lambda \neq 0$,

we have $\mu_{O} \neq 0$. Consequently

$$\begin{split} 0 &= \lim_{n \to \infty} \{ \int (G\mu_{o} - G\mu_{1}) d\sigma_{n} - \int (G\mu_{o} - G\mu_{1}) d\tau_{n} \} \\ &= \int \lim_{n \to \infty} (\check{G}\sigma_{n} - \check{G}\tau_{n}) d\mu_{o} - \lim_{n \to \infty} (\check{G}\sigma_{n} - \check{G}\tau_{n}) d\mu_{1} \\ &= \int \lim_{n \to \infty} (\check{G}\sigma_{n} - \check{G}\tau_{n}) d\mu_{o} > 0. \end{split}$$

This is a contradiction. Thus $\lim_{n\to\infty} (\check{\mathsf{G}}\sigma_n - \check{\mathsf{G}}\tau_n) = 0$ G-n.e. on F implies $\lim_{n\to\infty} (\check{\mathsf{G}}\sigma_n - \check{\mathsf{G}}\tau_n) = 0$ G-n.e. on X. Finally, we shall show that (G, N) has the property (e). Let $\{\mathsf{K}_n\}$ be an increasing sequence of compact sets with $\overset{\circ\circ}{\cup} \mathsf{K}_n = \mathsf{X}$. Suppose that K is a non-G-negligible n=1 compact set and F be a closed set with $\mathsf{A}(\mathsf{K}) \cap \mathsf{F} = \emptyset$. Put $\mathsf{F}_n := \mathsf{F} \cap \mathsf{K}_n$. We can find $\lambda_0 \in \mathcal{L}(\check{\mathsf{G}})$ satisfying $\check{\mathsf{G}}\lambda_0 \geq 1$ on K. Since $\check{\mathsf{G}} \prec \check{\mathsf{G}}$, there exists, by Corollary 1, $\delta_n = \alpha_n - \beta_n$ such that

$$\begin{split} & \text{supp}(\alpha_n) \in K, & \text{supp}(\beta_n) \in F_n, \\ & \check{G} \delta_n = \check{G} \lambda_O & \text{G-n.e. on } K, & \check{G} \delta_n = 0 & \text{G-n.e. on } F_n, \\ & 0 \leq \check{G} \delta_n \leq \check{G} \lambda_O & \text{on } X. \end{split}$$

Since $\check{G}\alpha_n - \check{G}\beta_n \leq \check{G}\alpha_{n-1} - \check{G}\beta_{n-1}$ on $K \cup F_n$, it follows that $\check{G}\alpha_n - \check{G}\beta_n \leq \check{G}\alpha_{n-1} - \check{G}\beta_{n-1}$ on X. We remark that $\check{G}\alpha_n \leq \check{G}\alpha_{n+1}$ on X. In fact, there exists, for each $\eta \in \mathcal{L}(G)$, a measure $\sigma_n - \tau_n$ $(\sigma_n, \tau_n \in \mathcal{L}(G))$ satisfying

$$\begin{split} & \text{supp}(\sigma_n) \in K, & \text{supp}(\tau_n) \in \mathbb{F}_n, \\ & G\sigma_n - G\tau_n = G\eta \quad G\text{-n.e. on } K, & G\sigma_n - G\tau_n = 0 \quad G.\text{n.e. on } \mathbb{F}_1 \\ & 0 \leq G\sigma_n - G\tau_n \leq G\eta. \end{split}$$

Then we have

$$\int \check{\mathsf{G}}\alpha_n \, dn = \int \mathsf{G} n \, d\alpha_n$$

$$= \int (\mathsf{G}\sigma_n - \mathsf{G}\tau_n) \, d\alpha_n - \int (\mathsf{G}\sigma_n - \mathsf{G}\tau_n) \, d\beta_n$$

$$= \int (\check{\mathsf{G}}\alpha_n - \check{\mathsf{G}}\beta_n) \, d\sigma_n - \int (\check{\mathsf{G}}\alpha_n - \check{\mathsf{G}}\beta_n) \, d\tau_n$$

$$\leq \int (\check{\mathsf{G}}\alpha_{n+1} - \check{\mathsf{G}}\beta_{n+1}) \, d\sigma_n - \int (\check{\mathsf{G}}\alpha_{n+1} - \check{\mathsf{G}}\beta_{n+1}) \, d\tau_n$$

$$= \int (\mathsf{G}\sigma_n - \mathsf{G}\tau_n) \, d\alpha_{n+1} - \int (\mathsf{G}\sigma_n - \mathsf{G}\tau_n) \, d\beta_{n+1}$$

$$\leq \int G\eta \, d\alpha_{n+1} = \int \widecheck{G}\alpha_{n+1} d\eta.$$

Consequently $\check{G}\alpha_n \leq \check{G}\alpha_{n+1}$ G-n.e. on X and hence $\check{G}\alpha_n \leq \check{G}\alpha_{n+1}$. Similarly we have $\check{G}\beta_n \leq \check{G}\beta_{n+1}$ on X. Let λ be an arbitrary measure in $\mathcal{L}(N)$. By the assumption we can find $\alpha = \mu_0 - \mu_1$ satisfying b_1') $\sim b_5'$). Then we have

$$\begin{split} + \infty &> \int \! \check{\mathsf{G}} \lambda_{o} \mathrm{d} \mu_{o} \geq \int \! \lim_{n \to \infty} \, (\, \check{\mathsf{G}} \alpha_{n} \, - \, \, \check{\mathsf{G}} \beta_{n}) \, \mathrm{d} \mu_{o} \, - \, \int \! \lim_{n \to \infty} \, (\, \check{\mathsf{G}} \alpha_{n} \, - \, \, \check{\mathsf{G}} \beta_{n}) \, \mathrm{d} \mu_{1} \\ &= \lim_{n \to \infty} \! \left\{ \int \! (\, \mathsf{G} \mu_{o} \, - \, \, \mathsf{G} \mu_{1}) \, \mathrm{d} \alpha_{n} \, - \, \int \! (\, \mathsf{G} \mu_{o} \, - \, \, \mathsf{G} \mu_{1}) \, \mathrm{d} \beta_{n} \right\} \\ &= \lim_{n \to \infty} \! \left\{ N \lambda \, \mathrm{d} \alpha_{n} \, = \, \lim_{n \to \infty} \! \left\{ \check{\mathsf{N}} \alpha_{n} \, \mathrm{d} \lambda \, \right\} \right. \end{split}$$

Since $\check{G}\beta_n \leq \check{G}\alpha_n$ on X and α_n , $\beta_n \in \mathcal{L}(\check{G})$, we have, using (c),

Conversely, suppose that (G, N) has the properties (c), (d), (e). Let K be a non-G-negligible compact set and F be a closed set with $A(K) \cap F = \emptyset$ and λ be a measure in $\mathcal{L}(N)$. We denote by ν_0 a relatively balayaged measure of λ onto K with respect to (G, N). Since G has the property (d), we can choose a sequence $\{\nu_n\}$ of positive measures satisfying (i) \sim (iii) in Theorem 1. Obviously $\{G\nu_n\}$ is decreasing. We shall show that $\lim_{n\to\infty} G\nu_n = 0$ G-n.e. on X. Let β be an arbitrary measure in $\mathcal{L}(\check{G})$ and b be a positive real number satisfying $b\check{G}\beta \leq 1$ on K. Using the property (e), for $u = \lim_{n\to\infty} \check{G}\sigma_n$, $v = \lim_{n\to\infty} \check{G}\tau_n$ in (e) we have

$$\begin{split} \int \! u d\nu_n &= \lim_{p \to \infty} \, \int \! \check{G} \sigma_p d\nu_n \, = \, \lim_{p \to \infty} \, \int \! G \nu_n d\sigma_p \\ &\leq \, \lim \inf_{p \to \infty} \, \int \! N \lambda d\sigma_p \, = \, \lim \inf_{p \to \infty} \, \int \! \check{N} \sigma_p d\lambda \, < \, + \infty \, . \end{split}$$

Since the sequence $\{\int u dv_n\}$ is decreasing, it follows that

$$\lim_{m\to\infty}\int udv_{2m}=\lim_{m\to\infty}\int udv_{2m+1}<+\infty.$$

Analogously

$$\lim_{m\to\infty} \int v d\nu_{2m} \; = \; \lim_{m\to\infty} \; \int v d\nu_{2m+1} \; < \; +\infty \, .$$

Using these relations, we obtain

$$\begin{array}{lll} b \int_{m \to \infty}^{1 \, \mathrm{im}} \; \mathsf{Gv}_{2m} \mathrm{d}\beta &= \lim_{m \to \infty} \; \int \mathsf{b} \mathsf{G} \mathsf{v}_{2m} \mathrm{d}\beta &= \lim_{m \to \infty} \; \int \mathsf{b} \mathsf{G} \mathsf{d} \mathsf{v}_{2m} \\ &\leq \lim_{m \to \infty} \; \int \lim_{p \to \infty} \; \left(\mathsf{G} \sigma_p \; - \; \mathsf{G} \tau_p \right) \mathrm{d} \mathsf{v}_{2m} \\ &= \lim_{m \to \infty} \; \int \mathsf{u} \mathrm{d} \mathsf{v}_{2m} \; - \lim_{m \to \infty} \; \int \mathsf{v} \mathrm{d} \mathsf{v}_{2m} \\ &= \lim_{m \to \infty} \; \int \mathsf{u} \mathrm{d} \mathsf{v}_{2m+1} \; - \lim_{m \to \infty} \; \int \mathsf{v} \mathrm{d} \mathsf{v}_{2m+1} \\ &= \lim_{m \to \infty} \; \int \lim_{p \to \infty} \; \left(\mathsf{G} \sigma_p \; - \; \mathsf{G} \tau_p \right) \mathrm{d} \mathsf{v}_{2m+1} \; = \; 0 \, . \end{array}$$

Consequently $\int_{m\to\infty}^{1} Gv_{2m} d\beta = 0$ for all $\beta \in \mathcal{L}(\check{G})$. Thus we have

 $\lim_{m\to\infty} \text{Gv}_{2m} = 0 \quad \text{G-n.e. on X and hence } \lim_{n\to\infty} \text{Gv}_n = 0 \quad \text{G-n.e. on X.}$

Thus we see that the alternative series $\sum\limits_{n=0}^{\infty}$ $\left(-1\right)^{n}Gv_{n}$ converges

G-n.e. on X. Put

$$g: = \sum_{m=0}^{\infty} (Gv_{2m} - Gv_{2m+1}).$$

Then g has the property (3.1). Next we shall show that $\sum\limits_{m=0}^\infty \ \nu$ is a positive measure. For any natural number q we have

$$\begin{array}{l} \frac{q}{\Sigma} \int d\nu_{2m} \leq \sum\limits_{m=0}^{q} \int \lim\limits_{p\to\infty} (\check{\delta}\sigma_p - \check{\delta}\tau_p) d\nu_{2m} - \sum\limits_{m=0}^{q} \int \lim\limits_{p\to\infty} (\check{\delta}\sigma_p - \check{\delta}\tau_p) d\nu_{2m+1} \\ \\ = \lim\limits_{p\to\infty} \sum\limits_{m=0}^{q} \int (G\nu_{2m} - G\nu_{2m+1}) d\sigma_p \\ \\ - \lim\limits_{p\to\infty} \sum\limits_{m=0}^{q} \int (G\nu_{2m} - G\nu_{2m+1}) d\tau_p \\ \\ \leq \lim\inf\limits_{p\to\infty} \int g d\sigma_p \leq \liminf\limits_{p\to\infty} \int N\lambda d\sigma_p < +\infty. \end{array}$$

 $\overset{\infty}{\Sigma}$ ν_{2m} is a positive measure supported by K. Let f be a nonnegative continuous function on X with compact support and η be a measure in $\mathcal{J}(\check{G})$ with $\check{G}\eta$ \geq f on X. Then

$$\int\! f\, d\nu_{2m+1} \ \leq \ \int\! \check{G} \eta\, d\nu_{2m+1} \ = \ \int\! G\nu_{2m+1} d\eta \ \leq \ \int\! G\nu_{2m} d\eta \ = \ \int\! \check{G} \eta\, d\nu_{2m}.$$

Hence

$$\sum_{m=0}^{\infty} \int f d\nu_{2m+1} \leq \sum_{m=0}^{\infty} \int \ddot{G} \eta d\nu_{2m} < +\infty.$$

This implies that the positive linear functional: $f\mapsto \sum_{m=0}^{\infty}\int fd\nu_{2m+1}$ on the space of continuous functions on X with compact support is a positive measure μ_1 supported by F. Obviously $\sum_{m=0}^{\infty}G\nu_{2m}=G\mu_0$ and $\sum_{m=0}^{\infty}G\nu_{2m+1}=G\mu_1$. For any $\beta\in\mathcal{L}(\check{G})$ we obtain $\int G\mu_1d\beta=\sum_{m=0}^{\infty}\int G\nu_{2m+1}d\beta\leq\sum_{m=0}^{\infty}\int G\nu_{2m}d\beta\leq\sum_{m=0}^{\infty}\int \check{G}\beta d\nu_{2m}<+\infty.$

Thus both $G\mu_1$ and $G\mu_0$ are finite on G-n.e. on X and it follows that $g=G\mu_0-G\mu_1$ G-n.e. on X. We remark that $g=G\mu_0-G\mu_1$ on X if F is compact. Therefore $\mu_0-\mu_1$ is a (G, N)-condenser-type measure of λ onto <K, F>. Thus Theorem 2 has been proved.

We define

$$S(\check{G}): = \{u = \lim_{n \to \infty} \check{G}\sigma_n ; \sigma_n \in \mathcal{L}(\check{G}), \check{G}\sigma_n \leq \check{G}\sigma_{n+1}, \int ud\beta < +\infty \}$$
 for all $\beta \in \mathcal{P}(G)$.

Putting G = N, we have easily the following corollary.

Corollary 4. Assume that $G \prec G$. Then (G, G) has the property (b') if and only if G has the following properties (d), (e'):

- (d) Any $\mu \in \mathcal{L}(G)$ is balayable onto any closed set F,
- (e') Let K be a non-G-negligible compact set and F be a closed set with A(K) \cap F = ϕ . Then there exist u, v \in S(\check{G}) such that

$$u - v \ge 1$$
 $G-n$.
 $0 \le u - v \le G'n$ $G-r$

Proposition 3. Assume that G is non-degenerate and $G \sim G$. Further assume that G has the following property (f):

(f) For any $\lambda \in \mathcal{F}(\check{G})$, for any $\epsilon > 0$ and for any compact set K there exist u, v ϵ S(\check{G}) and a compact set K' such that

$$v = \lim_{n \to \infty} \check{G}\tau_n, \quad \operatorname{supp}(\tau_n) \subset K',$$

$$u - v \le \varepsilon \quad G-\text{n.e. on } K, \quad u - v \ge \check{G}\lambda \quad G-\text{n.e. on } CK',$$

$$0 \le u - v \quad G-\text{n.e. on } X.$$

Then (G, G) has the property (b').

<u>Proof.</u> First we remark that we can choose u, $v \in S(\check{G})$ in (f) satisfying (4.2) and

 $u-v=\check{G}\lambda\quad G-n.e.\ on\ CK',\quad 0\leq u-v\leq \check{G}\lambda\quad G-n.e.\ on\ X.$ In fact, since $(u-v)\wedge\check{G}\lambda=u\wedge(\check{G}\lambda+v)-v$ and $u\wedge(\check{G}\lambda+v)$ $S(\check{G})$, we can take $(u-v)\wedge\check{G}\lambda$ instead of u-v. By Proposition 4 in [8] any $\mu\in \mathcal{L}(G)$ is balayable to any closed set. Further, let K be a non-G-negligible compact set and F be a closed set with $K\cap F=\emptyset$. Choose $\lambda_O\in \mathcal{T}(\check{G})$ satisfying $\check{G}\lambda_O\geq 2$ on K. By the assumption (f) there exist $u,v\in S(\check{G})$ and a compact set K' with $K\subset K'$ such that

$$u-v=\check{G}\lambda_O$$
 G-n.e. on CK', $u-v\leq 1$ G-n.e. on K,
$$0\leq u-v\leq \check{G}\lambda_O$$
 G-n.e. on X.

Then we obtain, putting w_1 : = $G\lambda_0 + v - u$,

$$w_1 \ge 1$$
 G-n.e. on K, $w_1 = 0$ G-n.e. on CK', $0 \le w_1 \le \check{G}\lambda_o$ G-n.e. on X.

Since $(F \cap K') \cap K = \phi$ and $\check{G} \prec \check{G}$, it follows from Corollar there exists $w_2 = \check{G}\alpha - \check{G}\beta$ $(\alpha, \beta \in \mathcal{L}(\check{G}))$ such that

We can write $w_1 \wedge w_2 = u_1 - u_2 (u_1, u_2 \in S(\check{G}))$ G-n.e. on X and obtain

$$u_1 - u_2 \ge 1$$
 G-n.e. on K, $u_1 - u_2 = 0$ G-n.e. on F, $0 \le u_1 - u_2 \le \frac{1}{2} \, \dot{G} \lambda_o$ G-n.e. on X.

Thus (G, G) has the property (b') by Corollary 4.

References

- [1] C. Berg, On the existence of condenser potentials, Nagoya Math.
 J. 70 (1987), 157-165.
- [2] I. Higuchi and M. Ito, On the theorems of Kishi for a continuous function-kernel, Nagoya Math. J. 53 (1974), 127-135.
- [3] I. Higuchi, On the transitive domination principle for continuous function-kernels, Nagoya Math. J. 57 (1975), 27-35.
- [4] I. Higuchi, Regularité et proprieté de convergence dominée des potentiels d'un noyau-fonction non-symétrique, Séminaire de Théorie du Potentiel, No.6, Lecture Note in Math. 906.
- [5] M. Kishi, Maximum principle in the potential theory, Nagoya Math. J. 23 (1963), 165-187.
- [6] M. Kishi, Sur l'existence des mesures des condensateurs, Nagoya Math. J. 30 (1967), 1-7.
- [7] M. Kishi, Selected topics from potential theory, Lectures by M. Kishi given at the University of Copenhagen 1977-78.
- [8] H. Watanabe, On balayage on closed sets, Natur. Sci. Rep. Ochanomizu Univ. 33 (1982), 45-54.