The Order of the Attaching Class of the Suspended

Quaternionic Quasi-Projective Space

By

Juno Mukai

§ 0. Introduction

In this note, F denotes the field of the complex numbers C or the field of the quaternions H. We denote by ${\rm FP}^n$ the F-projective space of n F-dimensions and by ${\rm Q}_n$ (F) the quasi-F-projective space. ${\rm G}_n$ (F) denotes the unitary group U(n) or the symplectic group ${\rm Sp}(n)$ according as F is C or H. Let d be the dimension of F over the field of the real numbers R and ${\rm S}^{{\rm dn}-1}$ the unit sphere in ${\rm F}^n$. Let ${\rm T}_n^*\colon {\rm S}^{{\rm dn}-2}\longrightarrow {\rm G}_{n-1}$ (F) be the characteristic map for the normal form of the principal ${\rm G}_{n-1}$ (F)-bundle over ${\rm S}^{{\rm dn}-1}$. Then, as is well known ([2], [3] and [9]), Im ${\rm T}_n^*={\rm Q}_{n-1}$ (F), precisely, the following diagram commutes:

$$s^{dn-2} \xrightarrow{T_n} Q_{n-1}(F)$$

$$\downarrow^{G_{n-1}(F)},$$

where j_{n-1} is the canonical reflection map. $Q_n(F) = Q_{n-1}(F) \bigcup_{T_n} e^{dn-1}$ and $Q_n(C) = E(CP_+^{n-1})$, where E() denotes the reduced suspension and CP_+^{n-1} a disjoint union of CP_+^{n-1} and $\{$ one point $\}$.

Let $\omega_{n-1} = \omega_{n-1}(F)$ be the homotopy class of T_n and $p: Q_n(C) \longrightarrow Q_n(C)/Q_1(C) = ECP^{n-1}$ the collapsing map. In the previous paper [6], we proved that the \underline{k} -th suspension $E^k(p_*\omega_n(C))$ is of order n! for $k \ge 0$.

The purpose of this note is to examine the order of $\mathbf{E}^{k} \mathbf{\omega}_{n-1}(\mathbf{H})$.

Let α be an element of a homotopy group π_n () and $E^{\infty}\alpha$ ϵ π_n^S () the stable element of α . $o(\beta)$ denotes the order of β . Then, our result is the following

Theorem. i).
$$o(E^k \omega_{n-1}(H)) = 2 \cdot (2n-1)! \text{ for } k \ge 0 \text{ if } n \text{ is even.}$$
ii). $o(E^\infty \omega_{n-1}(H)) = (2n-1)! \text{ if } n \text{ is odd.}$

Our method is essentially to use the K-theory. To examine $o(\omega_{n-1}(H))$, we use the Toda's theorem about the generator of $\pi_{2n-1}(U(n))$ [6] and the group structure of $\pi_{4n+2}(\operatorname{Sp}(n))$ [4]. To determine the lower bound of $o(E^k\omega_{n-1}(H))$, we use the standard method of D. M. Segal [7] from the unstable viewpoint, exactly, we use the Hurwicz homomorphism h: $\pi_{k+4n-1}(E^kQ_n(H)) \longrightarrow H_{k+4n-1}(E^kQ_n(H)) \longrightarrow H_{k+4n-1}(E^kQ_n(H))$

Our result overlaps partially with the works of K. Morisugi [5] and G. Walker [9].

The author wishes to express his sincere gratitude to Professor S. Sasao for many advices given during the preparation of this paper.

§1. Determination of $o(\omega_{n-1}(H))$ for even n

First we recall the definition of the quasi-projective space and the reflection map. $S(F^n)$ denotes the unit sphere in F^n . $Q_n(F)$ is the space obtained from $S(F^n) \times S(F)$ by imposing the equivalence relation: (u, q) ~ (ug, $g^{-1}qg)$ for $g \in S(F)$ and collapsing $S(F^n) \times \{1\}$ to a point. The reflection map $j_n = j_n(F): Q_n(F) \longrightarrow G_n(F)$ is defined as follows:

$$j_n([u, q])(v) = v + u(q - 1) < u, v > 0$$

for $u \in S(F^n)$, $q \in S(F)$ and $v \in F^n$, where $\langle u, v \rangle = \sum_{k=1}^n \overline{u}_k v_k$ for $u = (u_1, \dots, u_n)$ and $v = (v_1, \dots, v_n)$.

Let $z=x+jy \in H$, where x, $y \in C$. By regarding $x \in C$ as $x+j0 \in H$, we have the injection $C \hookrightarrow H$. Obviously, this induces the canonical maps $i_n : Q_n(C) \longrightarrow Q_n(H)$ and $i_n' : U(n) \longrightarrow Sp(n)$. From the definition, the following diagram commutes:

In the complex case, we can define the reduced reflection map [6]:

$$\tilde{J}_n = \tilde{J}_n(C) : ECP^{n-1} \cong Q_n(C)/Q_1(C) \longrightarrow U(n)/U(1) \cong SU(n).$$

By abuse of notation, we often use the same letter j_n for the reduced case.

Lemma 1.2. i). If n is even, $j_{n*}: \pi_{4n-1}(Q_n(H)) \longrightarrow \pi_{4n-1}(Sp(n))$ is an epimorphism.

ii). If
$$n ext{ is } ext{odd}$$
, Im $ext{j}_{n^*} = ext{am}_{4n-1}(\operatorname{Sp}(n))$, where $a = 1 ext{ or } 2$.

<u>Proof.</u> Let p: $Q_{2n}(C) \longrightarrow Q_{2n}(C)/Q_1(C) \cong ECP^{2n-1}$ be the collapsing map, k: $Q_n(H) \longrightarrow Q_{2n}(H)$ and k': Sp(n) \longrightarrow Sp(2n) the inclusion maps, respectively. Then, by (1.1), the following diagram commutes for r = 4n - 1:

$$\pi_{\mathbf{r}}(\mathsf{ECP}^{2n-1}) \xleftarrow{p_{\mathbf{*}}} \pi_{\mathbf{r}}(Q_{2n}(C)) \xrightarrow{i_{2n}*} \pi_{\mathbf{r}}(Q_{2n}(H)) \xleftarrow{k_{\mathbf{*}}} \pi_{\mathbf{r}}(Q_{n}(H))$$

$$\downarrow \tilde{\jmath}_{2n}(C)_{\mathbf{*}} \qquad \downarrow \dot{\jmath}_{2n}(C)_{\mathbf{*}} \qquad \downarrow \dot{\jmath}_{2n}* \qquad \downarrow \dot{\jmath}_{n}*$$

$$\pi_{\mathbf{r}}(\mathsf{SU}(2n)) = \pi_{\mathbf{r}}(\mathsf{U}(2n)) \xrightarrow{i_{2n}*} \pi_{\mathbf{r}}(\mathsf{Sp}(2n)) \xleftarrow{k_{\mathbf{*}}!} \pi_{\mathbf{r}}(\mathsf{Sp}(n)).$$

 p_{\star} is an epimorphism since $Q_{2n}(C) \simeq ECP^{2n-1} \vee S^1$. By Theorem 4.1 of [6], $\tilde{J}_{2n}(C)_{\star}$ is an epimorphism. So, $\tilde{J}_{2n}(C)_{\star}$ is an epimorphism. k_{\star} and k_{\star}^{\dagger} are isomorphisms respectively. As is well known, i_{2n}^{\dagger} is an isomorphism if n is even and Im $i_{2n}^{\dagger} = 2\pi_{4n-1}(Sp(2n))$ if n is odd. Therefore, the above commutative diagram leads us to the assertion. This completes the proof.

Proposition 1.3. i). $\circ(\omega_{n-1}) = 2 \cdot (2n-1)! \quad \underline{\text{for even }} n.$ ii). $\circ(\omega_{n-1}) = (2n-1)! \quad \underline{\text{for odd }} n, \quad \underline{\text{where a is the}}$ same number as in Lemma 1.2.

<u>Proof.</u> Let p: $(Q_n(H), Q_{n-1}(H)) \longrightarrow (S^{4n-1}, *)$ be the collapsing map. We consider the natural homomorphism between the exact sequences for r = 4n - 1:

where the mappings are canonical and δ and Δ' are the connecting homomorphisms.

As is well known, $\pi_{4n-1}(\mathrm{Sp}(n)) \approx Z$, $\pi_{4n-2}(\mathrm{Sp}(n)) \approx 0$ and $\pi_{m}(S^{m}) = \{\iota_{m}\} \approx Z$. By the Blakers-Massey theorem [1], p_{\star} is an isomorphism. By the definition, $\omega_{n-1} = \Delta(\iota_{4n-1})$, where $\Delta = \partial \circ p_{\star}^{-1}$. So, by Theorem 2.2 of [4], j_{n-1} * is an epimorphism and the following holds:

(1.4) $\pi_{4n-2}(\mathrm{Sp}(n-1)) = \{j_{n-1} \star \omega_{n-1}\} \approx \mathbb{Z}_{b^{\bullet}(2n-1)!}, \text{ where } b=1 \text{ for odd } n$ and b=2 for even n.

By the exactness of the upper sequence, $\circ(\omega_{n-1})$ is equal to the order of the cokernel of j_{\star}^{\star} . Hence, by (1.4), Lemma 1.2 and by the above commutative diagram, we have the assertion. This completes the proof.

By inspecting the above proof, we have the following

Proposition 1.5. $j_{n*}: \pi_{4n-1}(Q_n(H)) \longrightarrow \pi_{4n-1}(Sp(n))$ is an epimorphism if and only if $o(\omega_{n-1}) = b \cdot (2n-1)!$, where b is the same number as in (1.4).

2. Some fundamental facts

For $n \ge 0$, X_n denotes a connected finite CW complex such that $X_0 = \{ \# \}$ and $X_n = e^0 \cup e^{r_i} \cup \ldots \cup e^{r_n}$ for $n \ge 1$. Here $r = r_n = dn - \epsilon$ with $\epsilon = 0$ or 1 and $d - \epsilon \ge 2$. $\theta_{n-1} \colon S^{r-1} \longrightarrow X_{n-1}$ denotes the attaching map, and so $X_n = X_{n-1} \cup_{\theta_{n-1}} e^r$. For example, $X_n = FP^n$ (d = 2 or 4 and $\epsilon = 0$) and $X_n = Q_n$ (H) (d = 4 and $\epsilon = 1$).

Let $p\colon X_n \longrightarrow X_n/X_{n-1} = S^r$ and $p'\colon (X_n, X_{n-1}) \longrightarrow (S^r, *)$ be the collapsing maps. Let $\vartheta\colon \pi_{r+m}(E^mX_n, E^mX_{n-1}) \longrightarrow \pi_{r+m-1}(E^mX_{n-1})$ be the connecting homomorphism. Then, $(E^mp')_*\colon \pi_{r+m}(E^mX_n, E^mX_{n-1}) \longrightarrow \pi_{r+m}(S^{r+m})$ is an isomorphism for $m \geqslant 0$ [1], and we define a homomorphism $\Delta\colon \pi_{r+m}(S^{r+m}) \longrightarrow \pi_{r+m-1}(E^mX_{n-1})$ by the composition $\vartheta\circ (E^mp')_*^{-1}$. By the definition, $\Delta(\iota_{r+m}) = E^m\theta_{n-1}$, where the same letter is used for a mapping and its homotopy class.

Let $h=h_m\colon \pi_{r+m}(E^mX_n)\longrightarrow H_{r+m}(E^mX_n;\ Z)\approx Z$ for $m\geqslant 0$ be the Hurewicz homomorphism and $h(n,\ m)$ the non-negative integer such that $Im\ h=h(n,\ m)$ $H_{r+m}(E^mX_n;\ Z)$. Then we have the following

Lemma 2.1.
$$o(E^m \theta_{n-1}) = h(n, m)$$
.

<u>Proof.</u> j: $(E^m X_n, *) \longrightarrow (E^m X_n, E^m X_{n-1})$ denotes the inclusion. Then, we consider the commutative diagram:

$$\pi_{r+m}(E^{m}X_{n}) \xrightarrow{j_{*}} \pi_{r+m}(E^{m}X_{n}, E^{m}X_{n-1}) \xrightarrow{\partial} \pi_{r+m-1}(E^{m}X_{n-1})$$

$$\downarrow h \qquad \qquad \downarrow h'$$

$$H_{r+m}(E^{m}X_{n}; Z) \xrightarrow{j_{*}} H_{r+m}(E^{m}X_{n}, E^{m}X_{n-1}; Z),$$

where h' denotes the relative Hurwicz homomorphism and the upper sequence is exact. From the cell structure of X_n , the lower j_\star is an isomorphism. By the relative Hurewicz theorem, h' is an isomorphism. This completes the proof.

According to [8], a representative element of Q_n (H) can be taken as $(x + jy, e^{i\pi t})$, where $x, y \in C^n$ satisfying $x + jy \in S(H^n)$ and $0 \le t \le 1$. Toda and Kozima defined $t_n \colon Q_n$ (H) $\longrightarrow Q_{2n}$ (C) by the equation

$$t_n[(x + jy, e^{i\pi t})] = [(x \oplus y, e^{2i\pi t})].$$

We define $t_n\colon \mathbb{Q}_n(H) \longrightarrow \text{ECP}^{2n-1}$ by the composition $p \circ t_n$, where $p\colon \mathbb{Q}_{2n}(C) \longrightarrow \text{ECP}^{2n-1}$ is the collapsing map. From the definition, the following diagram commutes for k < n:

where i and i', the canonical inclusions.

The following lemma is a reduced version of Proposition 2.5 of [8].

Lemma 2.3 (Toda-Kozima). The following diagram commutes up to homotopy:

$$\begin{array}{ccc} \mathbf{Q}_{n}(\mathbf{H}) & \xrightarrow{\mathbf{t}_{n}} & \mathbf{ECP}^{2n-1} \\ \downarrow \mathbf{j}_{n} & & \downarrow \mathbf{j}_{2n} \\ \\ \mathbf{Sp}(\mathbf{n}) & \xrightarrow{\mathbf{c}} & \mathbf{SU}(2\mathbf{n}), \end{array}$$

where c is the complexification map.

Let p: $Q_n(H) \longrightarrow Q_n(H)/Q_{n-1}(H) = s^{4n-1}$ for $n \ge 1$ and p': $ECP^{2n-1} \longrightarrow ECP^{2n-1}/ECP^{2n-3} \simeq s^{4n-3} \bigvee s^{4n-1}$ for $n \ge 2$ be the collapsing maps. Then,

by (2.2), there exists a mapping $t_n^*\colon S^{4n-1}\longrightarrow S^{4n-3}\bigvee S^{4n-1}$ for $n\geqslant 2$ such that the following diagram commutes:

Let p₂: $s^{4n-3} \lor s^{4n-1} \longrightarrow s^{4n-1}$ for $n \ge 2$ be the projection map. Then, we have the following

Lemma 2.5. $\deg t_1 = -1$ and $\deg (p_2 t_n') = (-1)^n$ for $n \ge 2$.

<u>Proof.</u> We define $g_n \colon S(H^n) \longrightarrow S(C^{2n})$ by the equation $g_n(x+jy) = x \oplus y$

for x, y ϵ Cⁿ. It is clear that g_n is a homeomorphism and $\deg g_n = (-1)^n$. By Lemma 2.3, $t_1 = g_1$ and $p_2 t_n' = g_n$ for $n \ge 2$. This completes the proof.

Hereafter the same letter is often used for a mapping and its homotopy class. Let $\gamma_n = \gamma_n(F) \colon S(F^{n+1}) \longrightarrow FP^n$ be the projection map. Let i: $ECP^{2n-1} \longrightarrow ECP^{2n}$ be the inclusion map. Then, we have the following

Proposition 2.6. $(-1)^{n+1} \text{E}_{\gamma_{2n}}(C) = \text{it}_n \omega_n(H)$.

<u>Proof.</u> By (2.2) and (2.4), the following diagram commutes for r = 4n + 3:

$$\pi_{r}(s^{4n+3}) \stackrel{p_{*}}{\longleftarrow} \pi_{r}(Q_{n+1}(H), Q_{n}(H)) \stackrel{\partial}{\longrightarrow} \pi_{r-1}(Q_{n}(H))$$

$$\downarrow^{t'_{n+1}*} \qquad \qquad \downarrow^{t_{n+1}*} \qquad \qquad \downarrow^{t_{n}*}$$

$$\pi_{r}(s^{4n+1} \bigvee s^{4n+3}) \stackrel{p'_{*}}{\longleftarrow} \pi_{r}(\text{ECP}^{2n+1}, \text{ECP}^{2n-1}) \stackrel{\partial'}{\longrightarrow} \pi_{r-1}(\text{ECP}^{2n-1})$$

$$\downarrow^{p_{2}*} \qquad \qquad \downarrow^{i_{*}} \qquad \qquad \downarrow^{i_{*}}$$

$$\pi_{r}(s^{4n+3}) \stackrel{p''_{*}}{\longleftarrow} \pi_{r}(\text{ECP}^{2n+1}, \text{ECP}^{2n}) \stackrel{\partial''}{\longrightarrow} \pi_{r-1}(\text{ECP}^{2n}),$$

where the mappings are canonical.

 p_* and p_*'' are isomorphisms p_* and p_* are isomorphisms p_* and p_* and p_* and p_* are isomorphisms p_* and p_* and p_* are isomorphisms p_* and p_* are isomorphisms p_* and p_* and p_* are isomorphisms p_* are isomorphisms p_* and p_* are isomorphisms $p_$

Remark 1. Owing to Proposition 2.6, it suffices to take $(-1)^{n+1}t_n\omega_n$ as λ_{2n} in Proposition 6.5.ii) of [6]. By Theorem 1.2 of [6] and Proposition 1.3, $o(\lambda_{2n})=(2n+1)!$ or $2\cdot(2n+1)!$. In the last section, we shall show that $o(\lambda_4)=5!$ (cf. Lemma 11.1 of [6]).

§ 3. Determination of the lower bound of $o(E^{m}\omega_{n-1}(H))$.

Let $v \in \tilde{K}(\mathbb{CP}^{2n-1})$ be the stable isomorphism class of the canonical line bundle over \mathbb{CP}^{2n-1} . We denote by $I_C \colon \tilde{K}(\) \longrightarrow \tilde{K}(E^2\)$ the Bott periodicity isomorphism. The following Lemma is well known (cf. Lemma 2.2 of [8]).

Lemma 3.1. $\Gamma_{C}(v) \in \tilde{K}(E^{2}CP^{2n-1})$ is represented by the adjoint of the composite of the canonical maps:

$$ECP^{2n-1} \xrightarrow{j_{2n}} SU(2n) \xrightarrow{i} U(2n) \xrightarrow{k} \Omega BU(2n) \, ,$$
 where k is the homotopy equivalence.

Hereafter, Z or the rational number field Q is taken as the coefficients of the homology or cohomology groups, unless otherwise stated.

Let $ch^k: \tilde{K}(\) \longrightarrow H^{2k}(\ ; \ Q)$ be the k-th Chern character and $ch = \Sigma_k ch^k$ the total Chern character. Let $\sigma \colon \tilde{H}^i(E) \longrightarrow \tilde{H}^{i-1}(\)$ be the suspension isomorphism. Then, as is well known, the following diagram commutes:

(3.2)
$$\begin{array}{ccc} \mathbb{K}(\mathbb{CP}^{2n-1}) & \xrightarrow{\mathbf{I}_{\mathbb{C}}} & \mathbb{K}(\mathbb{E}^{2}\mathbb{CP}^{2n-1}) \\ & & \downarrow \mathrm{ch} & & \downarrow \mathrm{ch} \\ & & & \mathbb{H}^{*}(\mathbb{CP}^{2n-1}; \ \mathbb{Q}) & \xrightarrow{\sigma^{-2}} & \mathbb{H}^{*}(\mathbb{E}^{2}\mathbb{CP}^{2n-1}; \ \mathbb{Q}) \,. \end{array}$$

We denote by y a generator of $H^2(\mathbb{CP}^{2n-1})$. It is also well known that

(3.3)
$$ch^{2n-1}v = 1/(2n-1)!y^{2n-1}.$$

Proposition 3.4. $o(E^{m}\omega_{n-1})$ is a multiple of (2n-1)! for $m \ge 0$.

<u>Proof.</u> The assertion is a direct consequence of Theorem 1.2 of [6] and Proposition 2.6. For the later use, we give another proof for even m.

By (2.4) and Lemma 2.5, t_n^* : $H^{4n-1}(ECP^{2n-1}) \longrightarrow H^{4n-1}(Q_n(H))$ is an isomorphism. So, $y' = t_n^* \sigma^{-1} y^{2n-1}$ is taken as a generator of $H^{4n-1}(Q_n(H))$. We choose a generator x of $H_{4n-1}(Q_n(H))$ satisfying y', x = 1, where y', y' denotes the Kronecker index.

Put $o(E^m \omega_{n-1}) = k(n)$. Denote by s: $\tilde{H}_i() \longrightarrow \tilde{H}_{i+1}(E)$ the suspension isomorphism. Then, by Lemma 2.1, there exists an element $\alpha \in \pi_{m+4n-1}(E^m Q_n(H))$ satisfying $h_m(\alpha) = k(n)s^m x$. By the definition of the Hurewicz homomorphism, $h_m(\alpha) = \alpha_* s^m \xi_n$, where ξ_n denotes a generator of $H_{4n-1}(s^{4n-1})$. So, we have $k(n) = \langle \sigma^{-m} y', \alpha_* s^m \xi_n \rangle = \langle \alpha^* \sigma^{-m} y', s^m \xi_n \rangle$. Choose a generator τ_n of $H^{4n-1}(s^{4n-1})$ satisfying $\langle \tau_n, \xi_n \rangle = 1$. Then, we have $\alpha^* \sigma^{-m} y' = k(n) \sigma^{-m} \tau_n$.

Put m = 2t and $u = I_C^t(Et_n)*I_C(v) \in \tilde{K}(E^{m+1}Q_n(H))$. Then, by (3.2), (3.3) and by the naturality of the Chern character, we have the following:

$$\begin{split} & \operatorname{\sigma ch}^{2n+t}(\operatorname{E}\alpha) * u = \alpha * \sigma^{-m} t_n^* \sigma^{-1} \operatorname{ch}^{2n-1}(v) = 1/(2n-1) ! \alpha * \sigma^{-m} y". \\ & \text{So, we have } & \operatorname{ch}^{2n+t}(\operatorname{E}\alpha) * u = k(n)/(2n-1) ! \sigma^{-m-1} \tau_n. \text{ As is well known, Im } \operatorname{ch}^{2n+t} \\ & = \operatorname{H}^{4n+m}(\operatorname{S}^{4n+m}; \ Z). \text{ Hence, } k(n)/(2n-1) ! \text{ is an integer. This completes the} \\ & \text{proof.} \end{split}$$

<u>Proof.</u> By Lemmas 2.3 and 3.1, $u' = (Et_n)*I_C(v) = (adj (k \cdot i \cdot j_{2n}(C)))_*(Et_n)$ = $(adj k)_*(Ec)_*(Ej_n(H))_*$

Let $\rho_C\colon BSp(n)\longrightarrow BU(2n)$ be the mapping induced from $c\colon Sp(n)\longrightarrow U(2n)$ and $k'\colon Sp(n)\longrightarrow \Omega BSp(n)$ be the canonical homotopy equivalence. Then, it is well known that $k\circ c\simeq \Omega \rho_C\circ k'$. So, we have $(adj\ k)_\star(Ec)_\star=(\rho_C)_\star(adj\ k')_\star$. Hence, $u'=(\rho_C)_\star(adj\ k')_\star(Ej_n(H))$ ϵ Im c'. This completes the proof.

As is well known, the following diagram commutes:

(3.6)
$$\begin{array}{ccc}
\widetilde{KSp}() & \xrightarrow{\mathbf{C'}} & \widetilde{K}() \\
\downarrow^{\mathbf{I}_{H}} & \downarrow^{\mathbf{I}_{C}^{4}} \\
\widetilde{KSp}(E^{8}) & \xrightarrow{\mathbf{C'}} & K(E^{8}),
\end{array}$$

where $\mathbf{I}_{\mathbf{H}}$ denotes the Bott periodicity isomorphism.

Proposition 3.7. If n is even and m = 0 mod 8, $o(E^m \omega_{n-1})$ is a multiple of $2 \cdot (2n-1)!$.

Proof. As is well known, the following diagram commutes:

$$\begin{split} \widetilde{\mathrm{KSp}} \, (\mathrm{E}^{m+1} \mathrm{Q}_n^{} (\mathrm{H}) \,) & \xrightarrow{\quad (\mathrm{E}\alpha) \, *} \, \widetilde{\mathrm{KSp}} \, (\mathrm{S}^{4n+m}) \\ \downarrow^{\mathrm{C}} & \qquad \qquad \downarrow^{\mathrm{C}} \\ \widetilde{\mathrm{K}} \, (\mathrm{EQ}_n^{} (\mathrm{H}) \,) & \xrightarrow{\quad (\mathrm{E}\alpha) \, *} & \widetilde{\mathrm{K}} \, (\mathrm{S}^{4n+m}) \,, \end{split}$$

and Im c = $2K(S^{4n+m})$ if n is even. So, by Lemma 3.5, (3.6) and by the proof of Proposition 3.4, $(E\alpha)*u = (E\alpha)*I_C^t(Et_n)*I_C(v) \in 2K(S^{4n+m})$ and $ch^{2n+t}(E\alpha)*u \in 2H^{4n+m}(S^{4n+m}; Z)$. Therefore, k(n)/(2n-1)! is an even integer. This completes the proof.

Remark 2. By the similar arguments, we have the following for $k \geqslant 1$ (cf. [7]):

- (1). $o(E^k \gamma_{n-1}(C))$ is a multiple of n! for even k.
- (2). $o(E^k \gamma_{n-1}(H))$ is a multiple of (2n)!/2 for even k. If n is even and $k \equiv 0 \mod 8$, $o(E^k \gamma_{n-1}(H))$ is a multiple of (2n)!.

§ 4. Proof of the theorem

To prove ii) of our theorem, we use the following [3]:

Theorem 4.1 (James). The stunted quasi-projective space $Q_n(F)/Q_{n-k}(F)$ is an S-retract of the factor space $G_n(F)/G_{n-k}(F)$ for $k \le n$. In particular, $j_{n\star}^S \colon \pi_i^S(Q_n(H)) \longrightarrow \pi_i^S(Sp(n))$ is a monomorphism for $i \ge 0$.

Now we are ready to prove the theorem. The assertion i) is a direct consequence of Propositions 1.3.i) and 3.7.

By Theorem 4.1, $j_{n-1}^S : \pi_{4n-2}^S(Q_{n-1}(H)) \longrightarrow \pi_{4n-2}^S(Sp(n-1))$ is a monomorphism. So, we have $o(E^\omega_{n-1}) = o(E^\omega_{n-1})$. Therefore, (1.4) and Proposition 3.4 lead us to the assertion. This completes the proof of the theorem.

Remark 3. We can give an improved proof of Theorem 1.2 of [6]. We use the first half of the proof of Theorem 1.2 of [6] and Remark 2.(1). We have

- (1). $_{0}(E^{k}\gamma_{n-1}(C)) = n!$ for $k \ge 1$.
- By (1) and Remak 2.(2), we have the following:
- (2). If n is even, $o(E^{k}\gamma_{n-1}(H)) = (2n)!$ for $k \ge 1$.

By Theorem 1.1 of [7] and by Lemma 2.1,

(3).
$$o(E^{\infty}\gamma_{n-1}(H)) = (2n)!/2 \text{ if n is odd.}$$

In this case, the Adams spectral sequence is used for the 2-primary stable homotopy of quaternionic and complex projective spaces [7].

§ 5. An example

An open problem is to determine the order of $\omega_n^{}(H)$ completely. The author hopes that an affirmative answer is given to the following

Conjecture.
$$o(\omega_{n-1}(H)) = (2n-1)! \underline{if} n \underline{is} \underline{odd}.$$

In this section, we determine the group structure of $\pi_{10}(Q_2(H))$ and we show that the conjecture is true for n=3. We use the following: $\pi_{11}(S^{10})\approx Z_2$, $\pi_{10}(S^7)=\{v_7\}\approx Z_{24}$, $\pi_{11}(S^7)\approx 0$, $\pi_{9}(S^3)\approx Z_3$ and $\pi_{10}(S^3)\approx Z_{15}$.

Example.
$$\pi_{10}(Q_2(H)) \approx Z_{5!} + Z_2 \text{ and } o(\omega_2(H)) = 5!$$

<u>Proof.</u> Let p: $(Q_2(H), S^3) \longrightarrow (S^7, *)$ be the collapsing map. Then, p_* : $\pi_7(Q_2(H), S^3) \longrightarrow \pi_7(S^7)$ is an isomorphism [1]. We choose a generator α of $\pi_7(Q_2(H), S^3) \approx Z$ such that $p_*\alpha = \iota_7$.

We consider the following commutative diagram:

where the mappings are canonical and the horizontal and perpendicular sequences are exact respectively.

 p_{\star} is a split epimorphism since $p_{\star}(\alpha v_7) = v_7$. So, we have $\pi_{10}(Q_2(H), S^3) \approx Z_{24} + Z_2$. By the commutativity of the above diagram, i_{\star} is a monomorphism and θ " is an epimorphism. Therefore, by the upper horizontal sequence, $\pi_{10}(Q_2(H)) \approx Z_{5!} + Z_2$. Hence, by Proposition 1.3.ii), we have $o(\omega_2) = 5!$. This completes the proof.

References

- [1] Blakers, A. L. and Massey, W. S., The homotopy groups of a triad. II, Ann. of Math., 55 (1952), 192-201.
- [2] James, I. M., Spaces associated with Stiefel manifolds, <u>Proc. London</u>
 Math. Soc., (3) 9 (1959), 115-140.
- [3] James, I. M., <u>The Topology of Stiefel Manifolds</u>, London Math. Soc. Lecture note., 24, Cambridge, 1976.
- [4] Mimura, M. and Toda, H., Homotopy groups of symplectic groups, <u>J. Math.</u>

 Kyoto Univ., 3 (1964), 251-273.
- [5] Morisugi, K., Stable self maps of the quaternionic (quasi-)projective space, to appear.
- [6] Mukai, J., The S¹-transfer map and homotopy groups of suspended complex projective spaces, <u>Math. J. Okayama</u> <u>Univ.</u>, 24 (1982), 179-200.
- [7] Segal, D. M., On the stable homotopy of quaternionic and complex projective spaces, Proc. Amer. Math. Soc., 25 (1970), 838-841.
- [8] Toda, H. and Kozima, K., The symplectic Lazard ring, <u>J. Math. Kyoto</u>
 Univ., 22 (1982), 131-153.
- [9] Walker, G., Estimates for the complex and quaternionic James numbers, Quart. J. Math. Oxford, (2) 32 (1981), 467-489.