A description of a space of holomorphic discrete series by means of the Fourier transform on the Silov boundary

京大理 野村隆昭 (Takaaki Nomura)

Let G be a connected non-compact real simple Lie group of matrices and K a maximal compact subgroup of G. Assume that G/K is a hermitian symmetric space. Then, G/K can be realized as a Siegel domain of type II, D, in W \times V, where W and V are finite dimensional complex vector spaces. Let h be a Cartan subalgebra of $\mathfrak g$ contained in the Lie algebra ${f k}$ of K, Δ the root system of $({f g}_{C},\ {f h}_{C})$. We introduce an order in Δ compatible with the complex structure of G/K. For each K-dominant Kintegral linear form $\,\Lambda\,$ on $\,\mathfrak{h}_{_{\scriptstyle{C}}}\,$ satisfying the Harish-Chandra's non-vanishing condition [1], the holomorphic discrete series $\ensuremath{\mathbb{I}}_\Lambda$ of G with Λ as a parameter is realized on a Hilbert space $H(\Lambda)^{(\dagger)}$ of vector valued holomorphic functions on D. Let S(D) be the Silov boundary of D. Then, one knows that S(D) is the orbit of the origin in $W \times V$ under a certain nilpotent subgroup N(D) of the affine automorphisms of D, and that S(D) is diffeomorphic to N(D). By identifying S(D) with N(D), the aim of this talk is a description of the space $H(\Lambda)$ by using the Fourier transform on N(D).

If D reduces to a tube domain, then N(D) is abelian and therefore the Fourier transform on N(D) is euclidean. Since this case is treated (\dagger) For precise definition see p.7.

in Rossi-Vergne [4], we assume from now on that $\, D \,$ does not reduce to a tube domain. Then, $\, N(D) \,$ is a simply connected 2-step nilpotent Lie group (in fact $\, N(D) \,$ is the nilradical of a maximal parabolic subgroup of $\, G \,$) and the Fourier transform on $\, N(D) \,$ is non-euclidean.

2. Let $\mathfrak{g}=\mathfrak{k}+\mathfrak{p}$ be a Cartan decomposition of \mathfrak{g} with the associated Cartan involution θ and \mathfrak{p}_+ (resp. \mathfrak{p}_-) be the sum of all the root subspaces corresponding to positive (resp. negative) non-compact roots in Δ . Both \mathfrak{p}_+ and \mathfrak{p}_- are abelian subalgebras in \mathfrak{g}_C normalized by \mathfrak{k}_C . Let P_\pm and K_C be the analytic subgroups of G_C corresponding to \mathfrak{p}_\pm and \mathfrak{k}_C respectively, where G_C is the complexified connected matrix group having \mathfrak{g}_C as Lie algebra. Every $\mathfrak{x} \in P_+ K_C P_-$ can be expressed in a unique way as

$$x = \exp \zeta(x) \cdot k(x) \cdot \exp \zeta'(x)$$

with $\zeta(x) \in \mathfrak{p}_+$, $k(x) \in K_C$ and $\zeta'(x) \in \mathfrak{p}_-$. We know that G is contained in $P_+K_CP_-$ and that the image $M = \zeta(G)$ is a bounded domain in \mathfrak{p}_+ . M is known as the Harish-Chandra's realization of G/K.

3. Let $\{\gamma_1,\ldots,\gamma_\ell\}$ be a maximal system of positive non-compact pairwise strongly orthogonal roots constructed as follows: for each j, γ_j is the largest positive non-compact root strongly orthogonal to $\gamma_{j+1},\ldots,\gamma_\ell$. For every $\alpha \in \Delta$, we choose $H_\alpha \in h_C$ and $X_\alpha \in \mathfrak{g}_\alpha \subset \mathfrak{g}_C$ in such a way that the following are valid:

$$\begin{split} \mathbf{B}(\mathbf{H}_{\alpha}, \ \mathbf{H}) &= \alpha(\mathbf{H}) \quad (\mathbf{H} \ \epsilon \ \mathbf{h}_{\mathbf{C}}), \qquad \mathbf{X}_{\alpha} - \mathbf{X}_{-\alpha} \ \epsilon \ \mathbf{k} + \mathbf{i} \mathbf{p}, \\ \mathbf{i}(\mathbf{X}_{\alpha} + \mathbf{X}_{-\alpha}) \ \epsilon \ \mathbf{k} + \mathbf{i} \mathbf{p}, \qquad & [\mathbf{X}_{\alpha}, \ \mathbf{X}_{-\alpha}] \ = \ 2\mathbf{H}_{\alpha}/\alpha(\mathbf{H}_{\alpha}), \end{split}$$

where B is the Killing form of $\mathfrak{g}_{\mathbb{C}}$. Note that $H_{\alpha} \in i\mathfrak{h}$. Put $\mathfrak{a} = \sum_{1 \leq i \leq \ell} R(X_{\gamma_i} + X_{-\gamma_i})$. Then \mathfrak{a} is a maximal abelian subspace of \mathfrak{p} , so that ℓ equals the real rank of G. Let

(1)
$$c = \exp \frac{\pi}{4} \sum_{j=1}^{\ell} (X_{\gamma_j} - X_{-\gamma_j}) \in G_C$$

and ν = Ad c. It should be noted that c belongs to $P_+K_CP_-$. Put h^- = $\sum_{1 \leq j \leq k} RH_{\gamma_j}$ and let h^+ be the orthogonal complement of h^- in ih relative to the inner product $-B_T |_{ih \times ih}$, where $B_T(X, Y) = B(X, TY)$ and τ is the conjugation in \mathfrak{g}_C with respect to the compact real form k+ip. Since $h_C^+ + \mathfrak{a}_C = \nu^{-1}(h_C)$, $h_C^+ + \mathfrak{a}_C$ is also a Cartan subalgebra of \mathfrak{g}_C . As we have assumed that G/K does not reduce to a tube domain, there is only one possibility of the positive \mathfrak{a} -root system $\Phi(\mathfrak{a})^+$ compatible with the original order in Δ through ν^* (see Moore [2]): put $\lambda_j = \nu^*(\gamma_j)$, then

$$\Phi(\mathbf{a})^{+} = \{\frac{\lambda_{\mathbf{i}} + \lambda_{\mathbf{j}}}{2} ; 1 \leq \mathbf{j} \leq \mathbf{i} \leq \ell\} \bigcup \{\frac{\lambda_{\mathbf{i}} - \lambda_{\mathbf{j}}}{2} ; 1 \leq \mathbf{j} \leq \mathbf{i} \leq \ell\} \bigcup \{\frac{\lambda_{\mathbf{i}}}{2} ; 1 \leq \mathbf{i} \leq \ell\}.$$

We denote by $\mathfrak n$ the sum of all the positive $\mathfrak a$ -root subspaces and put $\mathbf s=\mathfrak a+\mathfrak n$. It is easy to see that the map $\mathbf r(\mathtt X)=(\mathtt X-\theta(\mathtt X))/2$ is a linear isomorphism of $\mathbf s$ onto $\mathfrak p$. Let j be the complex structure on the underlying vector space $\mathbf s$ obtained by transforming the complex structure on $\mathfrak p$ by means of $\mathbf r$. We set

$$s(0) = a + \sum_{k \le m} n_{(\lambda_m - \lambda_k)/2}, \quad s(1/2) = \sum_{k=1}^{\ell} n_{\lambda_k/2}, \quad s(1) = \sum_{k \le m} n_{(\lambda_m + \lambda_k)/2}.$$

Then, clearly we have s = s(0) + s(1/2) + s(1) and s(0) is a subalgebra of g. Let S(0) be the analytic subgroup of G corresponding to s(0).

Put

$$s = \frac{i}{2} \sum_{k=1}^{\ell} (2H_{\gamma_k}/\langle \gamma_k, \gamma_k \rangle - X_{\gamma_k} + X_{-\gamma_k}).$$

Then, s belongs to $\mathfrak{s}(1)$. Let Ω be the S(0)-orbit of s in $\mathfrak{s}(1)$ under the adjoint representation. By Rossi-Vergne [4, Theorem 4.15], Ω is a regular open convex cone in $\mathfrak{s}(1)$ and diffeomorphic to S(0). For every $\mathfrak{t} \in \Omega$, we denote by $\mathfrak{h}_0(\mathfrak{t})$ the unique element in S(0) for which $(\operatorname{Ad} \mathfrak{h}_0(\mathfrak{t}))s=\mathfrak{t}$. On the other hand, it is known that \mathfrak{f} leaves $\mathfrak{s}(1/2)$ invariant, and so $\mathfrak{s}(1/2)$ can be considered as a complex vector space V by $\mathfrak{f}|_{\mathfrak{s}(1/2)}$. Let W be the complexification of $\mathfrak{s}(1)$. The R-bilinear map $Q:V\times V\to W$ defined by Q(x,y)=([jx,y]+i[x,y])/4 turns out to be an Ω -positive sesqui-linear hermitian map. By using this pair of Ω and Q, we now define a Siegel domain of type Π , $D=D(\Omega,Q)$:

$$D = \{(w, v) \in W \times V : Im w - Q(v, v) \in \Omega\}.$$

Then, $S(D) = \{(x + iQ(\zeta, \zeta), \zeta) ; x \in s(1), \zeta \in V\}$ and $N(D) = \{(x, \zeta) ; x \in s(1), \zeta \in V\}$ with the multiplication

$$(x, \zeta) \cdot (x', \zeta') = (x + x' + 2 \operatorname{Im} Q(\zeta, \zeta'), \zeta + \zeta').$$

Let $\alpha: G \to D$ be the map which induces a G-equivariant biholomorphism of G/K onto D. Then it holds that

$$D \ni (x + iy, \zeta) = \alpha(\exp(x, \zeta) \cdot \eta_0(y - Q(\zeta, \zeta))).$$

4. Let Ξ (resp. Ξ^+) be the set of all $\lambda \in \mathbf{s}(1)^*$ such that the hermitian form $\langle \lambda, Q(\cdot, \cdot) \rangle$ on $V \times V$ is non-degenerate (resp. positive definite). It can be proved that Ξ^+ is equal to the dual cone

$$\Omega^* = \{\lambda \in \mathfrak{s}(1)^* : \langle \lambda, x \rangle > 0 \text{ for all } x \in \overline{\Omega} - \{0\}\}.$$

In particular, Ξ is non-empty. As in Ogden-Vági [3], we have a family $(\pi_{\lambda})_{\lambda \in \Xi}$ of concrete irreducible unitary representations of N(D) enough to decompose $L^2(N(D))$. The space of π_{λ} is the L^2 -space on a real subspace E_{λ} of V with $\dim_R E_{\lambda} = \dim_C V$ (= n, say). For $\lambda \in \Xi$, let $\rho(\lambda)$ be the Pfaffian of the alternating bilinear form $\mathrm{Im} \langle \lambda, \, Q(\bullet, \bullet) \rangle$ on the real vector space $\mathbf{s}(1/2) \times \mathbf{s}(1/2)$. The Fourier transform \hat{f} of $f \in L^1(N(D))$ is by definition

$$\hat{f}(\lambda) = \int_{N(D)} f(n) \pi_{\lambda}(n^{-1}) dn ,$$

where dn is the Haar measure on N(D). Then, the Plancherel formula for N(D) is as follows:

$$\|\mathbf{f}\|^2 = \mathbf{c} \int_{\Xi} \|\hat{\mathbf{f}}(\lambda)\|_{\mathrm{HS}}^2 \rho(\lambda) d\lambda.$$

The positive constant c depends only on the normalization of dn. One can define the Fourier transform of f ϵ L²(N(D)) in the standard way.

5. Let ψ be a continuous everywhere positive function on Ω such that $\psi(at) = a^{\delta}\psi(t)$ (a>0, $t\in\Omega$) for some $\delta\in R$. We consider first the Hilbert space $H^2(D,\psi)$ of C-valued holomorphic functions on D satisfying

$$\int_{D} |F(x + iy, \zeta)|^{2} \psi(y - Q(\zeta, \zeta)) dxdyd\zeta < \infty \qquad (x + iy \in W, \zeta \in V).$$

When the irreducible unitary representation of K with highest weight Λ is one dimensional, $\mathcal{H}(\Lambda)$ is of this type for a certain ψ . For $F \in H^2(D, \psi)$, we put

(2)
$$f_{t}(x, \zeta) = F(x + i(t + Q(\zeta, \zeta)), \zeta)$$

for every ten. Then, f_t belongs to L²(N(D)), so that one can consider the Fourier transform (f_t) of f_t. Identify L²(E_{\lambda}) with L²(Rⁿ) and let $\{\phi_m^{\lambda} \; ; \; m \; \epsilon \; (Z_+)^n \}$ be the complete orthonormal system consisting of the Hermite functions and V_{\lambda} the one dimensional subspace of L²(E_{\lambda}) spanned by ϕ_0^{λ} . We now define a Hilbert space $\mathcal{H}^2(\Omega^*, \psi)$: every $\Phi \in \mathcal{H}^2(\Omega^*, \psi)$ is a measurable function on Ξ taking its value at $\lambda \in \Xi$ in the Hilbert space of Hilbert-Schmidt operators on L²(E_{\lambda}) such that

- (i) $\Phi(\lambda) = 0$ if $\lambda \notin \Omega^*$,
- (ii) Range $\Phi(\lambda)$ is contained in V_{λ} if $\lambda \in \Omega^{*}$,

(iii)
$$\|\Phi\|^2 = c \int_{\Omega^*} \|\Phi(\lambda)\|_{HS}^2 I_{\psi}(\lambda)\rho(\lambda) d\lambda < \infty$$
,

where $I_{\psi}(\lambda) = \int_{\Omega} e^{-2 < \lambda}, x^{>} \psi(x) dx$.

Theorem 1. Let $F \in H^2(D, \psi)$ be given and define f_t by (2). Then, $\Phi(\lambda) = e^{\langle \lambda, t \rangle}(f_t)^{\hat{}}(\lambda)$ is independent of $t \in \Omega$ and belongs to $H^2(\Omega^*, \psi)$. Conversely, let $\Phi \in H^2(\Omega^*, \psi)$ be given. Then,

$$F(x + i(t + Q(\zeta, \zeta)), \zeta) = c \int_{\Omega^*} e^{-\langle \lambda, t \rangle} Tr[\pi_{\lambda}(x, \zeta) \Phi(\lambda)] \rho(\lambda) d\lambda$$

is absolutely convergent and gives an element $F \in H^2(D, \psi)$ such that $\Phi(\lambda) = e^{\langle \lambda, t \rangle}(f_t)^{\hat{}}(\lambda)$. Moreover, the map $F \to \Phi$ is unitary.

6. Now we treat $\mathcal{H}(\Lambda)$. Let Λ be as in 1 and τ_{Λ} the irreducible unitary representation of K on a finite dimensional Hilbert space E with highest weight Λ . Since $P_{+}K_{C}$ is a semidirect product, τ_{Λ} can be naturally extended to a representation of $P_{+}K_{C}$. Let $c \in G_{C}$ be the element defined by (1) and put

$$\Phi_{\Lambda}(g) = \tau_{\Lambda}(k(c)^{-1})\tau_{\Lambda}(k(cg)).$$

We note that it makes sense to write k(cg) for $g \in G$, for one can show that $cg \in P_+K_CP_-$. Let

$$\theta_0(t) = |\det_{s(1/2)} \operatorname{Ad} \eta_0(t)|^{-1} |\det_{s(1)} \operatorname{Ad} \eta_0(t)|^{-2}$$
 (t \(\varepsilon\))

and $\Theta_{\Lambda}(\alpha(h)) = \Phi_{\Lambda}(h)$ (h ϵ S = exp \$), where α is the map G \rightarrow D which induces a G-equivariant biholomorphism of G/K onto D.

The Hilbert space $\mathcal{H}(\Lambda)$ consists of E-valued holomorphic functions on D satisfying

$$\|\mathbf{F}\|^2 = \int_{\mathbf{D}} \|\Theta_{\Lambda}(\mathbf{i}\mathbf{y}, \zeta)^{-1}\mathbf{F}(\mathbf{x} + \mathbf{i}\mathbf{y}, \zeta)\|^2 \theta_0(\mathbf{y} - \mathbf{Q}(\zeta, \zeta)) dxdyd\zeta < \infty.$$

Let \mathbf{v}_{Λ} be a highest weight vector for $\mathbf{\tau}_{\Lambda}$ normalized so that $\|\mathbf{v}_{\Lambda}\|$

= 1. We take an orthonormal basis $v_1 = v_\Lambda, v_2, \ldots, v_d$ (d = deg τ_Λ) in E consisting of weight vectors arranged in order so that any vector in the root subspaces corresponding to positive compact roots in Δ is represented, under τ_Λ , by an upper triangular matrix. We denote by Λ_j the weight for the weight vector v_j . Let E_k be the one dimensional subspace of E spanned by v_k and

$$H_{\mathbf{i}}(\Lambda) \ = \ \{ \mathtt{F} \ \epsilon \ H(\Lambda) \ ; \ \mathtt{F}(\mathtt{w}, \ \zeta) \ \epsilon \ \mathtt{E}_{\mathbf{1}} \oplus \ldots \oplus \mathtt{E}_{\mathbf{i}} \, \}.$$

Then, it can be proved that $H_{j}(\Lambda)$ is a closed subspace of $H(\Lambda)$ invariant under $\Pi_{\Lambda}|_{S}$. Let $H^{1}(\Lambda) = H_{1}(\Lambda)$ and $H^{j}(\Lambda) =$ the orthogonal complement of $H_{j-1}(\Lambda)$ in $H_{j}(\Lambda)$ (j = 2,..., d). Define a positive character χ_{j} (j = 1,..., d) of $\Lambda = \exp \mathfrak{a}$ by

$$\chi_{\mathbf{j}}(\exp \sum_{i=1}^{\ell} a_{i}(X_{\gamma_{i}} + X_{-\gamma_{i}})) = \prod_{i=1}^{\ell} \exp a_{i}\Lambda_{\mathbf{j}}(V(X_{\gamma_{i}} + X_{-\gamma_{i}})),$$

where ν = Ad c as in 3. Extending χ_j canonically to a character of S, we put

$$\psi_{j}(t) = \chi_{j}(\eta_{0}(t))^{-2} \theta_{0}(t)$$
 (t $\varepsilon \Omega$, $j = 1, 2, ..., d$).

Then, $\psi_{\mathbf{j}}(\mathbf{at}) = \mathbf{a}^{\delta_{\mathbf{j}}} \psi_{\mathbf{j}}(\mathbf{t})$ (a > 0, t $\in \Omega$) for some $\delta_{\mathbf{j}} \in \mathbf{R}$. Consider the Hilbert space $H^2(D, \psi_{\mathbf{j}})$ of the type in 5 and define an operator $T_{\mathbf{j}}$ by

$$T_{j}F(w, \zeta) = (F(w, \zeta), v_{j})$$
 (F $\varepsilon H_{j}(\Lambda)$).

 T_i is a bounded operator $H_i(\Lambda) \to H^2(D, \psi_i)$ and its range is dense.

Therefore $\mathcal{H}^{\mathbf{j}}(\Lambda)$ is unitarily isomorphic to $\mathcal{H}^{2}(D,\psi_{\mathbf{j}})$ by $\mathcal{U}_{\mathbf{j}}$, where $\mathcal{U}_{\mathbf{j}}$ is the partial isometry appearing in the polar decomposition of the operator $\mathcal{T}_{\mathbf{j}}$. Thus, we have an irreducible decomposition $\mathcal{H}(\Lambda) = \bigoplus_{\mathbf{j}=1}^{d} \mathcal{H}^{\mathbf{j}}(\Lambda)$ for $\mathcal{I}_{\Lambda}|_{S}$.

7. Put for $\lambda \in \Omega^*$

(3)
$$I_{\Lambda}(\lambda) = \int_{\Omega} e^{-2 < \lambda, t} \Phi_{\Lambda}(\eta_0(t)^{-1})^2 \theta_0(t) dt.$$

Lemma. The integral in (3) is absolutely convergent.

Now the matrix of $I_{\Lambda}(\lambda)$ with respect to the basis (v_k) is upper triangular with (k,k)-entry $I_{\psi_k}(\lambda)>0$. Therefore we can give a meaning to $I_{\Lambda}(\lambda)^{1/2}$. Put $\mathfrak{H}_{\lambda}=L^2(E_{\lambda})$ and let $B_2(\mathfrak{H}_{\lambda})$ be the Hilbert space of Hilbert-Schmidt operators on \mathfrak{H}_{λ} . Let us put

$$A(\mathfrak{H}_{\lambda}) = \{T \in B_2(\mathfrak{H}_{\lambda}) ; Range T \subset V_{\lambda} \}.$$

It is evident that $A(\mathfrak{H}_{\lambda})$ is a closed subspace of $B_2(\mathfrak{H}_{\lambda})$ and so $A(\mathfrak{H}_{\lambda})$ itself is a Hilbert space. Consider the Hilbert space tensor product $A(\mathfrak{H}_{\lambda}) \otimes E$ of two Hilbert spaces $A(\mathfrak{H}_{\lambda})$ and E. This tensor product space $A(\mathfrak{H}_{\lambda}) \otimes E$ is regarded as the Hilbert space $B_2(E, A(\mathfrak{H}_{\lambda}))$ of anti-linear Hilbert-Schmidt operators mapping E to $A(\mathfrak{H}_{\lambda})$ via $(T \otimes v)(u) = (v, u)T$. For $\lambda \in \Omega^*$, we define an operator $M_{\Lambda}(\lambda)$ on $A(\mathfrak{H}_{\lambda}) \otimes E$ by

$$M_{\Lambda}(\lambda) (T \otimes v) = T \otimes I_{\Lambda}(\lambda)^{1/2} v.$$

We are now in a position to define a Hilbert space $H(\Lambda)$: it consists of measurable functions Ψ on Ξ taking their value at $\lambda \in \Xi$ in $A(\mathcal{H}_{\lambda}) \otimes E$ such that

(i)
$$\Psi(\lambda) = 0$$
 if $\lambda \notin \Omega^*$,

(ii)
$$\|\Psi\|^2 = c \int_{\Omega^*} \|M_{\Lambda}(\lambda)\Psi(\lambda)\|^2 \rho(\lambda) d\lambda < \infty.$$

Put $H_{\mathbf{j}}(\Lambda) = \{ \Psi \in H(\Lambda) ; \Psi(\lambda) \in A(\mathbf{H}_{\lambda}) \otimes (\mathbf{E}_{1} \oplus \ldots \oplus \mathbf{E}_{\mathbf{j}}) \}$ and

$$\mathsf{T}_{\mathtt{j}}\Psi(\lambda) = \Psi(\lambda)\mathsf{v}_{\mathtt{j}} \in \mathsf{A}(\mathsf{H}_{\lambda}) \qquad (\Psi \in \mathsf{H}_{\mathtt{j}}(\Lambda)).$$

 T_j is a bounded operator $H_j(\Lambda) \to H^2(\Omega^*, \psi_j)$ and its range is dense. Let $H^1(\Lambda) = H_1(\Lambda)$ and $H^j(\Lambda) =$ the orthogonal complement of $H_{j-1}(\Lambda)$ in $H_j(\Lambda)$ ($j = Z, \ldots, d$). Then, $H^j(\Lambda)$ is unitarily isomorphic to $H^2(\Omega^*, \psi_j)$ by U_j , where U_j is the partial isometry appearing in the polar decomposition of the operator T_j . Therefore we have an orthogonal decomposition $H(\Lambda) = \bigoplus_{j=1}^d H^j(\Lambda)$.

Theorem 2. $\mathcal{H}(\Lambda)$ is unitarily isomorphic to $\mathcal{H}(\Lambda)$ via the following diagram:

$$\bigoplus_{j=1}^{d} H^{j}(\Lambda) = H(\Lambda) \xrightarrow{\simeq} H(\Lambda) = \bigoplus_{j=1}^{d} H^{j}(\Lambda)$$
(for each j)
$$\|\{U_{j} \quad \|\{U_{j} \quad \|\{U_{j} \quad \|\{U_{j} \quad \|\{U_{j} \quad \|\{U_{j} \quad \|\{U_{j} \mid \|\{U_{$$

References

- [1] Harish-Chandra, Representations of semisimple Lie groups W, V, W, Amer. J. Math., 77 (1955), 743-777; Ibid., 78 (1956), 1-41: Ibid., 78 564-628.
- [2] C. C. Moore, Compactification of symmetric spaces II: the Cartan domains, Amer. J. Math., 86 (1964), 358-378.
- [3] R. D. Ogden and S. Vági, Harmonic analysis of a nilpotent group and function theory on Siegel domains of type II, Adv. Math., 33 (1979), 31-92.
- [4] H. Rossi and M. Vergne, Representations of certain solvable Lie groups on Hilbert spaces of holomorphic functions and the application to the holomorphic discrete series of a semisimple Lie group, J. Funct. Anal., 13 (1973), 324-389.
- [5] M. Vergne and H. Rossi, Analytic continuation of holomorphic discrete series of a semisimple Lie group, Acta. Math., 136 (1976), 1-59.