142

On Beppo Levi spaces

Takahide Kurokawa 黒 川 隆 英 (Kagoshima University)

Let \mathbb{R}^n be the n-dimensional Euclidean space. We write $\mathbf{x}=(\mathbf{x}_1,\cdots,\mathbf{x}_n)$, $\mathbf{y}=(\mathbf{y}_1,\cdots,\mathbf{y}_n)$, \cdots for the elements of \mathbb{R}^n . The inner product of $\mathbf{x},\mathbf{y}\in\mathbb{R}^n$ is the number $(\mathbf{x},\mathbf{y})=\sum_{j=1}^n\mathbf{x}_j\mathbf{y}_j$; the norm of $\mathbf{x}\in\mathbb{R}^n$ is the number $|\mathbf{x}|=(\mathbf{x},\mathbf{x})^{1/2}$. If $\alpha=(\alpha_1,\cdots,\alpha_n)$ is an n-tuple of nonnegative integers α_j , we call α a multi-index and denote by \mathbf{x}^α the monomial $\mathbf{x}_1^{-1}\cdots\mathbf{x}_n^{-n}$, which has degree $|\alpha|=\sum_{j=1}^n\alpha_j$. Similarly, if $\mathbf{D}_j=\partial/\partial\mathbf{x}_j$ for $\mathbf{1}\leq\mathbf{j}\leq\mathbf{n}$, then $\mathbf{D}^\alpha=\mathbf{D}_1^{\alpha_1}\cdots\mathbf{D}_n^{\alpha_n}$ denotes a differential operator of order $|\alpha|$. We shall use the following notations of L.Schwarz[5]: $\mathcal{D}(\mathbb{R}^n)=\mathcal{D}$, $\mathcal{D}'(\mathbb{R}^n)=\mathcal{D}'$. For a positive integer \mathbf{m} and $\mathbf{p}>1$, the Beppo Levi space $\mathbf{L}_m^{\mathbf{p}}(\mathbb{R}^n)=\mathbf{L}_m^{\mathbf{p}}$ is defined as follows:

$$L_m^p = \{u \in \mathcal{L}' : D^\alpha u \in L^p(\mathbb{R}^n) \text{ for any } \alpha \text{ with } |\alpha| = m\}.$$

Furthermore $u_{k} \to 0 \ (k \to \infty)$ in L_{m}^{p} means that $u_{k} \to 0 \ (k \to \infty)$ in $\int_{0}^{r} and |u_{k}|_{m,p} = \sum_{|\alpha|=m} \|D^{\alpha}u\|_{p} \to 0 \ (k \to \infty)$. We note that L_{m}^{p} is contained in $L_{loc}^{p}([2])$.

Our purpose is to investigate the aspects of the space L_m^p .

First we give a remark about the topology in L_m^p .

Remark. The following three conditions are mutually equivalent:

i)
$$u_k \rightarrow 0 (k+\infty)$$
 in $5'$ and $|u|_{m,p} \rightarrow 0 (k\rightarrow\infty)$,

ii)
$$u_k \rightarrow 0 (k \rightarrow \infty)$$
 in L_{loc}^p and $|u|_{m,p} \rightarrow 0 (k \rightarrow \infty)$,

iii)
$$(\int_{|\mathbf{x}| \le 1} |\mathbf{u}_{\mathbf{k}}|^{\mathbf{p}} d\mathbf{x})^{1/p} + |\mathbf{u}|_{\mathbf{m},p} \rightarrow 0 (\mathbf{k} \rightarrow \infty).$$

We also note that L_m^p is a Banach space. We shall give some observations on the space L_m^p in case of m - (n/p) < 0. We assume m - (n/p) < 0. For $u \in \mathcal{S}$, u has the following integral representation ([2],[4]):

$$u(x) = \sum_{|\alpha|=m} a_{\alpha} \int_{0}^{\infty} \xi^{\alpha} t^{m-1} D^{\alpha} u(x-t\xi) dt$$
$$= \sum_{|\alpha|=m} a_{\alpha} \int_{\overline{|x-y|}}^{\overline{(x-y)}} D^{\alpha} u(y) dy$$

where ξ is an arbitrary point on the unit sphere. By the Hardy-Littlewood-Sobolev's inequality, we see

$$\left(\int \left| \int \frac{(x-y)^{\alpha}}{|x-y|^{n}} D^{\alpha}u(y) dy \right|^{p_{m}} dx \right)^{1/p_{m}}$$

$$\leq \left(\int \left(\int |x-y|^{m-n} |D^{\alpha}u(y)| dy \right)^{p_{m}} dx \right)^{1/p_{m}}$$

$$\leq C \left\| D^{\alpha}u \right\|_{p},$$

where $1/p_m = (1/p) - (m/n)$, and hence we have $\|u\|_{p_m} \le C \|u\|_{m,p}$. Therefore for a sequence $\{u_k\}$ in $\mathbb D$ it follows from $\|u_k\|_{m,p} \to 0$ $(k \to \infty)$ that u_k converges to 0 in L^p and hence $u_k \to 0$ $(k \to \infty)$ in L^p_m . Moreover from Theorem B* in [6] we obtain

$$\left(\int |x|^{-mp} \left| \int \frac{(x-y)^{\alpha}}{|x-y|^{n}} D^{\alpha}u(y) dy \right|^{p} dx \right)^{1/p}$$

$$\leq \left(\int |x|^{-mp} \left(\int |x-y|^{m-n} \left| D^{\alpha}u(y) \right| dy \right)^{p} dx \right)^{1/p}$$

$$\leq C \|D^{\alpha}u\|_{p}$$

so that

$$(\int |x|^{-mp}|u(x)|^p dx)^{1/p} \le C|u|_{m,p}.$$
 (*)

Remark. In case of m - (n/p) < 0, from (*) we have the following estimate:

$$(\int (1+|x|)^{-mp}|u(x)|^p dx)^{1/p} \le C|u|_{m,p}$$
 for $u \in \mathcal{D}$.

In case of m - $(n/p) \ge 0$, the above estimate is not valid. However, in case of m - (n/p) > 0 and $\frac{1}{2}$ integer, we have the following estimates:

i)
$$(\int (1+|x|)^{-mp} |u(x)|^p dx)^{1/p} \le C(1+r^{m-(n/p)}) |u|_{m,p}$$

for $u \in \int$ and supp $u \in \{|x| \le r\}$.

ii) $|D^{\beta}u(0)| \leq Cr^{m-(n/p)-|\beta|}|u|_{m,p}$ for $u \in \mathcal{J}$, supp $u \in \{|x| \leq r\}$ and $|\beta| \leq [m-(n/p)]$.

Next we state the following proposition which has independent interest. We denote by e_j the multi-index $(0, \dots, 1, \dots, 0)$.

Proposition 1. We assume m-(n/p)<0. Let $\{f_{\alpha}\}_{|\alpha|=m}$ be a family of functions in L^p and assume $D_{i\alpha} = D_{j\beta}$ for any α,β with $|\alpha|=|\beta|=m$ and $\alpha+e_{i}=\beta+e_{j}$. Then $D^{\alpha}F=f_{\alpha}$ for any α with $|\lambda|=m$ if we put

$$F(x) = \sum_{|\alpha|=m} a_{\alpha} \int \frac{(x-y)^{\alpha}}{|x-y|^{n}} f_{\alpha}(y) dy.$$

For $u \in L_m^p$, $D^{\alpha}v = D^{\alpha}u$ for any α with $|\alpha| = m$ if we put

$$v(x) = \sum_{|\alpha|=m} a_{\alpha} \int \frac{(x-y)^{\alpha}}{|x-y|^{n}} D^{\alpha}u(y) dy$$

from Proposition 1. Hence there exists a polynomial P of degree m-1 such that u=v+P. We note that

$$\left(\int \left|x\right|^{-mp}\left|v\left(x\right)\right|^{p}dx\right)^{1/p} \leq C\left|u\right|_{m,p}.$$

When $m - (n/p) \ge 0$, the aspects of the space L_m^p are rather different

Remark. Let $m - (n/p) \ge 0$ and [m-(n/p)] = d.

- i) There exists a sequence $\{\psi_k\}$ in \mathcal{L} such that $\psi_k(\mathbf{x}) \to \infty$ $(\mathbf{k} \to \infty)$ for all $\mathbf{x} \in \mathbb{R}^n$ and $[\psi_k|_{\mathbf{m},p} \to 0 \ (\mathbf{k} \to \infty)$.
- ii) (see [3]) For any polynomial P of degree \leq d, there exists a sequence $\{\phi_k\}$ in \mathcal{J} such that $\phi_k \rightarrow P$ $(k \rightarrow \infty)$ in \mathcal{J}' and $|\phi_k|_{m,p} \rightarrow 0$ $(k \rightarrow \infty)$.

A general proposition may be formulated as follows.

Proposition 2.(cf[1]) Let m be a positive integer and p > 1. Suppose that u belongs to L_m^p . Then

$$\int |u(x)|^{p} (1+|x|)^{-mp} (\log(e+|x|))^{-p} dx < \infty$$

f and only if there exists a sequence $\{u_k\}$ in \mathfrak{Z} such that $k \longrightarrow u$ $(k \longrightarrow \infty)$ in L^p_m .

Now we shall study the space L_m^p in case of m-(n/p)>0 and $1,2,\cdots,m-1$. Let [m-(n/p)]=d. For $u\in C(\mathbb{R}^n)$ from the Taylor's ormula we have

$$\begin{aligned} \mathbf{u}(\mathbf{x}) &- \Sigma_{\left|\beta\right| \leq \mathbf{d}} \left(D^{\beta}\mathbf{u}(0)/\beta!\right) \mathbf{x}^{\beta} \\ &= \Sigma_{\left|\gamma\right| = \mathbf{d} + 1} \left((\mathbf{d} + 1)/\gamma!\right) \int_{0}^{\left|\mathbf{x}\right|} \left(\left|\mathbf{x}\right| - \mathbf{t}\right)^{\mathbf{d}} \mathbf{x}'^{\gamma} D^{\gamma} \mathbf{u}(\mathbf{t} \mathbf{x}') d\mathbf{t} \end{aligned}$$

where x' = (x/|x|). In order to estimate the right side we establish the following integral inequalities.

Proposition 3. i) Let m - (n/p) > d and h be a nonnegative measurable function on $(0,\infty)$. Then we have

$$(\int_{0}^{\infty} r^{-mp+n-1} (\int_{0}^{r} (r-t)^{d} t^{m-d-1-((n-1)/p)} h(t)_{dt})^{p}_{dr})^{1/p}$$

$$\leq C (\int_{0}^{\infty} h(r)^{p} dr)^{1/p}.$$

ii) Let m - (n/p) > d and w be a nonnegative continuous function on R^n . Then we obtain

$$(\int |x|^{-mp} (\int_{0}^{|x|} (|x|-t)^{d} w(tx') dt)^{p} dx)^{1/p}$$

$$\leq C (\int |x|^{-(m-d-1)p} w(x)^{p} dx)^{1/p} .$$

It follows from Proposition 3 that

$$(\int |x|^{-mp} |u(x) - \sum_{|\beta| \le d} (D^{\beta}u(0)/\beta!) x^{\beta} |^{p} dx)^{1/p}$$

$$\le C \sum_{|\gamma| = d+1} (\int |x|^{-(m-d-1)p} |D^{\gamma}u(x)|^{p} dx)^{1/p}$$

for $u \in C^{\infty}(\mathbb{R}^n)$. When in particular u belongs to \mathcal{L} , we get $(\int |x|^{-(m-d-1)p}|D^{\gamma}u(x)|^p \ dx)^{1/p}$

$$\leq C \sum_{|\delta|=m-d-1} (\int |D^{\delta}D^{\gamma}u(x)|^{p}dx)^{1/p}$$

since (m-d-1)p < n, and hence we have

$$(\int |\mathbf{x}|^{-mp} |\mathbf{u}(\mathbf{x}) - \sum_{\beta \leq d} (D^{\beta}\mathbf{u}(0)/\beta!) \mathbf{x}^{\beta} |^{p} d\mathbf{x} \leq C |\mathbf{u}|_{m,p}.$$

Thus, if we put $P(x) = \sum_{|\beta| \le d} (D^{\beta}(0)/\beta!) x^{\beta}$ and v(x) = u(x) - p(x) for $u \in \mathcal{J}$, P and v satisfy the following conditions:

- (i) P can be approximated by a sequence in δ ,
- (ii) $D^{\alpha}v = D^{\alpha}u$ for any α with $|\alpha| = m$,
- (iii) $D^{\beta}v(0) = 0$ for any β with $|\beta| \leq d$,

(iv)
$$(\int |x|^{-mp}|v(x)|^p dx)^{1/p} \le C|u|_{m,p}$$

Next, in order to give the decomposition of u in L_m^p we state the following proposition about a primitive of functions. We require several notations. For $x \in \mathbb{R}^n$, Let $L = \{\xi \in \mathbb{R}^n; (\xi, x) = 0\}$ and $M = L \cap B$, where B is the unit ball, centered at the origin. Furthermore we put $M_1^X = M + (x/|x|)$, $M_2^X = M + x - (x/|x|)$,

$$D_1^X = \{t(\xi+(x/|x|)); \xi \in M_1^X, 0 \le t \le |x|/2\},$$

and

$$D_2^{X} = \{x - (|x| - t) ((x/|x|) - \xi); \xi \in M_2^{X}, |x|/2 \le t \le |x|\}.$$

Proposition 4. We assume that p > n. Let $\{f_j\}_{j=1,\dots,n}$ be a family of functions in L^p and assume $D_i f_j = D_j f_i$ for any i,j. If we put

$$G(x) = a(\sum_{j=1}^{n} \int_{D_{1}^{x}} \frac{y_{j}}{|y|^{n} \cos^{n} \theta_{1}} f_{j}(y) dy + \int_{D_{2}^{x}} \frac{x_{j}^{-y_{j}}}{|x-y|^{n} \cos^{n} \theta_{2}} f_{j}(y) dy),$$

then G(x) is continuous, G(0) = 0, $D_jG = f_j$ for $1 \le j \le n$ and

$$(\int |x|^{-\sigma p} |G(x)|^{p} dx)^{p} \le C \sum_{j=1}^{n} (\int |x|^{-(\sigma-1)p} |f_{j}(x)|^{p} dx)^{1/p}$$

for $\sigma > (n/p)$, where θ_1 (resp. θ_2) is the angle between x and y (resp. -x and y-x).

Let $u \in L_m^p$. For γ with $|\gamma| = d + 1$, we put

$$u^{\gamma}(x) = \sum_{|\delta|=m-d-1} a_{\delta} \int \frac{(x-y)^{\delta}}{|x-y|^{n}} D^{\delta}D^{\gamma}u(y) dy.$$

From (m-d-1)p < n, we have $D^{\delta}u^{\gamma} = D^{\delta}D^{\gamma}u$ for δ with $|\delta| = m-d-1$ by Proposition 1. Furthermore we see

$$(\int |x|^{-(m-d-1)p}|u^{\gamma}(x)|^p dx)^{1/p} \leq C \sum_{|\delta|=m-d-1} \|D^{\delta}D^{\gamma}u\|_p$$

and $u^{\gamma} \in L^{p_{m-d-1}}$, where $1/p_{m-d-1} = (1/p) - ((m-d-1)/n)$. We note that $p_{m-d-1} > n$ from m - (n/p) > d. For γ with $|\gamma| = d$, we put

$$u^{\gamma}(x) = a \sum_{j=1}^{n} \int_{D_{1}^{x}} \frac{y_{j}}{|y|^{n} \cos^{n} \theta_{1}} u^{\gamma+e_{j}}(y) dy + \int_{D_{2}^{x}} \frac{x_{j}^{-y_{j}}}{|x-y|^{n} \cos \theta_{2}} u^{\gamma+e_{j}}(y) dy.$$

On account of Proposition 4 it follows that $u^{\gamma} \in C^0$, $u^{\gamma}(0) = 0$, $D_j u^{\gamma} = u^{\gamma+e_j}$ and

$$(\int |x|^{-(m-d)p} |u^{\gamma}(x)|^{p} dx)^{1/p} \leq C \sum_{j=1}^{n} (\int |x|^{-(m-d-1)p} |u^{\gamma+e_{j}}(x)|^{p} dx)^{1/p}.$$

Repeating this argument, we get the function v satisfying the following conditions:

- (i) $v \in C^{d}(\mathbb{R}^{n})$,
- (ii) $D^{\beta}v(0) = 0$ for any β with $|\beta| \leq d$,
- (iii) $D^{\gamma}v = u^{\gamma}$ for any γ with $|\gamma| = d + 1$,

(iv)
$$(\int |x|^{-mp}|v(x)|^p dx)^{1/p} \le C \sum_{|\gamma|=d+1} (\int |x|^{-(m-d-1)p}|u^{\gamma}(x)|^p dx)^{1/p}$$

so that

and

(v) $D^{\alpha}v = D^{\alpha}u$ for any α with $|\alpha| = m$,

(vi)
$$(\int |x|^{-mp}|v(x)|^p dx)^{1/p} \le C|u|_{m,p}$$

If we put P = u - v, then $P(x) = \sum_{|\gamma| \le m-1} a_{\gamma} x^{\gamma}$. From $D^{\beta}v(0) = 0$ for any β with $|\beta| \le d$, it follows that $a_{\beta} = (D^{\beta}u(0)/\beta!)$ for any β with $|\beta| \le d$. Thus we have the following theorem.

Theorem. Let $m - (n/p) \neq 0, 1, \dots, m-1$ and d = [m - (n/p)]. Then every function $u \in L_m^p$ has the following unique decomposition: $u = P_1 + P_2 + v$

where $P_1(x) = \sum_{d+1 \le |\gamma| \le m-1} a_{\gamma} x^{\gamma}$, $P_2(x) = \sum_{|\beta| \le d} (D^{\beta} u(0)/\beta 1) x^{\beta}$, $v \in C^d(\mathbb{R}^n)$, $D^{\beta} v(0) = 0$ for any β with $|\beta| \le d$,

 $(\int (1+|x|)^{-mp} |P_2(x)|^p dx \le C((\int_B |u(x)|^p dx)^{1/p} + |u|_{m,p}),$ $(\int |x|^{-mp} |v(x)|^p dx)^{1/p} \le C|u|_{m,p}.$

References

- P.I.Lizorkin, Behavior at infinity of functions from Liouville classes. Riesz potentials of arbitrary order, Trudy Mat. Inst. Steklov. 150(1979), 174-197.
- V.G.Maz'ja, Einbettungssätze für Sobolewsche Räume I,
 Teubner-texte zur Mathematik, Leiozig, 1979.
- 3] V.G.Maz'ja, Zur Theorie Sobolewscher Räume, Teubner-texte zur Mathematik, Leipzig, 1981.

- [4] Y.Mizuta, Integral representations of Beppo Levi functions of higher order, Hiroshima Math. J. 4(1974), 375-396.
- [5] L.Schwartz, Théorie des distributions, Hermann, Paris, 1966.
- [6] E.M.Stein and G.Weiss, Fractional integrals on n-dimensional Euclidean space, J. Math. and Mech. 7(1958), 503-514.