Fine limits of logarithmic potentials

Yoshihiro MIZUTA (水田義弘)

(Department of Mathematics, Faculty of Integrated Arts and Sciences, Hiroshima University, Hiroshima 730, Japan)

1. Statement of results

Let \textbf{R}^n (n \geq 2) be the n-dimensional euclidean space. For a nonnegative (Radon) measure μ on \textbf{R}^n , we set

$$L\mu(x) = \int \log (1/|x-y|) d\mu(y)$$

if the integral exists at x. We note here that L μ is not identically - ∞ if and only if

(1)
$$\int \log (1+|y|) d\mu(y) < \infty.$$

Denote by B(x,r) the open ball with center at x and radius r. For $E \subseteq B(0,2)$, define

$$C(E) = \inf \mu(R^n),$$

where the infimum is taken over all nonnegative measures μ on $R^{\bf n}$ such that S_{μ} (the support of $\mu)\subseteq B(0,4)$ and

$$\int \log (8/|x-y|) d\mu(y) \ge 1 \qquad \text{for every } x \in E.$$

If $E \subset B(x^0, 2)$, then we set

$$C(E) = C(\{x-x^0; x \in E\}).$$

We note here that this is well defined.

Fuglede [2] discussed fine differentiability properties of logarithmic potentials in the plane. To state his result, we let

$$L(x) = \log (1/|x|)$$

and set for a nonnegative integer m,

$$L_{m}(x,y) = L(x-y) - \sum_{|\lambda| \leq m} (\lambda!)^{-1} (x-x^{0})^{\lambda} \left[\left(\frac{\partial}{\partial x} \right)^{\lambda} L \right] (x^{0}-y),$$

where λ = ($\lambda_1,\ldots,\lambda_n$) is a multi-index with length $|\lambda_1|$ = λ_1 +

... +
$$\lambda_n$$
, $\lambda! = \lambda_1! \dots \lambda_n!$, $x^{\lambda} = x_1^{\lambda_1} \dots x_n^{\lambda_n}$ and $(\partial/\partial x)^{\lambda} = (\partial/\partial x_1)^{\lambda_1}$

$$\dots (\partial/\partial x_n)^{\lambda} n$$
.

Theorem 1 (Fuglede [2; Notes 3]). Let μ be a nonnegative measure on \textbf{R}^n satisfying (1) and

$$\int |x^0 - y|^{-1} \log (2 + |x^0 - y|^{-1}) d\mu(y) < \infty,$$

then there exists a set E in \textbf{R}^n which is logarithmically thin at \mathbf{x}^0 and satisfies

$$\sum_{x \to x} \lim_{x \to R} |x - x^0|^{-1} \int L_1(x, y) d\mu(y) = 0.$$

Here a set E in R^n is called logarithmically thin at \mathbf{x}^0 if

$$\sum_{j=1}^{\infty} jC(E_{j}^{!}) < \infty,$$

where $E'_j = \{x \in B(x^0,2)-B(x^0,1); x^0 + 2^{-j}(x-x^0) \in E\}$. For a proof of Theorem 1, see also Davie and Øksendal [1; Theorem 6]. Our main aim in this paper is to establish the following two theorems.

Theorem 2. Let μ be a nonnegative measure on $R^{\mathbf{n}}$ satisfying (1) and

$$\int |x^0 - y|^{-m} d\mu(y) < \infty$$

for a positive integer m smaller than n. Then there exists a set ${\bf E}$ in ${\bf R}^n$ such that

$$\lim_{x\to x^0, x\in\mathbb{R}^n-E} |x-x^0|^{-m} \int L_m(x, y) d\mu(y) = 0$$

and

$$\sum_{j=1}^{\infty} C(E_{j}^{!}) < \infty.$$

Theorem 3. Let μ be a nonnegative measure on R^n satisfying (1) and the following two conditions:

(a)
$$\lim_{r \to 0} r^{-n} |\mu - a\Lambda_n| (B(x^0, r)) = 0$$
 for some a,

where Λ_n denotes the n-dimensional Lebesgue measure;

(b)
$$A_{\lambda} = \lim_{r \downarrow 0} \int_{\mathbb{R}^{n} - B(x^{0}, r)} \left[\left(\frac{\partial}{\partial x} \right)^{\lambda} L \right] (x^{0} - y) d\mu(y)$$

exists and is finite for any λ with length n.

Then there exists a set E in R^n such that

(i)
$$x \to x^0$$
, $x \in \mathbb{R}^n - E$ $|x - x^0|^{-n} \left\{ \int L_{n-1}(x, y) d\mu(y) - \frac{1}{n} \right\}$

$$-\sum_{\substack{|\lambda|=n}} (\lambda!)^{-1} C_{\lambda} (x-x^{0})^{\lambda} = 0$$

and

(ii)
$$\lim_{j\to\infty} C(E_j^!) = 0,$$

where $C_{\lambda} = A_{\lambda} + aB_{\lambda}$ for $|\lambda| = n$ and B_{λ} will be defined later (in Lemma 2).

One may compare these theorems with fine and semi-fine differentiabilities of Riesz potentials investigated by Mizuta [3] and [4].

Remark. Set $E = \{x; \int |x-y|^{-m} d\mu(y) = \infty\}$ for a nonnegative measure μ on R^n satisfying (1). Then $C_{n-m}(E) = 0$, where C_{α} denotes the Riesz capacity of order α . Further we note that (a) and (b) in theorem 3 hold for almost every x^0 (cf. [5; Chap. III, 4.1]).

2. Proof of Theorem 2

In this section we prove the following generalization of Theorems 1 and 2.

Theorem 2'. Let h and k be positive and nonincreasing functions on the interval $(0, \infty)$ such that

- (a) rh(r) is nondecreasing on $(0, \infty)$ and lim rh(r) = 0;
- (b) $k(r) \leq const. k(2r)$ for r > 0.

Let μ be a nonnegative measure on R^n satisfying (1) and

$$\int |x^{0}-y|^{-m}H(|x^{0}-y|)d\mu(y) < \infty,$$

for a positive integer m, where $H(0) = \infty$ and H(r) = h(r)k(r) for r > 0. Then there exists a set E in R^n such that

(i)
$$\sum_{x \to x} \lim_{x \to x} |x-x^0|^{-m} h(|x-x^0|) \int_{m} L_m(x,y) d\mu(y) = 0;$$

(ii)
$$\sum_{j=1}^{\infty} k(2^{-j})C(E_{j}^{!}) < \infty.$$

Proof. Without loss of generality, we may assume that \mathbf{x}^0 = 0. Let μ be a nonnegative measure on R^n satisfying (1) and

$$\int |y|^{-m} H(|y|) d\mu(y) < \infty.$$

We write

$$\int L_{m}(x,y) d\mu(y) = \int_{\mathbb{R}^{n}-B(0,2|x|)} L_{m}(x,y) d\mu(y)$$

$$+ \int_{B(0,2|x|)-B(x,|x|/2)} L_{m}(x,y) d\mu(y)$$

$$+ \int_{B(x,|x|/2)} L_{m}(x,y) d\mu(y)$$

$$= u_1(x) + u_2(x) + u_3(x).$$

If $y \in R^n$ - B(0,2|x|), then we have by elementary calculations

$$|L_{m}(x,y)| \le const. |x|^{m+1} |y|^{-m-1}$$
,

so that Lebesgue's dominated convergence theorem gives

$$\lim_{x \to 0} \sup |x|^{-m} h(|x|) |u_1(x)|$$

$$\leq \text{const. lim sup } |x|h(|x|) \int_{\mathbb{R}^{n}-B(0,2|x|)} |y|^{-m-1} d\mu(y)$$

= const.
$$\limsup_{x\to 0} |x|h(|x|) \int_{B(0,1)-B(0,2|x|)} |y|^{-m-1} d\mu(y) = 0$$

s < 1.

If $y \in B(0,2|x|)$ and $|x-y| \ge |x|/2 > 0$, then

$$|L_{m}(x,y)| \leq const. |x|^{m}|y|^{-m}.$$

Hence we obtain

$$\lim_{x \to 0} \sup_{|x|^{-m} h(|x|) |u_{2}(x)|} \le \text{const.} \lim_{x \to 0} \sup_{x \to 0} h(|x|) \int_{B(0,2|x|)} |y|^{-m} d\mu(y) = 0$$

since $h(r) \le h(s) \le 2h(2s) \le 2k(1)^{-1} h(2s)k(2s)$ whenever 0 < s < r < 1/2.

As to u_3 , we note that

$$\begin{aligned} |x|^{-m}h(|x|)|u_{3}(x)| \\ &\leq \text{const.} \ |x|^{-m}h(|x|) \int_{B(x,|x|/2)} \log (|x|/|x-y|) d\mu(y) \\ &+ \text{const.} \ \int_{B(x,|x|/2)} |y|^{-m}h(|y|) d\mu(y). \end{aligned}$$

The second term of the right hand side tends to zero as $x \to 0$ by the assumption. What remains is to prove that the first term of the right hand side tends to zero as $x \to 0$, $x \in \mathbb{R}^n$ -E, where E is a set in \mathbb{R}^n satisfying property (ii). To prove this, take a sequence $\{a_j\}$ of positive numbers such that $\lim_{j \to \infty} a_j = \infty$ and

$$\sum_{j=1}^{\infty} a_{j} \int_{B_{j}} |y|^{-m} H(|y|) d\mu(y) < \infty ,$$

where $B_{j} = B(0, 2^{-j+2}) - B(0, 2^{-j-1})$. Consider the sets

$$E_{j} = \left\{ x \in A_{j}; \int_{B_{j}} \log (2^{-j+3}/|x-y|) d\mu(y) \ge 2^{-mj} h(2^{-j})^{-1} a_{j}^{-1} \right\}$$

for j = 1,2,..., and E =
$$\bigcup_{j=1}^{\infty} E_j$$
, where $A_j = B(0, 2^{-j+1}) - B(0, 2^{-j+1})$

 2^{-j}). By the assumption on h, one sees easily that

$$k(2^{-j})C(E_{j}^{!}) \leq a_{j}2^{mj}H(2^{-j})\mu(B_{j}) \leq const. a_{j} \int_{B_{j}} |y|^{-m}H(|y|)d\mu(y).$$

Hence E satisfies property (ii). Further,

$$\lim \sup_{x \to 0, x \in \mathbb{R}^{n} - E} |x|^{-m} h(|x|) \int_{B(x, |x|/2)} \log (|x|/|x-y|) d\mu(y)$$

$$\leq \text{const. } \lim \sup_{j \to \infty} \sup_{x \in A_{j} - E_{j}} 2^{mj} h(2^{-j}) \int_{B_{j}} \log (2^{-j+3}/|x-y|) d\mu(y)$$

$$\leq \text{const. } \lim \sup_{j \to \infty} a_{j}^{-1} = 0,$$

and hence
$$\lim_{x\to 0, x\in \mathbb{R}^n-E} |x|^{-m}h(|x|) \int_{B(x,|x|/2)} \log (|x|/|x-y|) d\mu(y) = 0$$

Thus the proof is complete.

Remark 1. Theorem 2' is best possible as to the size of the exceptional set. In fact, if E is a set in R^n satisfying property (ii), then one can find a nonnegative measure μ on R^n with compact support such that

$$\int |x^{0}-y|^{-m}H(|x^{0}-y|)d\mu(y) < \infty$$

and

$$\sum_{x \to x^0, x \in E} |x-x^0|^{-m} h(|x-x^0|) \int_{m} L_m(x,y) d\mu(y) = \infty.$$

Remark 2. Let μ be a nonnegative measure on R^n satisfying (1) and $\int |x^0-y|^{-m}h(|x^0-y|)d\mu(y)<\infty$. If in addition there exist M, $r_0>0$ such that

$$h(|x-x^0|)\mu(B(x,r)) \le Mr^m$$

for any $x \in B(x^0,r_0)$ and any r, $0 < r < |x-x^0|/2$, then E appeared in Theorem 2' can be taken to be an empty set and L μ is m times differentiable at x^0 .

To prove this, assume that $x^0 = 0$. For the first assertion, in view of the proof of Theorem 2', it suffices to show that

(2)
$$\lim_{x\to 0} |x|^{-m} h(|x|) \int_{B(x,|x|/2)} \log (|x|/|x-y|) d\mu(y) = 0.$$

For
$$\delta > 0$$
, set $\epsilon(\delta) = \sup_{0 < r \le \delta} r^{-m} h(r) \mu(B(0, r))$. If $0 < \delta < |x|/2$,

then

$$\begin{split} &|x|^{-m}h(|x|) \int_{B(x,|x|/2)} \log (|x|/|x-y|) d\mu(y) \\ &= |x|^{-m}h(|x|) \int_{B(x,\delta)} \log (|x|/|x-y|) d\mu(y) \\ &+ |x|^{-m}h(|x|) \int_{B(x,|x|/2)-B(x,\delta)} \log (|x|/|x-y|) d\mu(y) \\ &\leq \text{const.} \left\{ (\delta/|x|)^m \log (|x|/\delta) + |x|^{-m}h(|x|)\mu(B(0,2|x|)) \log (|x|/\delta) \right\} \end{split}$$

 \leq const. $\{(\delta/|\mathbf{x}|)^{m} + \epsilon(2|\mathbf{x}|)\}\log(|\hat{\mathbf{x}}|/\delta)$.

Since $\lim \epsilon(2|x|) = 0$, for x sufficiently close to 0 we can $x \to 0$

choose $\delta > 0$ so that

$$\log (|x|/\delta) = [\epsilon(2|x|) + |x|]^{-1/2}$$
.

Since $\lim_{x\to 0} (\delta/|x|) = 0$, we derive (2).

To prove the second assertion, we first note that

$$\int |x-y|^{-m+1} d\mu(y) < \infty \qquad \text{for every } x \in B(0, r_0),$$

and hence Lµ is m - 1 times differentiable at $x \in B(0, r_0)$ and

$$(\partial/\partial x)^{\lambda} L_{\mu}(x) = \int [(\partial/\partial x)^{\lambda} L](x - y) d\mu(y)$$

for any $x \in B(0, r_0)$ and any multi-index λ with length m-1. As in the proof of Theorem 2', we can prove that

$$\lim_{x\to 0} |x|^{-1} h(|x|) \left\{ u_{\lambda}(x) - u_{\lambda}(0) - \sum_{i=1}^{n} a_{i} x_{i} \right\} = 0,$$

where x = $(x_1, ..., x_n)$, $u_{\lambda} = (\partial/\partial x)^{\lambda} L\mu$ for a multi-index λ with

length m - 1 and $a_i = \int \left[(\partial/\partial x_i)(\partial/\partial x)^\lambda L \right] (-y) d\mu(y)$. This implies that L μ is m times differentiable at 0.

3. Proof of Theorem 3

We first recall the following results.

Lemma 1 (cf. [4; Lemma 1]). Let μ be a nonnegative measure on R^n such that lim $r^{\alpha-n}{}_{\mu}(B(0,\,r))$ = 0 for some real number $\alpha.$ $r\!\downarrow\!0$

Then the following statements hold:

(i) If
$$\beta < 0$$
, then $\lim_{r \downarrow 0} r^{\beta} \int_{B(0,r)} |y|^{\alpha-\beta-n} d\mu(y) = 0$;

(ii) If $n - \alpha + 1 > 0$ and $\beta > 0$, then

$$\lim_{r \downarrow 0} r^{\beta} \int_{B(0,1)} (r + |y|)^{\alpha-\beta-n} d\mu(y) = 0.$$

Lemma 2 (cf. [4; Lemma 4]). Set $u(x) = \int_{B(x^0,1)} L(x-y) dy$.

Then $u \in C^{\infty}(B(x^0, 1))$. Moreover, if λ is a multi-index with length n, then

$$B_{\lambda} \equiv [(\partial/\partial x)^{\lambda} u](x^{0}) = \int_{\partial B(0,1)} y^{\lambda} [(\partial/\partial x)^{\lambda}] L](y) dS(y),$$

where $\lambda = \lambda' + \lambda''$ and $|\lambda'| = 1$.

Now we prove Theorem 3 by assuming that $x^0=0$. Let μ be a nonnegative measure on R^n satisfying (1), (a) and (b) with $x^0=0$, and set $\nu=\mu-a\Lambda_n$. For $x\in B(0,1/2)-\{0\}$, we write

$$\begin{split} &|\mathbf{x}|^{-n} \bigg\{ \int_{\mathbb{R}^{n-1}} (\mathbf{x}, \mathbf{y}) \, \mathrm{d} \mu(\mathbf{y}) - \int_{|\lambda|=n}^{\sum} (\lambda!)^{-1} C_{\lambda} \mathbf{x}^{\lambda} \bigg\} \\ &= |\mathbf{x}|^{-n} \int_{\mathbb{R}^{n} - \mathbf{B}(0, 1)} L_{n}(\mathbf{x}, \mathbf{y}) \, \mathrm{d} \mu(\mathbf{y}) \\ &+ |\mathbf{x}|^{-n} \int_{\mathbf{B}(0, 1) - \mathbf{B}(0, 2|\mathbf{x}|)} L_{n}(\mathbf{x}, \mathbf{y}) \, \mathrm{d} \nu(\mathbf{y}) \\ &- |\mathbf{x}|^{-n} \sum_{0 < |\lambda| \leq n} (\lambda!)^{-1} \mathbf{x}^{\lambda} \lim_{\mathbf{r} \downarrow 0} \int_{\mathbf{B}(0, 2|\mathbf{x}|) - \mathbf{B}(0, \mathbf{r})} [(\partial/\partial \mathbf{x})^{\lambda} \mathbf{L}] (-\mathbf{y}) \, \mathrm{d} \nu(\mathbf{y}) \\ &+ \mathbf{a} |\mathbf{x}|^{-n} \left\{ \lim_{\mathbf{r} \downarrow 0} \int_{\mathbf{B}(0, 1) - \mathbf{B}(0, \mathbf{r})} L_{n}(\mathbf{x}, \mathbf{y}) \, \mathrm{d} \mathbf{y} - \sum_{|\lambda| = n} (\lambda!)^{-1} \mathbf{B}_{\lambda} \mathbf{x}^{\lambda} \right\} \\ &+ |\mathbf{x}|^{-n} \int_{\mathbf{B}(0, 2|\mathbf{x}|) - \mathbf{B}(\mathbf{x}, |\mathbf{x}|/2)} L_{0}(\mathbf{x}, \mathbf{y}) \, \mathrm{d} \nu(\mathbf{y}) \\ &+ |\mathbf{x}|^{-n} \int_{\mathbf{B}(\mathbf{x}, |\mathbf{x}|/2)} L_{0}(\mathbf{x}, \mathbf{y}) \, \mathrm{d} \nu(\mathbf{y}) \\ &= u_{1}(\mathbf{x}) + u_{2}(\mathbf{x}) - u_{3}(\mathbf{x}) + \mathbf{a} u_{4}(\mathbf{x}) + u_{5}(\mathbf{x}) + u_{6}(\mathbf{x}). \end{split}$$

If $y \in R^n$ - B(0, 2|x|), then $|L_n(x,y)| \le const. |x|^{n+1} |y|^{-n-1}$ and hence

$$\lim_{x\to 0} u_1(x) = 0.$$

For simplicity, set $\tau = |v|$. Then $\lim_{r \to 0} r^{-n} \tau(B(0, r)) = 0$ by (a),

and we have

$$\limsup_{x \to 0} |u_2(x)| \le \text{const.} \lim \sup_{x \to 0} |x| \int_{B(0,1)} (|x| + |y|)^{-n-1} d\tau(y) = 0$$

because of Lemma 1, (ii).

If $0 < |\lambda| < n$, then Lemma 1, (i) yields

$$\begin{split} & \limsup_{x \to 0} \ |x|^{|\lambda|-n} \!\! \int_{B(0,2|x|)} \!\! |[(\partial/\partial x)^{\lambda} L](-y)| d\tau(y) \\ & \leq \text{const.} \ \lim\sup_{x \to 0} \ |x|^{|\lambda|-n} \!\! \int_{B(0,2|x|)} \!\! |y|^{-|\lambda|} d\tau(y) = 0. \end{split}$$

If
$$|\lambda| = n$$
, then
$$\int_{B(0,r)-B(0,s)} [(\partial/\partial x)^{\lambda}L](-y)dy = 0 \text{ for any}$$

r, s > 0. Hence by the definition of A_{λ} ,

$$\lim_{x\to 0} \left\{ \lim_{r\downarrow 0} \int_{B(0,2|x|)-B(0,r)} [(\partial/\partial x)^{\lambda}L](-y)dv(y) \right\} = 0.$$

Therefore $\lim_{x\to 0} u_3(x) = 0$.

Since
$$u(x) \equiv \int_{B(0,1)} L(x - y) dy \in C^{\infty}(B(0, 1))$$
 and

$$u_{4}(x) = |x|^{-n} \left\{ u(x) - \sum_{|\lambda| \le n} (\lambda!)^{-1} x^{\lambda} [(\partial/\partial x)^{\lambda} u](0) \right\}$$

in view of Lemma 2, we see that $\lim_{x\to 0} u_4(x) = 0$.

As to u_5 , we obtain

$$|u_{5}(x)| \leq \text{const.} |x|^{-n} \int_{B(0,2|x|)} \log (2 + |x|/|y|) d\tau(y)$$

 $\leq \text{const.} |x|^{1-n} \int_{B(0,2|x|)} |y|^{-1} d\tau(y),$

which tends to zero as $x \rightarrow 0$ by Lemma 1, (i).

Finally we can show, in a way similar to the proof of Theorem 2', that $u_6(x)$ tends to zero as $x \to 0$ except for x in a set satisfying (ii) of the theorem. Thus we conclude the proof of Theorem 3.

Remark 1. If $\lim_{j\to\infty} C(E_j!)=0$, then we can find a nonnegative $j^{,\infty}$ measure μ on R^n with compact support such that $\lim_{r\to 0} r^{-n} \, \mu(B(0,\,r))$ = 0 and

$$\lim_{x \to 0, x \in E} |x|^{-n} \int L_{n-1}(x,y) d\mu(y) = \infty.$$

Remark 2. Let μ be a nonnegative measure on \textbf{R}^n satisfying (1), (a), (b) and

(c) There exist M, $r_0 > 0$ such that $\mu(B(x, r)) \leq Mr^n$ for any $x \in B(x^0, r_0)$ and any $r \leq r_0$.

Then the set E in Theorem 3 can be taken to be empty and, moreover, L μ is n times differentiable at x^0 .

This fact can be proved in the same way as in Remark 2 in Section 2.

Remark 3. We can prove the following result similar to Theorem 2'.

Theorem 3'. Let k be as in Theorem 2', and h be a nondecreasing positive function on $(0, \infty)$ such that $\lim_{r \downarrow 0} h(r) = 0$ and

$$\int_{0}^{1} [(r+s)H(s)]^{-1} ds \le const. [h(r)]^{-1} \qquad \text{for } r > 0,$$

where H(r) = h(r)k(r) for r > 0. Let m be a nonnegative integer and μ be a nonnegative measure on R^n satisfying (1) and

$$\lim_{r \to 0} r^{-m} H(r) \mu(B(x^{0}, r)) = 0.$$

Then there exists a set E in R^n such that

(i)
$$\sum_{x \to x^0, x \in \mathbb{R}^n - \mathbb{E}} |x - x^0|^{-m} h(|x - x^0|) \int_{\mathbb{R}^n - \mathbb{R}} L_{m-1}(x, y) d\mu(y) = 0;$$

(ii)
$$\lim_{\substack{j \to \infty}} k(2^{-j})C(E_j^!) = 0,$$

where $L_{-1}(x, y) = L(x - y)$.

Remark 4. Let \tilde{h} be nonincreasing on the interval (0, 1) and

$$E = \{x \in R^n; \lim \sup_{r \downarrow 0} \tilde{h}(r) \mu(B(x, r)) > 0\}$$

for a nonnegative measure μ on R^n . If $\mu(E)$ = 0, then $\Lambda_{\tilde{h}}^{-1}(E)$ = 0, where $\Lambda_{\tilde{h}}^{-1}$ denotes the Hausdorff measure with respect to the measure function \tilde{h}^{-1} .

References

- [1] A. M. Davie and B. Øksendal, Analytic capacity and differentiability properties of finely harmonic functions, Acta Math. 149 (1982), 127-152.
- [2] B. Fuglede, Fonctions BLD et fonctions finement surharmoniques, Séminaire de Théorie du Potentiel, No. 6, Lecture Notes in Math. 906, Springer, Berlin, 1982.
- [3] Y. Mizuta, Fine differentiability of Riesz potentials,
 Hiroshima Math. J. 8 (1978), 505-514.
- [4] Y. Mizuta, Semi-fine limits and semi-fine differentiability of Riesz potentials of functions in L^p, Hiroshima Math. J. 11 (1981), 515-524.
- [5] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton, 1970.