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I. INTRODUCTION

The phenomenon of chaos has been the subject of intense
interest in the ]asf few years. It is now recognized as a common
phase of nonlinear dynamical system in addition to the conventional
phases of stationary equilibrium and periodic (or gquasi-periodic)
oscillation. Since lkeda et al‘l have predicted chaotic behaviors
in an optically bistable system, many theoretical and experimental
studies have been'made‘2—5 Optical system is a suitable material
to study nonlinear phenomena including chaos because it has
tractable theoretical models and precise experiments are possible.
If neccessary, we can provide moderate complexities to‘it.é’?
Along this line, we have proposed an optical system which utilizes
interactions between right- and IeFt—éircular1y polarized light
beams through J = 1/2 to J = 1/2 transition.8 We have shown that
symmetry breaking and optical tristability are possible for this
system. Since then, various kind of phenomena have been
predictedd’9 and some of them have been demonstrated
experimental]y.io

Recently we proposed a new version of such polarization—
related bistable system that utilizes the optically-induced Faraday

effect and needs no optical cavity.11 We also performed the

experiment by using a sodium cell and a multi-mode dye laser tuned
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to a wing of the D1 line.12 An interesting feature of the system
is that it exhibits the most typical pitchfork bifurcation which
breaks the polarization symmetry. Namely the symmetry breaking
bifurcation is of a supercritical type, while in the tristable
systemg it is of a subcritical type. In this paper we investigate
on the delay induced chaos in this optical system. When we
increase the input light intensity passing over the first
bifurcation, chaoic state having polarization asymmetry appears.
If we increase the intensity still more, fully-developed symmetric
chaos is reached. Thus we are interested in the bifurcation which
lies between those two states. As we will see later, the symmetry
recovering occurs through a sudden change of the chaotic

13

attractors. Recently Grebogi et al. have introduced a new class
of bifurcation named ‘crises of chaos', where the size of chaotic
attractor suddenly changes. We’ll show that in our case the
symmetry is recouered through the crisis.

In Sec. 11, we show the setup of the system and derive the
system equation which is a one dimensional difference-differential
equation having symmetry with respect to the exchange of two
circular polarizations. In Sec. IIl, we discuss on a one
dimensional map model and show a simp]e'example of symmetry
recovering crisis. In Sec. IV, we describe the experimental setup
of electronic circuit to simulate the optical system. Iﬁ the
experiment we observe three distinct types of symmetry recovering
crises. In Sec. V, we introduce a two dimensional map model to
explain the experimental results. Although the model séems to be
oversimplified to approximate our system in infinite dimensional

space, it can reproduce all of the three types of crises. Ue

present the strange attractors near crises for each type, and



discuss how they recover the symmetry. As we will see, unstable
fixed points play important roles in crises. Finally, we summarize

our results and discuss the remaining questions.

I1. THE SYSTEM EQUATION

- We consider an optically bistable system shown in Fig. 1. It
is largely the same as the one in Refs. 11 and 12 except that a

delay in the feedback is introduced by taking a large distance L
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Fig. 1. Schematic illustration of the optically bistable system without an
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optical cavity.

between the cell and the mirror {M). Following the model adopted
8,11,12

for the previous studies, we consider spin—-1/2 atoms which
are optically pumped by the incident and the reflected light beams
which are tuned to the wing of the resonance line. The state of
the ensemble of atoms can be characterized by the magnetization
component Mz along the optical axis, which is proportional to the
population difference between m, = 1/2 and m, = -1/2 sublevels in

the ground state. The time evolution of Mz is described by the

Bloch equation:
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325 = - (T + I, + I_)Mz + (I, - I_)Mo, (1
where T is the relaxation rate of the magnetization and I, are the
o, light intensities which are normalized as to give pumping
rates. If I, (I_) is large enough compared to I_ (I)) and r; all
atoms are oriented along +z (-z) direction and the maximum
polarization Mz = MO (*NO) is attained.

The absorption coefficients aivand the wavenumber k; for o,

light are determined by the normalized magnetization component m_ =

MZ!NO as
@, = al{l F mz), (2)
ki = ko + (1l ¥ mZ), {3)

where a and kv are the absorption coefficeint and the incremental
wavenumber for the unpolarized (mz = 0) medium respectively, and kO
is the wavenumber in vacuum. .In the dispersion regime we can
neglect the absorption losses.

The polarization plane of the linearly-polarized incident
light is rotated by an angle © when the difference between k+ and
k_ exists (Faraday rotation). If we represent the incident light

\

field as EI = 4Tbx, the transmitted field ET is given by

E; = Jl‘ou cos & + y sin 9), €a)

O(t) = (k_’— k172 = mz(t)R], \ (3>
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where 1 is the length of the cell, and x and y are the unit
vectors.

The transmitted light is reflected by the mirror M set at a
distance L and is fed back to the cél]‘ Thus the feedback is
delayed by the amount tp = 2L/c. In the feedback path, a A/8-
plate is inserted whose optic axis is oriented to the x axis. ‘By
its action, the polarization state of the light fed back to the

cell becomes

(6)

I = RIL[C1 % sin 20(t - t

~ A~

where e, = (-x =% i;)/Jf and R is the reflectivity of the mirror.
The o, components of the reflected light suffer complementary
modulations according to sin 28(t —‘tR). Experimentally the
polarization state of Eé can be observed by monitoring the output
light transmitting through the mirror M and an auxiliary A/8-
plate. We can also monitor the polarization state ET by sétting
the fast axes of two A/8-plates to form right angles. From Egs.

(7) and (5) we have the light intensities in the cell
Ii = I0 [1 £ R sin 2K1mz(t - tR)]. (8)
Substitution Eq. (8) into Eq. (1) gives the system equation:?

dm
—Z = - (T + 2I.0m () + RI.sin 2xIm (t — t.). (9)
0" =z 0 z R

dt

Changing the time scale by t' = v-i(r + 210)t and introducing a new

variable X(t') = ZRTmZ(t), we have a normalized form!

-5 -
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= -X{t’) + u sin X(t'- tR'), (10)
dt’

where u = 26IRIG/(T + 2I) and £5° = v N(T + 2I)tp. In the case T
>> IO’ ¥ is proportional to IO and tR' is independent of IO' In
the experiment we éan vary tR'r by changing the length L or the
relaxation rate I'. Hereafter we drop the primes in t° and tR'.
When oy = 0, Eq. (10) is an ordinary differential equation in one
dimension, while in the limit tp >> 1, the system can be described
by a difference equation as described in the next séction.
Therefore the parameter th represents whether Eg. {10) is close to
a difference equation or to a differential equation.

Note that Eq. (10) is invariant under the transformation X »* -
X, which corresponds to the exchange of the roles of the spin-up

and —down atoms, and the right— and left-circular polarized light.

I11. THE OME DIMENSIONAL MAP MODEL

In the limiting case th >> 1, we can formally reduce Eq. (10)

to the difference equation:

X = u sin Xn, (11

n+l

which defines a i1teration of one dimensional map. As is well

2,3,14 this equation give an adequate qualitative prediction

known,
for the bifurcation structure for Eq. (10) with tp¥ > 1.

Figure 2 shows the bifurcation diagram for Eq. (11), For u <
Ug = 1, there exists only one stable fixed point X = 0. At u‘= ¥g
a pitchfork bifurcation occurs at which the solution X = 0 becomes

unstable and symmety breaking transition takes place. This

-6 -
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Fig. 2. Bifurcation diagram for the map, Eq. (11). At u = =1, a

symmetry breaking bifurcation occurs. For u > Ug» only the negative branch
is pictured. The positive branch can be obtained by the transformation X 3 -

X. At u = “(0)’ a symmetry recovering 1s seen.

symmetry breaking can be seen also for the case tpy = 0.11’12 Ue
pictured in Fig. 2 only the negative branch after thé bifurcation.
As u increases, each asymmetric branch undergoes peridd doublings
followed by chaos. For u < gy the chaotic orbit is confined to
the regions X > 0 or X < 0, namely, the output state is chaotic but
still elliptically polarized to either direction. At u = Yegy? the
chaotic band suddenly doubles its width. There the two oppositely
polarized bands collide to form a single band. Thus the symmetry
broken at u = Hq is recovered at u = LTI

The sudden change may be viewed as "crisis’ of chaos named by
Grebogi et 33'13 The crisis occurs when a strange attractor
collides with a coexisting unstable fixed point or periodic orbit.

In our case the situation is somewhat degenerate due to the

symmetry, namely, a strange attractor collides with an unstable

-7 -
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(a) \ i Fig. . Waveforms of Eqg.
(11) for (a) u = 3.11

: {before the crisis) and (b)

o [ b= 3.17 (after the

Xn° , 250 crisis). Bar graph of X
-3 ; as a function of n for 375

iteration after

0 378 preiteration.
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fixed point X = 0 and the other coexisting strange attractor
simul taneously. We call the phenomenon ‘"symmetry recovering
crisis”,

Figures 3(a) and (b) show examples of chaotic orbitQIFor cases
before (u S u(o)) and after {(u Z “(0)) the crisis. The short time
behaviors are the same for both cases, but in the latter crossover
to the other po]arized state occurs sometimes. According to Ref.
13, the average lifetime Tau of each polarized state is estimated

as
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B ~1/2
Tau ~ {u u(O)) . (120

We confirmed the estimation numerically.
IV.‘SIMULATION BY ANALDG CIRCUIT

In order to see how the symmetry recovering crises for Eq.
(10) appear we constructed an analog circuit which simulates Eq.
(10). Figure 4 shows the experimental setup. The nonlinear

3

function sin X in Eq. (10) is approximated by X — X° and realized

by two analog multipliers (Intersil ICL8013) and an operational

AMPLIFIER DELAY LINE tg

—{>—>— A-D |BUFFER| D-A

X X(t-tg)
LOW-PASS FILTER NONLINEAR CIRCUIT

Y X - X3

RECORDER

g

Fig. 4. Experimental setup. The analog circuit simulates the difference-

differential equation (10).

amplifier. The delay tR is given by a digital delay line equipped
with a 12-bit A-D, a D-A converters, and a 4096-word buf?er. The
cutoff frequency ¥ of the low-pass filter is set at 2 Hz when we
record waveforms on a strip chart recorder. We can conveniently

find bifurcation points or crises on a CRT instead of the recorder

_9_.,
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by setting ¥ ~ 10° - 103 Hz and shortening tR correspondingly.

By changing th, we could find three distinct types of symmetry
recovering crises. We named Type I, II, and 11 according to the
order of the values tR for which each type was observed. The

critical wvalue u for crisis decreases as t.¥ increases.
(0 R

Tzeevl: Before the crisis, rather regular pulsing is observed
{(Fig. 5{a)). Ve can see damped oscillations near X = 0 between the
pulses, whose durations are different from pulse to pulse. Such
oscillation is not observed when u is far below uio) and appears as
u approaches Yy After the crisis (Fig. 5§b)), the crossover to
the other polarized state neccessarily occurs through the damped
oscillation. Thus the oscillation may be viewed as a precursor for

the crisis and also as a crossover transient.

Iype 11: The waveform before the crisis (Fig. 6(a)) is fairly

random. The bursts of periodic oscillation are precursors for the
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Fig. 5. Waveforms (a) before and (b) after the symmetry recowvering crisis

.

of Type I. Parameters: tp = 0.41 s, v = 2.0 Hz, (a) u = 4.26; (b) u = 4.38.
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Fig. 6. Waveforms (a) before and (b) after Type 1l crisis. Parameters:

tp = 2.05 s, ¥ = 2.0 Hz, (a) u = 2.96; (b) u = 3.02.
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Fig. 7. Waveforms (a) before and (b) after Type 111 crisis.

tR =4.10 s, v = 2.0 Hz, (a) u = 2‘77;,(b) uw = 2.79.
crisis. They appear randomly and their duration is also random.

After the crisis (Fig. 6(b)), the crossover occurs through the

burst of oscillation.
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Type 111: At a glance there seems to be no differences between
Figs. 7(a) and 7(b). However tHe waveform in Fig. 7(a) shows
period-4 chaos which has an asymmetry with respect to X; the lower
boundary is flat while the upper is not. In the middle of Fig.
7(b) we can see a crossover. No marked precursory phenomena nor

crossover transients are seen For‘this type.
V. THE TWo DIMENSIONAL MAP MODEL

By the analog circuit simulation we have confirmed symmetry
recovering crises exist for Eq. (10), as predicted by the one
dimensional map model. However, the waveforms at the the three
types of crises were very different from that for the one
dimensional map. In this section we introduce a two dimensional
difference equation and show the three types of crises occur for
the equation with appropriate values dF parameters.,

We formally descretize Eq., (10) as

n+l n_ _ _
¥ = =X, * (X __\)» (13)

where N is an integer, {t = tRfN, Xn = X{ndit), and F(X) = X(1 -
Xz). By introducing a parameter a = yldt, we obtain the following
{N + 1)-dimensional difference equation:

Xn+1 = (1 - G)Xn + auF(Xn_N), 7 (14)

In the limit a » 0, N and tR = constant, Eq. (14) appfoximates the
differential equation (10) with tR = 0, For the case a = 1, Eq.

(14) reduces to the one dimensional difference equation (11). So @

..12...



is a parameter which connects a difference equation and a
differential equation as th does in Eq. (10).
Here we crudely set N = 1 in Egq. (14) and obtain a two

15

dimensional difference equation:

Xn+1 = (1 - G)Xn + auF(Yn), | (15a)
Yn+1 = Xn, (15b)
where Yn = xn—l' The equation is invariant under the

transformation (X, Y) » (=X, -Y).

Surprisingly we could find the three types of crises in this
oversimplified equation. In Figs. 8, 9, and 10, we show the
waveforms near the cfises‘ The clear correspondences to Figs. 5,
6, and 7 are seen. Espeéia]ly the same precursors and crosséver
transients appear for Types I and II. Type I was found for smaller
values of a (near differential-equation limit), Type 111 was for
o S 1 (near difference equation limit), and Type II was in the
middle. The order is consistent with the results in the previous
section.

As described in Sec. I1I, for the one dimensiona] map, the
symmetry crisis is undergone when a strange attractor collides with
an unstable fixed point and the other strange attractor. Here we
investigate fhe situation for the two dimensional cases. Figure
11, 12, and 13 show the strange attractors near the crises of Type

I, 11, and 11l respectively.

Type 1I: Figure 11(a) shows the strange attractor just before
the crisis. The other coexisting attractor is obtained by the

transformation (X, Y) 2 (=X, -¥). The two limit-cycle like

..13_
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(a) 1’%&&% Fig. 8. Calculated

of . _ 250 waveforms (a) before and
. (b)) after Type I crisis.
Graph of Xn of Eq. (15) for

750 iteration after

preiteration. Parameters:

"

a 0.1, (a)> u = 10.24; (b)

u 10.30.
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attractors are about to touch each other near the origin. A round
trip of the cycle forms a pulse in Fig. 8. At u = gy two
attractors are merged and for u S Uegyr @0 orbit on an attractor
can go over to the other.

Figure 11(b) is an enlargement of part of Fig. 11(a). The two
attractors are clearly separated. The regular structure of the
attractors is a reflection of the existence of a fixed poiﬁt (0,0)
of Eq. (15). By the stability analysis, we can see that the
eigenvalues Pys Po of the linearized map at (O,d) satisfy the

relations: -1 < Py = -0.66 < 0, 1 < Py = 1.56. The corresponding

~ 14 -



Fig. 9. Calculated
250 waveforms (a) before and

(b) after Type 11 crisis.

Parameters: a = 0.5, (a)

p 500 v = 3.54; (b) u = 3.57.
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_) ~ - * ~ A .
eligenvectors are Uy = -0.66x + vy, Uy = 1.56x + y. According to the

classification of the fixed points in Ref. 15, the point (0,0) is
1

for this parameter values. To simplify the situation, we

(2)

DR

= ToT where T is a map defined by Eq.
(2) 2

consider a composite map T

(15). The point is a saddle (D2) for T
2

Po e We use schematic illustrations in Fig. 14 to give general

since 0 < Pq < 1K<
discussions. The point S is a saédle, and Cs and Cu are the stable
and unstable invariant curves respectively. The eigenvectors 31

> » .
and u, are tangent to Cs and CU at S. Uhen u < Yoy (Fig. 14(a)>,

Cs is also the boundary separating the basins of attraction for the

- 15 -
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Fig. 10. Calculated
d 250 ’
0 waveforms {(a) before and
-1 (b) after Type Ill crisis,
1| Parameters: a = 0.85, (a)
500
Xno| W= 2.944; (b) u = 2.946.
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two attractors. The region Rl’ which is mapped from somewhere in
the attractor, is mapped to RZ’ to R3, .es s successively, and at
last repelled back along Cu' When the crisis is reached, R1
touches the boundary Cs’ as a result, Ri (1 = 2;3,..‘) touch Cs and
R, touches to S. As seen in Fig. 14(b), for Q Z gy points in R1
over CS are repelled over to the other attractors along Cu after
some iterations of the map.

Near the crisis, a point mapped close to Cs in R1 will need
many iterations to be repe)jed away from S, namely, the orbit is

trapped to S temporarily. If S is a period—n point (a fixed point

_16._,
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Fig. 14. Schematic
illustration for crisis of
chaotic attractor through ;
saddle point S. (a) Before
and (b) after the crisis,
the regions Ri are mapped

to R C_and C
u

i+1’ s
represent the stable and

unstable invariant curves

of S respectively.

(n)

for T ), one will observe n—periodic oscillation with some

duration. Such phenomena will be seen as precursor of crisis when

< . >
U o~ Mgy and as crossover transient when u % u{O)‘

Type 11t A wiée—spread attractor is seen in Fig. 12(a). The
other coexisting attractor lies symmetrically. The touch occurs
near period-2 points (0.3%9, ¥0.39), whose stability is Dz‘ Figure
12(b) show a blowup, where we see the same structure as in Fig.
14(a). UWe can hardly see the regular structure.in Fig. 12(a)
because u is not so close to Yegye The bursts of osci)]ation seen

in Fig. ¢ mean that the orbit is trapped to the period-2 points.

- 20 -
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The closer the point is dropped to the stable invariant curve, the

longer the regular oscillation continues.

Iype 111: The situation is rather complicated than in Types I
and II. Before the crisis, two four—piece strange attractors are
coexisting. In Fig. 13{a), only the attractor (Al’ AZ’ A3, Aﬂ) is
pictured. The other attractor (Al', Az', A3', Ad') is obtained by
the transformation (X, Y) 2 (=X, -Y). An orbit cycles as Al > A2 >
Ay > Ay > Ay or as Al' + A2' > A3' > Ad' + Al', and gives period-4
chaos as in Fig. 10(a). The flat boundary in the waveform comes
from the fact that the attractor pieces Ad and Aa' have narrower
width in the X-direction than the other pieces.

After the crisis occurs, the two attractors are merged as seen

Figf 15. Blowup of part

between A3 and Az of

Fig. 14(b>. Parameter u

is abowve Yoy The

regions Ri are mapped to
‘ a)

R,y by %0 ¢

represents an unstable

invariant curve.
Parameters: o = .85,

v =2.2447.

in Fig. 13(b). To see how the merging occurs a further blowup is

_21_
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given in Fig. 15. Between A3 and Az', there exists an invariant
curve C, which forms a part of the basin boundary before the
crisis. We can see that the regions Ri (i =1, 2, ...) are mapped

to Ri+1 by T(ﬂ). In the course of iterations of the map, the

regions are stetched in the direction across the curve C, and their
tips are attracted to AQ" The regions R, (i > 12) can’t be seen
for the points are so dispersed by the stretching.

Thé conFiguration of Ri along C can be understood as follows.

4) . . . \ .
to the invariant curve C gives a one dimensional

Restriction T
unimodal map which exhibits period-2 chaos. So the configuration
of Ri is somewhat erratic; although we can group them into (R2n~1)
and (RQn) (n =1, 2, +..),

It is seen, from the theory of unimodal map, that there exist
infinite numbers of unstable fixed points on C; one URa, two UR8,
four UR16, ses Therefore we may say the crisis occurs through URk
{(k = 2n, n =0, 1, 2, «..). Here, however, we are tempted to

modify the Grebogi’s definition of crises as "a collision of a

chaotic attractor to an unstable invariant curve’.

VI. CONCLUSION

In summary we have investigated the symmetry recovering crises
of chaos in a polarization—-related optically bistable system.
Through the crises, chaotic states having the polarization
asymmetry, which is inherited from the first bifurcation, jumps
back to a syhmetric staté. We have found three distinct types of
the crises by changing the parameter tov. All of the waveforms
near these crises are very different from that for the one

dimensional map model which has been used to analyze difference-
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differential equations such as Eq. (10). UWhereas a two dimensiéna1
map model we introduced gives good qualitative explanations to the
three types of crises.

As Grebogi et a1.13 said, crises occurs when a chaotic
attractor collides with an unstable fixed point or an unstable
periodic orbit. In our cases of Types I, 11, and 111, collisions

to the unstable fixed points of types DRi, 02, and URak

k = 2™
occur, For Types 1 and Il unstable fixed point has a stable
invariant curve in addition to an unstable invariant curve. The
stable curve forms a part of the basin boundary which separate the
paired chaotic attractors before the crisis. Along the stable
invariant curve, regular structures are formed just before and
after the crisis., For Type 111, a one dimensional map on the
invariant curve, which yields chaos, gives marked structure to the
strange attractors near the crisis.

Perhaps there exist other types of symmetry recovering crises
than those we treated here. (For example Fig. 3{(c) in Ref. 16
suggests another type which is close to Type 111.) Some of them
may need models in higher dimensions. Even for such cases, types
of the unstable fixed point will characterize the crises.
Statistical behavior near each crisis such as Eq. (12) should be
investigated.

Finally we estimate experimental parameters to observe the
phenomena in an all optical system. The Na system of Ref. 12 with
which we have observed the symmetry breaking bifurcation should be
modified. The delay tp can be provided by an optical fiber with
sufficient length L. UWe see from Eq. (10) and the requirement
tp¥ 2 1 that the required power density I0 is inversely

proportional to tR’ or L. For L =1 km (tR = 6 us), IO is
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estimated to be 1 ~ 10 U/mmz, which is not unrealistic value

considering the use of a multi—-mode laser.
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