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The Order of the Attaching Class of the Suspended

Quaternionic Quasi-Projective Space

By

Juno Mukai

§ 0. Introduction

In this note, F denotes the field of the complex numbers C or the field
of the quaternions H. We denote by FP the F-projective space of n F-dimen-—
sions and by Qn(F) the quasi-F-projective space. Gn () denotes the unitary

group U(n) or the symplectic group Sp(n) according as F is C or H. Let d be

the dimension of F over the field of the real numbers R and Sdn_l the unit

dn-2

sphere in F'. Let TI'I: S —> Gn-l (F) be the characteristic map for the

normal form of the principal G__, (F)-bundle over 7L Then, as is well

known ( [2], [3] and 9] ), Im T} = Q_, (F), precisely, the following

diagram camutes:

T
g2 By g ()
TN a1
G, (),

where j__, is the canonical reflection map. Q (F) = Q _; (F)\Un 4l g
n

Q,(© = E(CPil_l) , where E( ) denotes the reduced suspension and CP:}“

1 .
a
disjoint union of CP"! and { one point }.
Let w ;=W 7 (F) be the hamotopy class of T and p: Q€ —
Q ©)/Q © = Bcp™ L the collapsing map. In the previous paper [6], we
proved that the k-th suspension Ek (p*mn (C)) is of order n! for k = 0.

k
The purpose of this note is to examine the order of E w4 (H) .



Let a be an element of a homotopy group ’lTn( ) and Eae 'ﬂ'i( ) the stable

element of o. o(B) denotes the order of 8. Then, our result is the following

Theorem. 1i). o(Ekwn_l (H)) 2(2n - 1)! for k 2 0 if n is even.

ii). o(Bw_; () = (2n - 1)1 if n is odd.

Our method is essentially to use the K-theory. To examine olw ), we
use the Toda's theorem about the generator of Ton-1 (U)) [6] and the group
structure of m, ., (Sp(n)) [4]. To determine the lower bound of o(}:‘,kwn__l H),
we use the standard method of D. M. Segal [7] from the unstable viewpoint,
exactly, we use the Htﬁ/ewjicz homomorphism h: Trk+ 4n-1 (EkQn (H) — Hk +an-1 (Ean(
H); 2). A powerful tool is the Toda-Kozima's map En: Qn(H) —_— Q2n(C) (81.

Our result overlaps partially with the works of K. Morisugi [5] and G.
Walker [9].

The author wishes to express rhis sincere gratitude to Professor S. Sasao

for many advices given during the preparation of this paper.
§1. Determination of o(w _; (H)) for even n

First we recall the definition of the quasi-projective space and ﬁhe
reflection map. s(E® ) denotes the unit sphere in F. Qn(F) is the space
obtained from S(F) x S(F) by imposing the equivalence relation: (u, q) ~
(ug, g—lqg) for g € S(F) and collapsing S(Fn) x {1} to a point. The reflec-

tion map jn = jn(F) : Qn(F) — G (F) is defined as follows:
i (lu, @) (v) = v + u(g - <u, v

for u e S(Fn), ge S(F) and v ¢ Fn, where <u, v> = Z]ré:lﬁkvk for u = (gl,

’ un) and v = (vl, ooy vn).



Letz=vx+jy€ H, where x, y € C. By regarding x € C as x + jO0 € H, we
have the injection C (s H. Obviously, this induces the canonical maps in:
Qn (C) — Qn(H) and ir'lz U(n) —> Sp(n). From the definition, the following

diagram commutes:

i
0,(C) _n, 0 (H)
(1.1) v ljn ljn
U(n) 5 sp(n).

In the complex case, we can define the reduced reflection map [6]:

~

n-1
B =

R

=3, ECP Q,(©)/9, () — UMm)/U(1) = SUM).

n

By abuse of notation, we often use the same letter jn for the reduced case.

Lemma 1.2. :.L). If n is even, I "rr4n_l(Qn(H)) —->1r4n__l(Sp(n)) is an
epimorphism.

ii).Ifni_s@,Imjn*= (sp(n)), where a = 1 or 2.

M gn-1

201 1o the collapsing map,

Proof. Let p: Q2n(C) —_ Q2n(C) /Ql(C) = ECP
k: Qn(H) — Q2n(H) and k': Sp(n) —> Sp(2n) the inclusiocn maps, respective-

ly. Then, by {(1.1), the following diagram commutes for r = 4n - 1:

2n-1 donx k
r (BCP ) B (0, (€©)) —= w1 (Q, () «E-m (0 (H))
lizn ©)« J«j 2n(©) « lj 2n* ijn*
il .
r (SUem)  = w (Un) —2s (sp(2n) S m (spn) -

2n-1

p* is an epimorphism since Q'2n(C) = ECP V4 Sl. By Theorem 4.1 of [6],

~

Jon
isomorphisms respectively. As is well known, ién* is an isomorphism if n is

(C), is an epimorphism. So, j, (C), is an epimorphism. k, and k; are

even and Im il =2 (sSp(2n)) if n is odd. Therefore, the above commuta-

2n* Tan-1

tive diagram leads us to the assertion. This completes the proof.



Proposition 1.3. 1i). o(wn_l) = 2+(2n - 1)! for even n.

1 a"
ii). olw ;) 3//5’2/n - 1): for odd n, where a is the

same number gsi'ﬂlemma 1.2.

Proof. Let p: (Qn(H), Q1 (H)) — (S4n—l, ¥ ) be the collapsing map. We

consider the natural homomorphism between the exact sequences for r = 4n - 1:
i} ) , :
1 (Q (H) % 7w (@ ®), o ;1) ——=>T 1 Q _®) —T__ (0 @)

J«jn* lp* ljn—l* Ljn*

T pm)  Rhy ow ™ A n spe1)) —> 7 (sp@m)),

where the mappings are canonical and 3 and A' are the connecting homcmorphisms.
As is well known, Tr4n_l(Sp(n)) ~ Z, 1r4n__2(Sp(n)) ~ 0 and TTm(Sm) = {1m} A
Z. By the Blakers-Massey theorem [1], p, is an isomorphism. By the definition,

= A where A = dop. . So, by Theorem 2.2 of [4], 3,1+ is an epi-

“n-1 4n—l) '
morphism and the following holds:

(1.4) Tynop (SPM-1)) = {3 a0 13 x 7 (2n-1)+ Where b =1 for odd n
and b = 2 for even n.
By the exactness of the upper sequence, o(wn__l) is equal to the order of the
cokernel of j;. Hence, by (1.4), Lemma 1.2 and by the above commutative dia-

gram, we have the assertion. This completes the proof.
By inspecting the above proof, we have the following

Proposition ”1.5. j Tan-1 (Q_n(H)) —_— 1r4n_l(Sp(n)) is an epimorphism if

n**

and only if o(w ;) = b-(2n - 1)!, where b is the same number as in (1.4).




2. Some fundamental facts

For n > 0, Xn denotes a connected finite CW complex such that X0 = {¥}

anan=eO\/er'\/' ...\ e forn> 1. Herer=rn=dn—€with€=00r

land d - 2 2. en_l: Sr—l — Xn—l denotes the attaching map, and so Xn =

r — n _ — -
Xn_l\/en_le . For example, X, =FP (d=2or4ande =0) and X = Qn(H)
(d=4ande =1).

Iet p: Xn —> Xn/xn—l = s" and p': (Xn, Xn-—l) —> (Sr, #*) be the collaps—

E"X

1,1_1) be the connecting

r+m-1 (

homomorphism. Then, (Emp')*: 7rr+m(Ean, E'mxn__l) —eﬁﬁm(srﬁ“) is an isomor-

ing maps. Let 3: ﬂr+m(Ean, men-l) —> T
. . . r+m,
Z :

phism for m > 0 [1], and we define a homamorphism A Wr+m(s ) _ﬁ\'ﬂrﬂn—l(
men_l) by the composition ao(Emp');l. By the definition, A(1_, ) = Emﬁn_l,
where the same letter is used for a mapping and its homotopy class.

Iet h=hz:n (EX) —>H , (E™ ; Z)~ 2 for m > 0 be the Hurewicz

m r+m n r+m n

homomorphism and h(n, m) the non-negative integer such that Im h =-h(n, m)

H r+m(men; Z). Then we have the following
Lemma 2.1. o(Emen_l) = h(n, m).

Proof. j: (E“B(n, *) —> (Ean, Ean_l) denotes the inclusion. Then, we

consider the commutative diagram:
Ja s
Trr+m(Ean) m (E"%, men-l)» Trim-1 (men—l)

|n |n*
] 3 .
Hr+m(Ean, z) a5 H_(E'X, EX ;i 2),

e
where h' denotes the relative HurTijicz homomorphism and the upper sequence is

exact. From the cell structure of Xn' the lower j, is_an isomorphism. By the

relative Hurewicz theorem, h' is an isomorphism. This completes the proof.



According to [8], a representative element of %(H) can be taken as

(x + jy, elnt), where x, vy € ct satisfying x + jy € SHM and 0 € t < 1. Toda
and Kozima defined En: Q H) — 0, (C) by the equation
L+ 3y, €79 = (x@y, 2.

. 2n-1 sy
We define t: Qn(H) — ECP by the composition potn, where p: an(C)

— ECPZn_l is the collapsing map. From the definition, the following

diagram commutes for k < n:

O (H) _i> gcp2k1
(2.2) li li'

tn 2n-1
Qn (H) —_— ECP ’

N
where i and i’ «the canonical inclusions.

The following lemma is a reduced version of Proposition 2.5 of [8].

Lemma 2.3 ( Toda-Kozima ). The following diagram commutes up to

homotopy:

t
0, ) 0, pepil

ljn lj 2n

sp(n) <>  su(zn),

where c is the complexification map.

/

Let p: Q () —> 0 (0)/Q, ;@ = s forn> 1 and p's Ecp? L

gcp2il /Ecpzn—3 = S4n—3 \V4 s L t0rn> 2 be the collapsing maps. Then,



in-1 -1

by (2.2), there exists a mapping t': S+ — s\ 8" for n > 2 such

that the following diagram commutes:

t
n

o ®m —2 pep?1

(2.4) \p ip
a1 & 4
gin- n S »n—3\/ S4n-—l.
Let p,: st 3 gl il e s 0 ke the projection map. Then,

we have the following

Lerma 2.5. deg t, = - 1 and deg (p,yt!) = (-1)" for n > 2.

1

Proof. We define 9, S(Hn) —_— S(Czn) by the equation

g (x+3y) =x@y

for x, y c. It is clear that 9 is a homeomorphism and deg 9, 1.

By Lemma 2.3, t and pztl'1 * g, for n 2 2. This completes the proof.

1791

Hereafter the same letter is often used for a mapping and its homotopy

class. let Yy = Yo (F): S(Fn+l) —> FP" be the projection map. Let i: ECPzn—l

_ ECPZI1 be the inclusion map. Then, we have the following

. n+ .
Proposition 2.6. (-1) ]Evzn c) = it w, (H).

Proof. By (2.2) and (2.4), the following diagram commutes for r = 4n + 3:



n T P m o @, 0@ L o)
Cnt1x ltn+1* (A
™ (S4n+l\/ S4n+3) é_pi'L__ m (ECP2n+l, ECPZn—-l) _3_;_ T (ECPZD_]‘)
|Pos |1k 114
n ™) <P n @™, ™ B n | mce®™,

£ [1]. We note that

-1 o) il—l ’
wn(H) = 9p, (14,,3) and EY,,(C) = 3"py “(1, .3). So, by Lemma 2.5 .and the

above commutative diagram, we have the assertion. This completes the proof.

Remark 1. Owing to Proposition 2.6, it suffices to take (—l)n‘*'ltncun as

A, in Proposition 6.5.ii) of [6]. By Theorem 1.2 of [6] and Proposition 1.3,

2n
o(AZn) = (2n + 1)! or 2+ (2n + 1)!. In the last section, we shall show that

o(A4) = 5! { cf. Lemma 11.1 of [6] ).

5 3. Determination of the lower bound of o(E'w__, (H)).

let v € R(CPzn_l) be the stable isomorphism class of the canonical line

bundle over CPzn—l. We denote by Ia: R() — F((E2 ) the Bott periodicity
isomorphism. The following Lemma is well known ( cf. Lemma 2.2 of [8] ).

Lemma 3.1. "IC (v) € R(Echzn—l) is represented by the adjoint of the com-

posite of the canonical maps:

- 3 i
ep2n-1 . gyeon Es uen K qsun),

where k is the homotopy equivalence.




Hereafter, Z or the raticnal number field Q is taken as the coefficients
of the homology or cohomology groups, unless otherwise stated.

Let ch™: K( ) —> HN( ; Q) be the k~th Chern character and ch = I ch® the
total Chern character. Let o: Hi E) — ﬁi-l( ) be the suspension isomor-

phism. Then, as is well known, the following diagram commutes:

I
(@1 C R (2cp2 L
(3.2) lch lch
2n-1 g2 2 _on-1
H* (CP ; Q —— HXE"CPT T; Q).

2n-1

We denote by vy a generator of H2 (cp ). It is also well known that

2n-1

v = 1/(2n-1) 192 L,

(3.3) ch
Proposition 3.4. o(Emwn_l) is a multiple of (2n - 1)! for m > 0.

, 0
Proof. The asserti%)’/is a direct consequence of Theorem 1.2 of [6] and

Proposition 2.6. For the later use, we give another proof for even m.

(2.4) and Lemma 2.5, t*: HP L @Eep™ ) 5 5% Lo @) is an isomor-
By n
phism. So, y' = t;o_lyzn—l is taken as a generator of H4n_l (Qn (H)) . We choose

a generator x of H, 4 Q, (H)) satisfying <y', x> = 1, where < , > denotes the

Kronecker index.

bPut o(Emwn_l) = k(n). Denote by s: Hi( ) — Hoq (E ) the suspension iso-
morphism. Then, by Lemma 2.1, there exists an element a € Trm+4n-l(Ean (H))

satisfying hm(a) = k(n) . By the definition of the Hurewicz homomorphism,

4n-ly o e have k(n)

in-1

hm(a) = a*smin, where £ denotes a generator of H, (s

S4n—l

( )

= <0-my' ) on*smgn> = <cx*0-my' ; sm£n>. Choose a generator T, of H
- -m,
satisfying <Tr En> = 1. Then, we have a*o my' = k(n)o T,
Put m = 2t and u = IS (Bt )*I(v) € RE™Q (#)). Then, by (3.2), (3.3) and
by the naturality of the Chern character, we have the following:



¥y
Y

c;ch2n+t (Ea)*u = a*g | t*o lch2n -1 (v) = 1/(2n-1) !a*c_my'.
So, we have ch2n+t (Ea)*u = k(n)/(2n~1) !0 L lT . As is well known, Im ch?‘m‘t
= H4n+m(s4n+ml_ Z). Hence, k(n)/(2n-1)! is an integer. This completes the
proof.

Lemma 3.5. (Etn) *IC (v) belongs to the image of the complexification

homomorphism ¢ Kf\S/p(EQn(H)) —> R(EQ, (1))

Proof. By Lemmas 2.3 and 3.1, u' = (Etn)*IC(v) = (adj (koionn(C)))*(Etn)
= (adj ), (Be), (B3 (H)). |

Let Pt BSp(n) — BU(2n) be the mapping induced from c: Sp{n) — U(2n)
and k': Sp(n) —> (Bsp(n) be the canonical homotopy equivalence. Then, it is
well known that kec = Qpcok' . So, we have (adj k), (Ec), = (pc)*(adj k') .-

Hence, u' = (pc)*(adj k')*(Ejn(H)) € Im c'. This completes the proof.

As is well known, the following diagram commutes:

Kp() -5 R()
(3.6) b lzg

~ 8 c! 8

KSp(E™ ) —— K(E" ),

where IH denotes the Bott periodicity isomorphism.

Proposition 3.7. If n is even and m = 0 mod 8, o(Emmn_l) is a multiple

of 2-{2n - 1)1

Proof. As is well known, the following diagram commutes:

K E™ o ) —EXT KSp (s

2 g
K(EQ_ () (B * pgiTmy

- 10 -
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antm, .. .
and Im c = 2K(S o m)__ if n is even. So, by Lemma 3.5, (3.6) and by the proof of

4n+m 2n+t

Proposition 3.4, (Ea)*u = (Ea)*Ig(Etn)*IC(v) e 2K (S ) and ch (Ea)*u ¢

4ntm , 4nH
2H (s™0m. gy . Therefore, k(n)/(2n-1)! is an even integer. This completes

the proof.
Remark 2. By the similar arguments, we have the following for k > 1 ( cf.
(71 ):
(1). o(E%y__,(©) is a multiple of n! for even k.
(2). o®y__, ) is a multiple of (2n)1/2 for even k. If n is even and’
k 2 0med 8, o(Ekyn_l (H)) is a multiple of (2n)!.
§ 4.  Proof of the theorem

To prove ii) of our theorem, we use the following [3]:

Theorem 4.1 ( James ). The stunted quasi-projective space Qn(F) ’/Qn-k (F).

is an S-retract of the factor space G (F)/G _ (F) for k < n. In particular,

ji*; n?(Qn(H)) — ﬁi (Sp(n)) is a monamorphism for i > 0.

Now we are ready to prove the theorem. The assertion i) is a direct con-~
sequence of Propositions 1.3.i) and 3.7.
.S S S .
By Theorem 4.1, Jp-1#° Tgn-2 (Qn—l (H) —> Tan-2 (Sp(n-1)) is a monomor-
phism. So, we have o(Emmn_l) = o(Emjn_l*mn_l). Therefore,. (1.4) and Proposi-

tion 3.4 lead us to the assertion. This completes the proof of the theorem.

Remark 3. We can give an improved proof of Theorem 1.2 of [6]. We use the
first half of the proof of Theorem 1.2 of [6] and Remark 2.(1l). We have
k -
(). oEy,_1(©)) =n! for k > 1.
T
By (1) and Remak 2.(2), we have the following:

(2). If n is even, o(Ekyn_l(H)) = (2n)! for k > 1.

- 11 -
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By Theorem 1.1 of [7] and by Lemma 2.1,
(3). o®y,_;(H) = (20)1/2 if n is odd.
In this case, the Adams spectral sequence is used for the 2-primary

stable homotopy of quaternionic and complex projective spaces [7].
§ 5. An example

An open problem is to determine the order of W, (H) completely. The author

hopes that an affirmative answer is given to the following
Conjecture. o(wn_l(H)) = (2n - 1)! if nis odd.

In this section, we determine the group structure of 10 (Q2 (H)) and we
show that the conjecture is true for n = 3. We use the following: nll(Slo) I

7, _ . Ty 3, 3y L
Zos T\'lO(S ) = {\)7} X Loy wll(s )~ 0, Trg(S )~ Z, and TTlO(S ) ~ Z)5-
Example. ﬂlO(QZ(H)) o~ Z5! + 22 and o(wz(H)) = 51,

Proof. Let p: (Q2 (H), S3) _ (S7, %) be the collapsing inap. Then, p,:
. (Q2 (H), S3) —> (S7) is an isomorphism [1]. We choose a generator o of

3
1r7(Q2(H), §7) = Z such that p,a = 1.

Sp(2) is regarded as the cell camplex Q, (H) \/ e’3. Iet p': (Sp(2), Q,(H))

. - 1 .
—> (Slo, %) be the collapsing map. Then, py: TTn(Sp(Z), Q2(H)) —> Trn(s 0) is
an isomorphism for n < 11 [1].

We consider the following commutative diagram:

- 12 -




T 1 (80 (2), 53)
B\

TTll(Sp(2), Q2(H)) = Trll(Sp(2), QZ(H))
Tz

J2 b i

3, i ‘ i 3. 3" 3
(s7) ——*—)le(QZ(H)) ——*%WIO(QZ(H), s7) —-—>w9(s )

0

Mo .
1Z3
|| |3 |Ps |

1o (8) —> m, (s0) SEs 0 (sp(2)) Rk 1 sy L 1) — r_(sp(2))
11 10 10'°P 10 7 Mg 9 '\oP ’

2 2 N * 3 R

0 le l ZS! L ‘n’lO(Sp(Z) , S7) 0

o] Trlo(Sp(Z), QZ(H))
ﬂ.

where the mappings are canonical and the horizontal and perpendicular sequences
are exact respectively.

(\‘l i )
p, is g splf\f epimorphism since p, (oc\)7) = V.. So, we have 10 (Q2 (H), S3) ~

Z., + Z,. By the commutativity of the above diagram, i, is a moncmorphism and

24 2
3" is an epimorphism. Therefore, by the upper horizontal sequence, Trlo(Q2 (H))
;«,ZS' + 22. Hence, by Proposition 1.3.ii), we have o(wz) = 51. This completes

-the proof.

- 13 -
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