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1. Statement of results

Let R" (n > 2) be the n-dimensional euclidean space. For a

nonnegative (Radon) measure U on Rn, we set
-
Lu(x) = J ‘log (1/]x-yl) du(y)

if the integral exists at x. We note here that Lu is not

identically - «» if and only if
f
(1) J log (I+]y[)du(y) < e.

Denote by B(x,r) the open ball with center at x and radius r.

For E C B(0,2), define
C(E) = inf u (R™),

where the infimum is taken over all nonnegative measures H on rR"

such that SU (the support of p) € B(0,4) and

v
[

f log (8/|x-yl|)duly) 2 for every x € E.

If E C B(x0,2), then we set



C(E) = C({x—xo; x € E}).

We. note here that this is well defined.
Fuglede [2 ] discussed fine differentiability properties of
logarithmic potentials in the plane. To state his result, we let

L(x) = log (1/]x])

and set for a nonnegative integer m,

L (x,y) = L(x-y) - y ()\!)_l(x—xo)k[[—?——]xL} (x%-y),
m X
| Al<m

where ) = (Al,..., Xn) is a multi-index with length |A| = A]_+
A A . A
_ A 1 n X 1

+ An’ Al = Al!...An!, E A SHEREE and (9/9x) = (3/8xl)

-..(8/axn) .

Theorem 1 (Fuglede [2; Notes 3]). Let p be a nonnegative

measure on R satisfying (1) and
f|xo_y|—llog (2+1x%-y 1 Hauy) < =,

then there exists a set E in R" which is logarithmically thin at

xO and satisfies

o 0,-1 :
lim = [x-x7] JLl(x,y)du(y) = 0.
X+X ,XER -E

0

Here a set E in R" is called logarithmically thin at x if
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0 0 0

+ 2—j(x—x

where Eé = {x € B(x ) € E}. For a

,2)-B(x%,1); x

proof of Theorem 1, see also Davie and @gksendal [1; Theorem 6].

Our main aim in this paper is to establish the following two

theorems.

Theorem 2. Let U be a nonnegative measure on rR" satisfying

(1) and

J Ixo—yl_mdu(y) <

for a positive integer m smaller than n. Then there exists a set
. n
E in R such that

lim 1x-x0[‘mf L_(x, y)du(y) = 0
X*xX ,XER -E

and

C(E!) < w.
jzl J v

Theorem 3. Let py be a nonnegative measure on R" satisfying

(1) and the following two conditions:

(a) lim f_glu—aAnl(B(xo,r)) =0 for some a,
r+0

where An denotes the n-dimensional Lebesgue measure;

(b) A. = lim J | Hipﬂ(xo—y)du(y)
Ao Rn—B(xO,r) ox) |
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exists and is finite for any A with length n.

Then there exists a set E in rR" such that

0

(1) lim |x-x0 | {f Lo_; (x,y)duly) -
X*X ,XER -E

- ) (A!)—lCA(x—xO)X} =0

| X [=n
and
(ii) lim C(E!) = 0,
j>oo J
where C, = A, + aB, for |A] = n and“Bx will be defined later (in
Lemma 2).

One may compare these theorems with fine and semi-fine
differentiabilities of Riesz potentials investigated by Mizuta [3]

and [4].

f -
Remark. Set E = {x; J|x~y| Mdu(y) = =} for a nonnegative
measure U on R" satisfying (1). Then Cn_m(E) = 0, where;COb denotes
the Riesz capacity of order a. Further we note that (a) and (b)

in theorem 3 hold for almost every xO (cf. [5; Chap. III, 4.1]).

2. Proof of Theorem 2
In this section we prove the following generalization of

Theorems 1 and 2.
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Theorem 2'. Let h and k be positive and nonincreasing
functions on the interval (0, ®) such that
(a) rh(r) is nondecreasing on (0, ©) and lim rh(r) = 0;
(b) k(r) £ const. k(2r) for r > 0. o

Let 1 be a nonnegative measure on R" satisfying (1) and

[ !xo—yl_mH(lxo-yl)dLMy) < ®,

for a positive integer m, where H(0) = «» and H(r) = h(r)k(r) for
r > 0. Then there exists a set E in R" such that
(i) lim 0 Ix—xol—mh(lx—xol)f L (x,y)du(y) = 0;
m
XX ,XER -E

(ii) Y k(27d)C(E!) <.
j=1 )
Proof. Without loss of generality, we may assume that xO =
0. Let u be a nonnegative measure on rR" satisfying (1) and

f -
| Iyl TH(|y|)du(y) < «.

We write

f Lm(x,y)du(y) Lm(x,y)du(y)

fRn—B(O,ZIX!)

B(0,2|x|)-B(x, |x|/2)

J' . Lm(x,y)du(y)
B(X,IXl/z)



jo—y
-
(e’

= ul(x) + uz(x) + u3(x).

If y € R" - B(0,2]x]), then we have by elementary

calculations

= y 4

ILm(x,y)I < const. |x|

so that Lebesgue's dominated convergence theorem gives

lim sup lxl_mh(|X|)|ul(X)l

x>0
. -m-1
< const. lim sup [x|h([x]) J n N du(y)
x>0 R _B(Olzlxl)
, -m-1
= const. lim sup |x|h(]|x]) f |yl du(y) = 0
x>0 B(O,l)"B(O,ZIXl)
since lim rh(r) = 0 and rh(r) < k(l)_lsh(s)k(s) whenever 0 < r <
¥ 0 ¢
s < 1.

If y e B(0,2|x|) and |x-y| 2 [x|/2 > 0, then

ILm(x,y)l < const. lxlm(yf—m.
Hence we obtain
. -m
lim sup |x]| h(|x|)|u2(x)|
x>0
< const. lim sup h(lxl)[ Iyl_mdu(y) =0
x>0 B(0,2]|x]|)
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h(s) < 2h(2s) £ 2k(lfq‘h(2s)k(25) whenever 0 < s < r <

0}
-
o]
Q
(0]
=
H

A

.As to u3, we note that

le'mh<|x!)|u3<x>|

const. IXI_mh(IXl)J log (Ix|/|x-yl)du(y)
B(x, |x]|/2)

(14N

[ -
lyl ™ (lylduty).

+ const.
B(x, IXI/2)

The second term of the right hand side tends to zero as x >~ 0 by

the assumption. What remains is to prove that the first term of

the right hand side tends to zero as x > 0, x € R" -E, where E is

a set in R" satisfying property (ii). To prdvé this, take a.

sequence {aj} of positive numbers such that 1lim aj = % and
J7e

o r .
) a-J ly | "MH(ly)du(y) < = ,
=1 I8 ' |

] j

where Bj = B(O0, 2_J+2) - B(O0, 2_3_1). Consider the sets

E. = {x € A.; f log (27313 /|x-y)du(y) 2 2‘m3h(2“3>‘1a‘.l}
J J B. = J
J
. oz _ -5+1

for j =1,2,..., and E = U E., where A. = B(0, 2 ) - B(O,
=1 I J
J

2_3) . By the assumption on h, one sees easily that



[y
-1
~r.
L~

k(2 3)c(E!) < a.2™H(27T)u(B,) < const. a.f Clyl ™™y Dduty) .
i’ = %3 10 = E:3
j

Hence E satisfies property (ii). Further,
. -m f
lim sup [ x| h(|X|)J log (Ix|/|x-y|)duly)
x>0, XER -E B(x, |x]/2) _

const. lim sup sup Zth(Z_J)( log (2—J+3/|x—y|)du(y)

A

j oo XEA.-E. IB.
J ] J
. -1
< const. lim sup a. = 0,
- f R
and hence lim = Ix] mh(lXI)J log (Ix|/Ix-yl)du(y) = 0
x-0,x€R -E B(x, |x|/2)

Thus the proof is complete.

Remark 1. Theorem 2' is best possible as to the size of the
exceptional set. 'In fact, if E is a set in R" satisfying
property (ii), then one can find a nonnegative measurecu on Rn

with compact support such that

J Ixo-yl_mH(lxo-yI)du(y) <

and

. 0,- 0,,f
lim |x-x | mh(lx—-x |)j Lm(x,y)du(y) = o,
XX ,X€EE

)

-8 -



Remark 2. Let u be a nonnegative measure on r" satisfying
(1) and [Ixo—y!_mh(lxo—yl)du(y) < o, If in addition there exist

M, rO > 0 such that

h(lx—XO!)p(B(x,r)) < Mr™

for any x € B(xo,ro) and any r, 0 < r < |x—x0|/2, then E appeared

in Theorem 2' can be taken to be an empty set and LY is m times

differentiable at xO.

To prove this, assume that xo = 0. For the first assertion,

in View of the proof of Theorem 2', it suffices to show that

(2) lim lxl‘mh(lxl)f log (|x|/lx-yl)du(y) = 0.
x>0 B(XIIXI/Z)
For § > 0, set €(8§) = sup r_mh(r)u(B(O, r)). If 0 < & < |x]|/2,
O<r§5
then
-m r
[ x| h(IXI)J log (|x|/|x-yl)du(y)
B(Xllxl/z)
-m f
= |x] h(le)J log ([|x|/|x-y])du(y)
B(x,6)
¥ le_mh(txl)J log (Ix|/lx-y|)du(y)
B(x,|x[/2)-B(x,8)

A

const. {(6/|x|)mlog (Ix1/8) + x| ™n(]x|)u(B(0,2]x|))log (|X|/6)}
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< const. {6/1x)™ + e(2lx|)}tlog (|x]/8).

Since 1lim €(2|x]|) = 0, for x sufficiently close to 0 we can
x>0

choose § > 0 so that
log (|x|/8) = [e(2]x]) + |x]|] -1/2

Since lim (&/|x]) = 0, we derive (2).
x>0

To prove the second assertion, we first note that

-m+1

r ‘ :
J | x-y | du(y) < = for every x € B(0, rj),

and hence LU is m - 1 times differentiable at x € B(O0, rO) and

(5/0%) "Lu(x) = J [(5/3x) L] (x - y)du(y)

for any x € B(0, r and any multi-index A with length m - 1. As

O)

in the proof of Theorem 2', we can prove that

lim |x|—lh(|x|){ux(X) - u,(0) -
x>0

where x = (x

1reecr Xn), ux = (S/BX)ALU for a multi-index A with

]
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length m - 1 and a;, = J[(a/axi)(a/ax)ij(—y)du(y). This implies

that Ly is m times differentiable at O.

3. Proof of Theorem 3
We first recall the following results.

Lemma 1 (cf. [4; Lemma 1]). Let p be a nonnegative measure

o -

on R" such that lim r nu(B(O, r)) = 0 for some real number o.

ryo0

Then the following statements hold:

(i) If B < 0, then lim r,Bf 1y 1B au(y) = o;
r¢0 B(Olr)
(ii) Ifn-a+1>0and g > 0, then
lim rs[ (r + |y * B Mau(y) = o.
r+0 B(0,1) ;
Lemma 2 (cf. [4; Lemma 4]). Set u(x) = J 0 L(x - y)dy.
. B(x",1) '

Then u € Cm(B(xO, 1l)). Moreover, if A is a multi-index with

length n, then

B = [(5/3x) u] (x%) = [ YN (a/8x)2 L1 (y)as(y),
dB(0,1)

where A =)' + A" and | A'| = 1.

- 11 -
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Now we prove Theorem 3 by assuming that xO = 0. Let py be a

noﬁnegative measure on R" satisfying (1), (a) and (b) with xO =

0, and set v =y - aAn. For x € B(0, 1/2) - {0}, we write

|X|_n/f L (x,y)du(y) - (A!)_lC xk}
L n-1 Y y |A|£n A
x| L (x,y)duy)
= |x , X,y y
JRn—B(O,l) n
+ x| J L (x,y)dv(y)
B(0,1)-B(0,2]x])

- x| Y (X!)_lxx lim J ' [(B/BX)XL](—y)dv(y)
0<|A|§n r+0 B(0,2|x})-B(0,r) 0 :

+ a|x|_nflim J L (x,y)dy -~ ) (A!)_lBAxx}

Lr¢0 B(0,1)-B(0,r) n |Xx|=n
+ le_n[ Ly (x,y)dv(y)

B(0,2|x])-B(x,|x|/2)

-n [

LU Ly (x,y)dv(y)

B(XIIX‘/Z)
= ul(x) + u2(x) - u3(x) + au4(x) + u5(x) + u6(x).

1f y € R" - B(0, 2|x|), then |lL (x,y)| g const. |x|n+l|y|-—n‘l

and hence

Il
o
.

lim u, (x)
x>0

- 12 -
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For simplicity, set T = |v|. Then lim r t(B(0, r)) = 0 by (a),
ri0

and we have

lim sup luz(x)l < const. lim sup lx!f _ (x| + IYI)-n_ldT(Y) =
x>0 B x>0 B(0,1)
because of Lemma 1, (ii).
If 0 < [A] < n, then Lemma 1, (i) yields
. Al-
lim sup |x|l | nf : I[(B/QX)AL](—Y)IdT(Y)
x>0 B(0,2]x])
< const. lim sup lelkl_nf IYl—IXJdT(y) = 0.
x>0 B(0,2|x]|)
If || = n, then f , [(B/BX)XL](—y)dy = 0 for any

B(O,r)"B(OIS)
r, s > 0. Hence by the definition of AA’

lim {lim f [(B/BX))\L](—y)d\)(y)}=0.
x>0 ‘rv0 ‘B(0,2|x]|)-B(0,r)

Therefore lim u3(x) = 0.
x>0
Since u(x) = f L(x - y)dy € Cw(B(O, 1)) and
: / B(0,1)
u, (x) = |x|‘“{u(x> - 7 M!)"lxx[(a/ax)xu](m}
[X]<n
in view of Lemma 2, we see that lim u4(x)‘= 0.
x>0

- 13 -
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As to u5, we obtain
|u5(x)| < const. x| ™" J log (2 + |x|/lyl)d(y)
B(0,2]x])
< const. |X|l—nJ » Iyl—ldr(y),
B(0,2[x])

which tends to zero as x > 0 by Lemma 1, (i).

Finally we can show, in a way similar to the proof of
Theorem 2', that u6(x) tends to zero as x » 0 except for x in a
set satisfying (ii) of the theorem. Thus we conclude the proof

of Theorem 3.

Remark 1. If 1lim C(?{) = 0, then we can find a nonnegative
j—>o<> ‘

measure yu on R" with compact support such that lim r_nu(B(O, r))

rv 0
= 0 and
. -n
lim  [x]| JLn_-l(x,y)du(y) =,
x> 0, XEE ‘
Remark 2. Let p be a nonnegative measure on R" satisfying

(1), (a), (b) and

(c) There exist M, r, > 0 such that u(B(x, r)) Mr— for

0

A

any x € B(xo, ro) and any r r

A

0°
Then the set E in Theorem 3 can be taken to be empty and,

moreover, Lu is n times differentiable at XO.
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This fact can be proved in the same way as in Remark 2 in

Section 2.

Remark 3. We can prove the following result similar to

Theorem 2°'.

Theorem 3'. Let k be as in Theorem 2', and h be a
nondecreasing positive function on (0, ») such that 1lim h(r) = 0
ry0
and
rt -1 -1
J [(r+s)H(s)] ~ds < const. [h(r)] for r > 0,
0
where H(r) = h(r)k(r)‘for r > 0. Let m be a nonnegative integer

and y be a nonnegative measure on rR" satisfying (1) and

1im r ™H(r)uB(x°, r)) = 0.

riy0
Then there exists a set E in R" such that

(1) lim [x—xol—mh(‘X—XOI)J Lm_l(x,y)du(y) = 0;
X+X ,XER -E

(ii) lim k(2 J)c(r!) = 0,
: J
J >

where L_l(x, y) = L(x-y).



Remark 4. Let h be nonincreasing on the interval (0, 1) and

E = {x € R"; 1lim sup h(r)u(B(x, r)) > 0}
ry0
for a nonnegative measure u on R". If u(E) = 0, then A~—1(E) =

0, where A~

h

_, denotes the Hausdorff measure with respect to the
h s

~-1

measure function h .
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