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Some new resuits on LZ(T\G) multiplicities

Floyd L. Williams

Abstract. We announce in this paper the solution of a conjecture
of Langlands on the multiplicity of an integrable discrete series
repre;entation in LZ(F\G) . We also give an alternating sum

formula for LZ(F\G) multiplicities (when T\Gfgis compact), and

we extend Moscovici's result on the geometric interpretation of

discrete series multiplicities for T with finite co-volume.

1. Introduction. Let G be_a connected non-compact linear semi-
simple Lie group and let [ be co-compact discrete subgroup of G .
The regular representation of G on LZ(F\G) decomposes as a direct
sum of irréducible unitary representations T € G = the unitary
dual of G ) where each 7 has a finite multiplicity mW(T) . We
shall assume that G has the rank of a maximal compact subgroup K
of G . Then G admits T € G with LZ(G) matrix coefficients.

If in fact w7 e G has Ll(G) matrix coefficients (i.e. w 1is an
integrable discrete series representation of G ) then in (9], [10]
Langlands has worked out me;hods (based on results of Selberg (18],

(191 and Harish-Chandra (2], (3] ) for computing the multiplicity
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mn(F) . In particular if 1 is the only elliptic element of [ he

has shown that

(1.1) mﬂ(F) = (volume of TI'\G ) (formal degree of T )

Equation (1.1) shows in parti;ular that m actually occurs in
LZ(F\G) . In [6], [7] Hotta and Parthasarathy showed that with some
restrictions on 7 , equation (1.1) holds in fact for infinitely many
non~integrable discrete series representations w . These "restric-
tions'" were recently removed by the author who thus obtained in [21]
the most general multiplicity result possible for the discrete series.
There, as in [61, [7], mW(F) was expressed as the (explicitly
computable) index of a twisted Dirac operator on [\G/K . Such an
expregéion is also possible when I'\G 1is non-compact. See Theorem
4.4 below. This geometric interpretation of mﬂ(T) is analogous to
the original geometric interpretation proposed by Langlands. We recall,
briefly, Langlands conjecture.

Let H ¢ K be a Cartan subgroup of G and fix a G-invariant
holomorphic structure on G/H . Given a non-singular parameter A
by which the discrete series representation w =T is determined

A

(modulo the action of the Weyl group of (H,K)) let LA be the corre-

sponding holomorphic homogeneous line bundle over G/H , and for

X = I'\G/H let Hq(X,LA) be the space T[-invariant, LA—valued harmonic
r,/ \l;f‘ %)

C*® forms of type (p,q) on G/H (relative to some G-invariant

Hermitian metrics on G/H and LA) . Alternatively Hq(X,LA) is

the qth—dimensional cohomology of the sheaf of local T-invariant
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holomorphic sections of - LA on pre—images of open sets in X . Sup-
pose that
(1.2) A is sufficiently far away from Weyl

chamber walls.

Then a theorem of Griffiths ([5], [10] says that Hq(X,LA) = o except

for q = qa, , where is a distinguished integer (cf. (2.8) below

ah
where A = A+4§) completely determined by A . In [10]Langlands

conjectured that

(1.3) dim 234 (X,L,) = mﬂA(F)

for WA

(1.2). Recently the author [22] was able to by-pass condition (1.2)

integrable. Schmid in [15] proved (1.3) for A subject to

altogether and established (1.3) not only for all integrable nA ,
but also for infinitely many_qqp—integrable discrete series represen—
tations. Our result, which atrégé same times improves Griffiths'
vanishing theorem for the cohomclogy spaces Hq(X,LA) , 1s presented
in Theorem 2.7 below. On the other hand Theorem 2:7 depends very
much on strong results of Schmid in {15], (161, (17] .

In the case when G/K is Hermitian symmetfic we give a general
alternating sum formula for the multiplicities mn(F)./ This new
formula (formula (3.11) below) includes and extends some classical
results found in (6], [8], [9].

In section 4 we drop the restriction of the co-compactness of [

and assume only that [ has a co-finite volume. Using a recent



theorem of Moscovici we express the multiplicity of discrete series
representations in the disérete spectrum of LZ(T\G)’ as the (finite)
Lz—igggg of a twisted Dirac operator. This result (Theorem 4.4 below)
also holds for all integrable discrete series representations of G
and for infinitely many non-integrable discrete series. Thus it
extends a result of Moscovici (Theorem 3.2 of [12]) and it extends the
main result of [21] (Theorem 3.3 there) to non-compact I'\G . More-
over, up to computing Lz—indicies in the special rank one case,
Theorem 4.4 implies in particular the Osborne-Warner formula (4],
{13].

2. The complexifications of the Lie algebras 8y0 k , h of G, K, H

o] (o]

will be denoted by g, k, h , respectively. Let ‘A be the set of

non-zero roots of (g,h) and fix an arbitrary system of positive

+
roots A < A . If 8g is the root space of B € A we set
(2.1) n==rg_,
o E A+

The quotient G/H can be assigned a unique G-invariant complex struc-—
ture such that n is the space of anti-holomorphic tangent vectors

at the origin. Let L be the lattice of differentials of characters

*
of H; Acl c:hR'EEEf the linear functionals on h with real-

valued restriction to /-1 ho . If Xel , A 1is integral (since

G is linear) and A induces a holomorphic homogeneous line bundle
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Lk over G/H . Let SX be the sheaf of germs of local T-invariant
holomorphic sections of LX on the inverse images éf open sets in

X = I'\G/H under the map C/H — X (as in section 1). Given T € G
let I~11T denote the Hilbert space of 7 and also the space of K-finite
vectors in H_ . Then the sheaf cohomology H9(X,S.) and the Lie

algebra cohomology Hq(n,Hw) are related by the following

q = q
Theorem 2.2. H (X’SX) z mﬂ(r) H (n’Hw)-k

TeEG@G

Q) = (\,A+28)1

for q >0, A€ L , where Q = the Casimir operator of G, 26 =L a

+
a e A

( , ) = the Killing form of G , and where Hq(n,Hﬂ)_A is the sub-

space of vectors in Hq(n,Hﬂ) transforming according to the character

Q_A of H .

This is proved im {22]. The Hochschild-Serre spectral sequence generated
KAOAn <
by the subalgebra k-e<mn of n can be used (as in [17]) to compute

Hq(n,HW)~A . Its El term is given by
- rP
(2.3) E,TS = HS (k nn,H (x) AT P/pan)_,
where g = k+p 1is a Cartan decomposition of g . Assume that A+5 is

regular and let

(A

(2.4) P o (aea| (A+6,0)>0)
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A
be the corresponding system of positive roots; let 26( ) - Za
agp ()

Let A An denote the set of compact, non-compact roots, respectively.

k,

Extending the arguments in section 4 of {17] we can show, using Theorem

2.6 of (21] and Schmid's lowest K type Theorem (161%

Theorem 2.5. Let A € L such that A+8 1is regular and such that

Og-6 M A

,a)>0 for every non-compact root ¢« in P (Note that
A+6—6(A) is P(A) - dominant.) If m e G such that 7(Q) = (\,A28)1 ,
then in (2.3), ElrS = o unless (i) 7 4is the contragradient W;+6

of Harish-Chandra's discrete series representation WA+6 corresponding
to the regular element A+§ [3], (ii) r = I{QEAﬁHAn](A+6,a)>o}{ ,
where |S| denotes the cardinality of a set S , (iii)

s = [{asAﬁ\Ak](l+6,a)<o}| . Conversely (i), (ii), (iii) diwmply

dim Eis = 1.

Thus if A satisfies the condition

)

S(X),a) >0 for every aeP ‘'R An

(2.6) (A+S-

"

the above spectral sequence degenerates and Theorems 2.2, 2.5 give

(noting that mn*(r) = mﬂ(F))

Theorem 2.7. (Solution of Langlands' conjecture [22]). Suppose X\ e [

such that A+8 is regular. Let M 4+ be the corresponding Harish-

Chandra discrete series representation. Define
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(2.8) = |faeana, | 6,00 <o} | +

G+6

[{aea'nd_| O 0)>0}| .

If )\ satisfies condition (2.6) (which is automatically the case if

m is integrable, by Theorem 8.2 of [20]) then the cohomology groups

A+S

q dr+s8
H (X’SX) vanish for Moreover dim H (X’SX) =m I

q*q
AtS TA+6

3. Now we define

(3.1) F; = {integral A € h* | A+§ is regular and

def.

(AM+§,0)>0 for every o in A+k" = A+nAk}
For A e F7 let
o
3.2y M {aeA| (A+6,a)>0} , pn(A) - P(A% a_

as in (2.4). Let ZG(A) = I a(p), and let
‘ aeP ’

(3.3) bA =h + L gy (= a Borel subalgebra)
QEP(A)
If 6 1is a parabolic subalgebra ¢f g containing bA we shall write
8 =m+ u for a Levi decomposition of 6 where u 1is the unipotent
radical of & and m is a reductive‘complement. Let A(m) , A(u)

denote the set of roots of m,u respectively, and let Su n - the

set of non-compact roots in A(u} . Thus
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8
(3.4) m=h+ I 8y u = I 8y
aed (m) ‘ aer™ _p(m)
and 8 =P (A)-A(m)
u,n n

Write <Q> = Za for QcA. A set of parabolic subalgebras {91}§=l
aeqQ -
containing bA is a representative set 1if

. < >
(3.5) GU. = <su. > for 1 #j and

A
@
v
i
A
@
v
il
o)
H
w
o)
=]
o

i

for any given parabolic subalgebra 6 = m+u:bA .

For A e F; we set

+
n

+ def. +

(3.6) Q= {aed_ "=7ATnA_ [ (MS,0)>0} , Qf = 4

—QA'

We note that if A € h* is integral such that A+§ is regular, and

if we choose w in the Weyl group of (k,h) such that

(w (-A-8) , A+k)>o and set A = AX =w (=A-8) - & then A € F; and

(3.7) A satisfies (2.6) <=> (A6 M a4 )50

() _ w ,_ (\)
for every ae€P A An = Pn (= —w Pn )

Moreover, the discrete series representations T b are
’ P A6 0 A4S

related by: Ties = Wkié . If we drop the coundition (2.6) (or
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equivalently condition (3.7)) then in cuntrast to statement (i) of
Theorem 2.5 above, many non-discrete series representations as well
will contribute to the formula of Theorem 2.2. And although the com-

putation of dim Hq(X,S might not be feasible one can compute the

s

arithmetic genus X(X’SX) 3

this is done in [15]. Then a good knowledge of all the unitary

=z (-1)? dim Hq(X,SA) of the sheaf S
G

representations w for which Hq(n,Hﬂ)_k = 0o would yield with the

knowledge of X(X,Sx) an explicit alternating sum formula relating
the multiplicities m (TY . In the case G/K 1is Hermitian sym-
metric we have carried out such a program to relate multiplicities,
using an analogous sheaf S, over I\G/K defined for A € F;

The result is the following. We‘choose the system of positive roots
A+ in section 2 to be compatible with the G-invariant complex struc-

ture on G/K which is now assumed to be Hermitian. That is

- def.
.8)" <
(3.8) P Leg_,

+
ael
n

is the space of anti-holomorphic tangent vectors at the origin in
G/K ; cf. (2.1). Up to a finite covering of G we may assume G
has a simply-connected complexification. Given a representative set

{81}§=1 of parabolic subalgebras containing b (see (3.5)) we define

A
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10
(3.9 s ={1]2]86, nQ [+fogl-l8, [=4
i,n i9nr
and 6 = 8 for some parabolic subalgebra 6 = mtn > bA with
u u,n

i,n

(-5, a@@) = o 5 1cict)

for 0<q<n , 2n-=dim G/K ;

see (3.4), (3.6) .

Theorem 3.10. (Alternating sum formula) Suppose G is linear as above

and G/K 1is Hermitian symmetric. Suppose that [ acts freely on
G/K . Given A € F; let {ei}§=l be a repres;ntative set of para-
bolic subalgebras containing the Borel subalgebra bA of (3.3).
>

Suppose that system of positive roots in (3.2) 1is also com-

. . - . + .
patible with a G-invariant complex structure on G/K (as A is by

assumption); let ﬁ(A) = A+£J—P§A) be the conjugate system. Define

My o= A+6—6(A) + <9u > and let T be the irreducible G module
- () i,n ui :

with P - highest weight My s 1<i<t. Then for i € S(A,q) in

(3.9) Wu is unitarizable and the multiplicities m (') satisfy

i ui

n |
z g DYa (D

. T
q=0 ie S(A,qQ Hy

Q
Ll

(3.11) (

vol (I'\G) | m (A+8,a) |

u€A+ 1
T(§,a) ]wl
+
aed

where W 1is the Weyl group of (g,h).
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11

The coefficient of the wvolume of TI'\G iﬁ (3.11) is the formal degree

of Trts 5 cf. equation (1.1). We note that if iO is the unique index

for which < P () > =< 8 > , corresponding to the parabolic
n “i n :
O,
subalgebra 6 = bA following (3.5), then eu = Pn(A) and hence
10,n
2068, aq l+lofl-le,  |=1ql;ie
i, n i m

i €s (A,}QA[)_. S (A,[QAI) # ¢ din (3.11). Also

My o= A+ Gn + GH(A) so that Wu is just the holomorphic discrete
o] i
o

series representation Ty (corresponding to the G-invariant complex

+8
structure on G/K compatible with the positive system ?'(A) ) with .
lowest A+k - highest weight A+6n+6n(A) . If A satisfies (3.7)

in particular (which is the case when T is integrable) then the

A+S
left hand side of (3.11) reduces simply to (—l)!QA} oy s (r) ; 1i.e.
Ty4s () = (—l)iQA‘ right hand side of (3.11). Theorem 3.10 is proved

in [24 ], where various applications are given.

4. 1In this section we continue to assume that G is. linear, but not
. c s . . + .
that G/K is Hermitian, nor that T©\G is compact. Again A will

denote an arbitrary system of positive roots. We assume that [ is
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12
‘ +
torsion free and that [\G has a finite invariant volume. Let S—
denote the ! spin modules for k . Given A € FS (see (3.1)) let
+ ) .
VA+6 be the irreducible k module with A k" highest weight A+5n
n

where 26 = < A+ > . Then V (:> Si is in fact a K module
n . n

A+6n
and one can therefore form the homogeneous % spinor bundles
EAi +~ G/K over G/K induced by these modules. Replacing G by a

double covering if necessary, we may assume G/K has a spin struc-

ture. Then we can consider the (twisted) Dirac operator

D + : T® E + - +

o« . e} . 4 .
A A7 r EA acting of C® sections ([14]. D, isa
G-invariant elliptic first order differential operator. Being
[-invariant in particular, D+A is the lift of an elliptic operator

+ , + +
FD A on the quotient bundle I\EA . In other words D, is

locally invariant in the sense of [12] , and being elliptic it has a

finite L2.— index by Moscoviéi's Theorem 2.1 of [12]. This index is
defined by

: + _ . + . +
(4.1) ind l.,D I dim ker 1.,D A dim ker (FDA Y*

+
P -

Here we assume [ satisfies the conditions imposed in [11l]. For

+ .
where (FD A)* is the formal adjoint of

bundles over the locally symmetric space [\G/K , Moscovici shows
that the L2 - index of a locally invariant elliptic operator is

independent of that operator. 1In the specific case at hand one has
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(4.2) ind I,1)+A =I o () d (r,A)

Tel? o

T(R) = (A,A+28)1

where mW(F) is the multiplicity of 7 ¢ 6 in the discrete spectrum
de(F\G) of the regular representation of G on LZ(T\G), and where
d(m,A) = dim Hom, (H_,V, . @®S) - dim Hom, (H_, V, . ® S)
’ i S R o S L E
Thus 1ind FD+A is clearly independent of I1D+A , and is dependent
. R o

. . in . 2.

on the inducing modules VA+8n (:) S— . Now in .[21] (see Theorem 2.13

there) the foilowing is proved.

Theorem 4.3. Suppose A ¢ F; satisfies condition (3.7) above (i.e.

6Y) 04y

(A+8-8 s Pn(A))>o , where we note that A+5—6(A) is P - dominant) .
Then if 7 € G such that T(Q) = (A,A+28)1 and such that

: + . . . . . :
HomK'(Hﬂ, VA+6n C] S~) =0, 7 1is unitarily equivalent to the Harish
Chandra discrete series representation ﬂA%é defined by the regular
element A+S . Moreover if O 1is the unique element in the Weyl
group W of (g,h) such that o A+ = P(A) , we must have (—1)2(0) =+ 1

AL :

where L(0) = l o (-4 )nA ] is the length of O .

Thus under condition (3.7) on A , Theorem 4.3 says that only the dis-
crete series representation ﬂA+6 can contribute to the Lz—index in

(4.2). In this way we obtain
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Theorem 4.4. (Theorem 2.7 of {23]) Let I <« G be a discrete torsion-
free subgroup such that TI'\G has a finite invariant volume and such
that T satisfies the assumpti&n on page 16 of. [11]. For A ¢ Fg

A+§ be the Harish-Chandra discrete series representation corre-
sponding to the regular element A+§ . Let g € W be the unique

)

Weyl group element such that ¢ A+ =P ; see (3.1), (3.2). If A

satisfies the condition

(0 (\)

(4.5) (A+6-8""",a)>0 for every o in P_

(ef. (2.68), (3.7)) then the multiplicity of = in the discrete

A+S
spectrum de (T\G) of LZ(T\G) is given by

4.6) a @ = DY e 0"
A+S

where 2(g) 1is the length of g , FDfA as above is the twisted Dirac

operator, and where the L2 - index is defined in (4.1). As in Theorem

2.7 condition (4.5) is automatically satisfied (by the Trombi-

Varadarajan result [20) if 7 is integrable; i.e. (4.6) holds

A+S

for all integrable HA+6

Theorem 4.4 extends the main result in [21] (Theorem 3.3 there) to
non—compact [\G . A version of it was first obtained in Theorem 3.2
of [12}. However we have removed the strong restriction imposed on

A in [12]. It is already clear even in the co-compact case (by

equation (3.11) for example) that condition (4.5) cannot be relaxed
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15

if (4.6) is to be maintained. Thus Théorem 4.4 (like Theorem 2.7)
represents the best kind of result possible. In the special case
when the symmetric space G/K is rank one, Barbasch and Moscovici have

computed the Lz—index ind in (1]. This coupled with (4.6)

+
D
A
gives an extension of the Osborme~-Warner multiplicity formula ([13]

(some' errors in [13] are corrected by DeGeorge in [4]) to non-—

integrable discrete classes,

Department of Mathematics
University of Massachusetts
Amherst, Massachusetts 01003
U.s.A.
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