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SUMMARY

When the number of nuisance parameters increases in proportion to
the sample size, the so-called Cramér-Rao bound does not necessarily give
an attainable lower bound for the asymptotic varianses of estimators of
the structural parameter. The present paper, setting up several classes
of estimators, presenté a new lower bound under the criterion named
information uniformity. It is expressed as the sum of the Cramér-Rao
bound (the inverse of partial information) and a certain non-negative
term, which is derived by differential-geometrical considerations. The
optimal estimating function meeting this lower bound, when it exists, is
also obtained in a decomposed form. The first term is the modified score
function, and the second tefm is, roughly speaking, giyen by. the normal
component of the mixture covariant derivative of some random variable.
Furthermore, special versions of these results are given in concise
forms, which are then applied to elucidate the efficiency of some famous

examples.

Some key words: Asymptotic theory; Bound for asymptotic variance;
Differential geometry; Estimating function; Exponential and mixture

connections; Mixture curvature; Nuisance parameter; Structural parameter.

-



cn

1. INTRODUCTION

The present paper treats the asymptotic theory of estimation of the
structural parameter in the presence of nuisance pafameters whose number
increases in proportion to the number .of independent observations. Let
100 X be n independent vector observations, where X is assumed to
be subject to the parametric density function p(x; §,¢& i). The g is the
common scalar parameter of interest and 1is called the structural
parameter. The & i3 i=l,...,n, are scalar nuisance or incidental
parameters which are assumed to take arbitraty values. The problem is to
estimate the structural parameter without any knowledge of the true gi.
Here, the efficiency of estimators is evaluated by the - asymptotic
variance of consistent estimators when n is large.

Neyman & Scott (1948) treated the ploblem in detail and pointed out
that the maximum likelihood method does not in general give a consistent
estimator. Moreover, it is not in general efficient in the sense that
the Cramér-Rao bound is not attained even asymptotical%y. Anderson
(1970) showed a method of constructing a consistent estimaggr by the use
of the conditional maximum likelihood estimator in a special class of
mddelé. Godambe (1976) obtained some optimality result in a very special
but finite sample case. Lindsay (1982) extended this idea to a more
general but asymptotic situation. Takeuchi (private communication)
considered the problem from the minimax point of view and obtained some
optimality results. See also Ibragimov & Khasminskii (1982). The

concept of partial 1likelihood (Cox, 1975; Lindsay, 1980) is also

important.
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Inspite of these endeavours and ;progresses, the problem still
remains unsolved. The present paper gives a new lower bound for the
asymptotic variance in class C2 of estimators shown below. The new bound
is the sum of the Cramér-Rao bound given by the inverse of partial
information and a new term connected with a kind of curvature of the
statistical model. To obtain the new bound, we introduce Elass C0 of
estimators, which has so far been widely used in treating the present
problem. We then define‘class C, of consistent estimators in CO. We

1

finally consider a subclass C, of C called the class of uniformly

2 1°
informative estimators. This class is introduced in order to preclude a
"super efficient" estimator which is efficient for a specific choice
of & i's but is not so for other choices of Ei's. This class is
comparable to the class of information unbiasedness by Lindsay (1982),
and the relation between the two classes is discussed in §7. The new
lower bound is given for the estimators in the class CZ'

The new bound is still not mnecessarily attained even in the

asymptotic sense. Moreover, it is rather difficult to calculate it for a

given statistical model. We hence give a milder bound, which can be
calculated immediately, by specializing the fundamental theorem. If an
estimator attains to this bound, it is asymptotically optimal. A

procedure is given to judge the attainability of this new bound and to
obtain the optimal estimator when it exists. Two examples are shown in
which the optimal estimator meets the new bound. We also give another
method of obtaining the optimal estimator by applying the theorem to a
special type of models. Two examples are then shown in which the optimal
estimator is obtained by this method. It is interesting that the optimal

estimators are the same as those obtained by the method of Lindsay (1982)
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in three of the four examples, but in one examle, the optimal estimator

in C2 is better than the information unbiased one.

Although we do not here discuss a detailed differential-geometrical
background, the present theory 1is constructed along the 1line of
differential-geometrical théughts in statistics (Amari, 1982 a, b; Amari
& Kumon, 1983; Kumon & Amari, 1983). We are studying a more fundamental
differential-geometrical theory for the present problem by the use of the

concept of fibre bundles, which will appear in a forthcoming paper.

2. ESTIMATING FUNCTIONS AND CLASSES OF ESTIMATORS

We begin with describing classes for estimators 6 = §<X1""’Xn)’

where Xys--+5X  are n independent observations, X, from the density

function p(x; 0, Ei); i=]l,...,n. The following class CO of estimators

has so far been widely used for the present problem.

~

An estimator 6 is said to belong to C when it is

(i)Class C 0’

o}
given by the solution of the estimating equation

n

Y y(x., 8) = 0. (2.1)
i=1 1

The function y(x,9), which does not depend on £, is called the
estimating function of the estimator.

It is easy to show that the maximum likelihood estimator belongs to

this class. Let u(x;0 , £) be thef —-score for the likelihood,

u(x; 6,8 ) =9gl(x; 6,8), (2.2)

where

L(x;9,€) = log p(x; 8,E )5 35 = d/30-
Assume that there exists a unique maximum likelihood estimator

~ ~ . . . . .
£ : = gi(xi, 8) of Ei. for each fixed 0, which is obtained by solving

the £ —score equation



V(x5 8, £) = 3 Ux;5 0, £ = 0,

where 85 =3 /3E. The maximum likelihood estimator 6 is then obtained by

solving

where

G(x,6 ) = u{x; 6, £(x,08)}. ) (2.3)
Therefore, this U is the estimating function of the maximum likelihood
estimator, which belongs to CO.
An estimator belonging to CO is not necessarily consistent. A one

term Taylor expansion around the true O yields

L 1y(x;,8) +35y(x;,0)(8 -e)} =0,

so that

/26 -6) = - M2 nye, 00 e ey, 00 (2.4)
is derived wunder mild regularity conditions. When the following
convergence

Z ly(x;59) - Ee’gi{y(xi,ﬁ )}l/n >0
is almost surely guaranteed, where EGE(') implies the expectation with
>3 .

~

respect to p(x;0 , Ei), the estimator © is comnsistent when, and only
when,

Bog 1y, 01 = 0.
See Neyman & Scott (1948). This leads us to the following definition of

class C1 of consistent estimators.

(ii) Class C An estimator O in C. is said to belong to Cl’ when

1’ 0
the expectation of the estimating function y(x, 8 ) vanishes for any 6

and E,

Ee’g{Y(X,e)]‘ = 0. (2.5)

-

o

S



U

When the values of the true Ei are known, one can construct the
estimator that is optimal for these Ei. Obviously, such an estimator
shows a bad berformance when the wvalues of Ei are different from the
presumed ones. We are searching for the optimal estimator in the sense
that its asymptotic variance is not larger than those of any other
estimators for whatever Values Ei take. For this purpose, class C1 is
sterile, because it is so wide that it may include the estimator which is
optimal only for presumed ii but not optimal for other Ei. Hence, we are
forced to restrict the class of estimators to one whose optimal estimator
is obtained without any knowledge of Ei, as was also indicated by Lindsay
(1982).

In order to define class C2 of estimators which satisfies the above
requirement, some geometrical considerations are necessary. Let
M= {p(x;6,&)} be a two-dimensional statistical model parametrized by
©®,% ). With each point (6, F,) of M, let us associate a linear space RG,E
consisting of all the random variables r(x) which have vanishing
expectations and finite second moments,

RG,E = {r(x)\Ee,g{r(x)} =0, EG,& {r(x)2}<°°}- (2°§)
We treat a random variable r(x; 0 ,£) depending on 6 and £. Such a

random variable is called a field when r(x;S',E)eReg, i.e.,
1

]

0 for all 8 and £. An estimating function y(x,9)

Bgelr(x; 0, 8)}

belonging to C, is such a field, which does not depend on& . The 8-score

1

u(x; 6, &) and the f£-score v(x; 6, &) are also examples of the field.

Since Reg is a vector space, we can define the inner product of two
$

vectors or random variables r(x) and s(x) in RGE by
b

<r(x), s(x)> = Eeg{r(x)s(x)} =<r(x)s(x)>, : (2.7)



where < > 4is also used to denote the expectation with respect to
p(x; 0, £) when no confusion occurs.
Let Te’g be the two-dimensional subspace of RG,E spanned by the two
score vegtors u and v,
TG,E; = Jau(x;6,£&) + bv(x; 6, £)F. (2.8)
Geometrically speaking, TG,E is the tangent séace'of the manifold M of

the statistical model. Let NGF,’ be the orthogonal complement of T in
k]

6,5
RG,E R
Ngr = {n(x)|n(x) eReg , <n(x), t(x)> = 0 for teT@E}' (2.9)
Thus, RG,g = Te,g & NG,E , and any r ERB,E can uniquely be decomposed into

r(x) = t(x) + n(x), t‘Teg’ n The t is called the tangential

eN 6. .
component of r, and the n is called the normal component of r.

Any estimating function y(x, 6) belonging ﬁo Cl can be decomposed
into the following sum at each (6,¢ ).

y(x, 8) = a(8,&)u + b, E)v + n(x;6, &), (2.10)
where n eN 6f is its normal component. Here, the 0 -score term
a(®, £)u(x; 6 ,&) carries information about & , so that if a large
coefficient a(f, £) is assigned to a specific value of £, we have an
estimator which is good for that value of & at the sacrifice of bad

performances for other & . Hence, in order to get a uniformly good

estimator for all unknown &{'s, we require that a(6, £) does not depend

on &. This is called the requirement of information ﬁniformity (cf.
Lindsay's information ﬁnbiasedness, 1982). Without loss in generality,
we can put a(®) = 1, because for y(x,6) with a(®), y'(x,06) =

y(x, 8)/a@®) yields the same estimating equation as y(x, 0 ).

(iii) Class C2: The class C2 of uniformly informative estimators

consists of all the estimating functions with a = 1 in Cl'



3. ASYMPTOTIC VARIANCE OF ESTIMATOR IN C2

We hereafter denote the partial derivative 3& by °, as is shown in T
= Bg'r. However, it should be noted that
<t(x; 6,&)> =0
does not necessarily hold for a field r(x; 6, £). Hence, the ordinary

partial derivative does not generate a field from a field. Instead, the

operator D defined by

D°r = ¥ -< 1>
generates a field. However, the operator D" or shortly D defined by

Dr = r + rv (3.1)
is used more frequently. Since a£<r> = < Dr> holds, Dr is also a field
when r is a field. From the geometrical point of view, D% and D = D" are

the exponential and mixture covariant derivatives, respectively. See

Q‘\/

Amari (1982 b) for details. For two fields r and s, it is easy to show
the following identity
Bg <r, s> = <Der, s +<r, Ds> =<1, s> +<r, Ds>. (3.2)
For an estimating function y(x, 0) = u + cv +n eCz, by
differentiating <y> = 0 with respect to £, <y, v>= 0 is obtained from ¥
= 0. Hence, the coefficient ¢ is uniquely determined as
c=~-<u, w/<v, v>
in C2, because of <n, v> = 0. Thus, the tangential part of §7EC2 is
always given by
wx; 0,8) =u - (<u, vw/<v, w)v. (3.3)

This w belongs to Teg and is orthogonal to v. The squafe of the

3
k)
absolute value of w is

gee = <wW, W =<u, u> - (<u, V>2/<v’ ). (3.4)
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Since the Fisher information matrix of the model M is given by
gee .geg - <u, u> <u, v>

< v, u> < v, v

8o Ee
the 569 is also written as

- 2

8o T 8pp ~ (gﬁg/ggg)’ .,
which is called the partial information. Obviously, éee i 8ggs and the
equality holds when, and only when, u and v are orthogonal, i.e., 8o¢ =
0.

We assume the existence of the limit
2= linn '3 g8, £.) (3.5)
= lim n . .

& n>© i=1gee > i
where (6, Ei) is the true parameter for the ith observation x,. For an
estimating function yecz, the existence of the following limit is also
assumed,

5 =linn '% Egpin(x; 6, £)°} (3.6)

En n->o0 i=1 eagi SRR ¢ ’ )
where n is the normal component of the y. We call lim E{n(@ -9 )2]- the

~
asymptotic variance of an estimator 6 . Then, under the above

assumptions, the following lemma is derived.

LEMMA 1. The asymptotic variance of an estimator in C2 is
decomposed into

lim E{n(® —0)%1 =31 +3%3 (3.7)

Proof. Sihce the asymptotic variance is calculated from (2.4), we
evaluate the dénominator and the numerator of (2.4). By differentiating
the identity< y> = 0 with respect to &, we have

0 =<3gy + uy> =<dgy> +< w2>.

Hence, by the law of large numbers,

i
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(O §

-z aey(xi, 8)/n >38
holds in the limit n »®. From<y> = 0 and
<y> =35  +<n>
y gee n s
the central limit theorem applied to the right-hand side of (2.4) yields

the desired asymptotic variance.

The lemma shows that the asymptotic variance is expressed as the sum
of two positive terms. The first, being the inverse of the partial
information §, corresponds to the Cramér-Raoc lower bound, and is common
to all the estimators in C2. The second depends on the estimating
function y. Hence, the problem is to find the estimating function in C2

. e . 2
which minimizes the second term or the expectation <n">.

4. MAIN TEOREMS
Let s(x; 9, £) be a field for which

3.<s, n>=0 (4.1)

g

holds for the normal part n of any estimating functions y = w + n eCz.

Note that the neN is characterized by n(x; 6,£) = - w(x; 6, £,

8t
because of y = 0. Let S = {s(x; 0, £)} be the set of all such fields s.

The set S is not empty, because when s(x; 8,£) GTGE , <8, n> =0 holds
¥
so that se€S. For s eSS, let p"s and Dts be the normal and tangential

parts of Ds, respectively, in the decomposition Ds = D's + Dts,

t

D's eNeg , DseT Then, we define a function f(s) of s &S by
b .

0,8
f(s) =<w, s>2/<(Dns)2>. : (4.2)

Moreover, for the sequence Ei, let

- -1 n
F(s) = lim n * T £(s) (4.3)

n-+c 1=1 i’

where ‘f(s),:.L is the value of f(s) evaluated at (9, Ei).

10
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THEOREM 1. The asymptotic variance of any estimator belonging to C2

cannot be smaller than g’l + g—zf(s) for any s €S. Hence, a lower bound

for the asymptotic variance is given by

gt + 572 sup E(s). (4.4)
se§ ~ ~
Proof. For an estimatk;ing function y = w + necz, and s €8, the

Cauchy-Schwarz inequality gives
<n%<@%)% > <p%, ns?,
which is used to evaluate <n2>. The right-hand side can be rewritten as
<Dns, n> =<Ds, n>.
Since s satisfiesag<s, n = 0, from (3.2) follows
<Ds, n> = - <0, s> =<w, S .
Hence, we have
<n? > <w, o2 / <(Dns)2>

for any s €S. This proves the theorem.

We have thus obtained a new lower bound for the asymptotic variance
of an ‘estimétor. However, it 1is not sure whether this bound 1is
attainable or mnot, i.e., whether there exists an estimator whose
asymptotic variance is équal to this bound. The following theorem gives
a sufficient éondition for the existenée of the optimal estimator meeting

the bound.

THEOREM 2. When
* L% * %
yoo=w o+ fcw, s>/ <% ) 10" . (4.5)
* %
constructed from an s € S belongs to CZ’ i.e., when y 1is free from §, it

gives the optimal estimator meeting the lower bound.

11
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Proof. When y* belongs to C2’ we have
<y*2> =~<w2> + {<w, s*>2/<(Dns*)2>} = gee + f(s*),
and hence the asymptotic variance of the estimator given'by y* is
5714 5% Y.
This implies that the bound is met with this estimator and that f(s) is

KN

maximized at s .

*
The theorem shows that the normal part of the optimal y 1is derived
*
by the mixture covariant derivative of s &S. This manifests the very
differential-geometrical aspect of the problem. Since a more systematic

study on the structure of the set S is necessary for obtaining the

‘condition on the existence of the optimal estimator in C2, we transfer it

to a forthcoming paper. Instead, in the following two sections, special
types of s €S are searched for, which yield the optimal estimator in some

cases.

5. TANGENTIAL RESTRICTION

Let T be a subset of S whose element t(x; 6,& ) belongs to the
tangent space Teg at any (6, £€). Such an element m;y be called the
tangent field. Although it might be difficult to obtain the supremum of
f(s) over S, it is easy to obtain it over the subset T. This also gives
a lower bound, which is not necessarily attainable. It is a point that
the latter bound cén be calculated in an explicit form, which is related
to a kind of local curvature of the statistical model M. Moreover, the
bound can be met in some cases, as will be shown later.

For two random variables w and veT let us define a

0f°

two-dimensional random variable vector by

12
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h = (an, Dnv)t, (5.1)
which consists of the normal parts of the mixture covariant derivatives
of w and v spanning TG,E’ t denoting the transposition of a vector so
that h is a column vector. The vector h denotes the mixture curvature
vector of the model M along the £-coordinate. The variance-covariance
matrix of h is given by |

hge Bog

H = hee her |, (5.2)
where h69==<(an>2>’ he = <an, Dnv>, and h,.,. = <(Dnv)2>. The H is

£ £g

called the mixture curvature matrix of M.

We next define a two-dimensional column vector

¢ = (cgs c€>t, (5.3)

where ¢ =<w, w>and c, =<w, v> Since the vector ¢ represents the

€
coefficients of the exponential connection of M, it 1is called the

exponential connection vector of M. From (5.2) and (5.3), we define the

quadratic form

k= i le, (5.4)
'. . ) . _ 2. -1
when H is non-singular. When H is singular, k = g h66 if hee % 0, and
k = cgztzggl if hep* 0. we finally define
= . -1%
k=1limn ~ I k,, (5.5)
n>0 i=1 1 .

where ki is the value of k evaluated at (8, %}.

THEOREM 3. The supremum over T of f(s) is given by k, so that é_l

+ g‘zi is a lower bound for the asymptotic variance.

. % *
THEOREM 4. When the optimal y is derived from s belonging to T,

it is directly given by

13
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*

vy o= w + ctH"lh, (5.6)

when H is non-singular and otherwise by

. -1 . '
y“ _fw+ %)hee h, if hee % 0, (5.7a)
-1 .
w+c h _"h, if h, % 0. (5.7b)
£ &g £g

*
That is, when the right-hand side does not depend on&, y 1is optimal

(N

with s e T, and the lower bound of Theorem 3 is attained by this y .

Proof of Theorems 3 and 4. We search for the maximum of f(s) for
s €T. To this end, let us put ‘ ‘ -
s = aIW'+ azv,

where a, are scalars depending on © and £. The normal component D"s of

. . . . . . n t
the mixture covariant derivative of s is then glven\by D's = a h, where
)

-

a = (al, az)t. Hence, f(s) = (atc)z/(atHa). When H is non-singular,
from the Cauchy-Schwarz inequality
(atc)2 < (atHa)(ctH_lc)

follows Theorem 3. Since the equality holds when a = H‘lc, Theorem 4

follows. When H is singular, the proof is easy.

There are some examples in which the optimal estimators are obtained

from Theorem 4.

Example 1. Let x = (Xl’ x2) be a vector composed of two mutually

independent random variables x, and X, from the normal distributions N(£,

1
1) and N(®E, 1), respectively. The density function p(x; 6, ) is given
by
-1 1 2 ' 2
P(x; 8,8) = (2m) ©~ expl{-3(x; - &) + (x, -0E)"}

From this, the following is easily calculated.

14
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v 2
w=£(x2—6x1)/p, v = (xl-l-exz-gp), where p =987 + 1 > 0.
Meanwhile, the quantities related to Theorems 3, 4 are

Hence, we have
* - 2
y =w+ceheeanw= (x2 —-le)(x1 +6x2)/p .

*
Since y 1is free from &, it is the optimal estimating function in C As

9
for the lower bound, we have

— 2 2

gee_=€ /P, k=1/p7,

L2 ,o-1%_ 2 -
and thus, by letting U~ = lim n ~XZ&_.", we have the Cramér-Rao bound by
] n->0 i=1 1

'g—l = p/u2 and the best asymptotic variance by

— _-2- 2
3 Ly g % = pu” + 1)/u4.

Example 2. Let x = (xl,...,xp), where xj; j = 1l,...,p are P
independent realizations from N(§,9 ). The density function is
-p/2 P : 2
pCx; 0,£) = (20 ™% expl-A Ex, - )%}
: 63:1 J
The scores are given by

we=u=oplz?+ (x. - )2 - 0H (2D, v = p(x. -£)/8,
P 2 P 2
where x. = (X xj)/p, z- = {Z (xj - x.) }/p. The quantities of Theorems
31 31
3, 4 are

2 2

D% = p{(p - 1)(x. ~£)% - 2%}/6%,

cp = - p/EQ, cg = 0, h__= 2p(p -»1)/62, 0, h. ¥ 0.

hgy = 06

£

Hence, we have

»y* =w +YC‘€hg;’—anV = p{pzz_ - (p - 1)8}/{262(P - Dk

which is again free from &, giving the optimal estimating function. We

have for the lower bound

Bgp = p/(26%), k = p/ 22(p - B’}

15



and therefore

-~1 -1
g

=202 /o5 a2/ (p-1).

We remark that y* = Q0 in Example 1, and y* =3 -<3 in Example 2,
where U is the estimating function of the maximum likelihood estimator
defined by (2.3), i.e. efficient estimators are substantially given by
the maximum likelihood method in these examples. We next show an example

*
where y depends on £.

Example 3. Let x = (Xl’ xz), where x. is subject to N(6+& , 1), x

1 2

is subject to N{m(£), 1} and m(£) is a known function of £. Then,
p(x; 0,6) = (27" exp(-3[(x, - 8- £)% + {x, - m(D) D),

u=7x

v o= E FRE)E,, v = a@) (F, - T/ + @),

1

where we put X, = x

1 -8 -£, §2 =x, - m(£). The quantities related to

1
Theorems 3, 4 are

~ ~ .~ .2 n ~ e~ 2
- xz)(x1 + mxz)/(l +m7), Dv = (x1 + mxz) s

1
cg = miE(l - 2%)/(1 + mz)z,'cg = w/ (1 + 22),

DM = m(aR

.2 .2
hee=m N he£=0, hgg=3(1:*‘m),

2

Bop = 02/(1 + @2, k = m2Gi" - 5h2 + 3)/13(1 + 2D}

Unfortunately, y* depends on £ except for the linear case f(§) = af + b.
In the linear case, y* = a(ax -y - b)/(1 + a2), yielding the optimal
estimating function, and since k = 0, the Cramér-Rao bound is attained.
In the general case, we rather doubt the existence ‘of the optimal
estimator in C,. Anyway, it is sure that the asymptotic variance of any

2
1, —-2=

estimator in C, is bounded by § = + & k.

2

6. SOME NON-TANGENTIAL CASE

16



It is generally difficult to search for the supremum of f(s)‘in the
whole S. However, for some special statistical models, we can obtain the
supremum and the optimal estimator, which are derived from a
non-tangential s &€8S.

To explain this, let us consider the following special exponential
model whose score functions are given by

w = cw“, v = dv + e, (6.1)
. * *
where ¢, d, e are functions of (8, £) only, and w and v denote random
variables independent of £, i.e. functions of x and © only. For this
model, let
k, %
Ve =w /v, (6.2)

which does not depend on £, and assume that y, belongs to C2' Then, the

optimality for the model (6.1) is delineated in a simple way.

THEOREM 5. When there exists the optimal estimating function for

(6.1), it is given by y,.

Proof. Let V¥ = w + T be the optimal estimating function in Cy-

Then, as is easily shown, it satisfies

<§2>

1]

<y, y>

or equivalently

<a, n> <ﬁz> for any y = w + n &C,.
Since both y and ¥, are assumed to belong to C2’ we have
< = 2 2
¥, w/w > =<y, w/w>=1,

which becomes from (6.1) and (6.2)

* % *
<, w>=<w 2/v >. (6.3)

17



Nextly, by the assumption of ¥y, we have
_2 _ _ % %
<y > = <y’ y*> = <yW /V >_ (6,4)
By differentiating (6.3) and (6.4) with respect to &, once for (6.3), and
twise for (6.4), the following is derived,
— k% %7 - %2 _ k% %
Kywv > =<w ">, <(yv )" >=<yw v >.

Then, in the Cauchy-Schwarz inequality

- % * - %k %
< (v %< > <yw v >2,

% *
the above two relations guarantee the equality, which means yv = w , or
- * * — ) . . k1
Vew /v = Y.+ Hence, the assumed y is nothing but the y,, proving the
theoremn.

In the theorem, we presumed the existence of the optimal ¥y for the
model (6.1). As was suggested before, this existence problem will be
studied in a forthcoming paper.

The optimal y, in the theorem can also be constructed in line with
Theorem 2. Let us define s, by

Sy = y*/<n*2>,

where n, is the normal component of y, in the decomposition y, = w + n_.

*

Then, from the optimality of y*: it follows that

2
<y, D> =<, n>/<n* > =1

for any y = w + n&C showing that s_ belongs to the set S.

*

Furthermore, a simple calculation plus the assumption y, eCz shows that

the right-hand side of (4.5) in Theorem 2 becomes y, when we substitute
%
s, for s .

The proposed s, clearly does not belong to the tangential field T.

*
We now show some examples for which the supremum of f(s) is not attained

in T and hence the optimal estimating function cannot be found

18



by Theorems 3, 4, but is given by Theorem 5. We remark that following
our study, the existence of the optimal estimating function is guaranteed

in these examples.

Example 4. Let x = (xl,...,xp), where xj; j = 1,...,p come
independently from N(6, £). The density function is

pGxs 0, £) = (21 P2 expl-t (x. -9)7T
2€J=1 J

The scores are
2 2 2
w=u-=7p(x. -06)E&, v=rp{zm +(x.-8) -£12&),
which is the exponential model (6.1) with

2
c = p/E d = p/(287), e = - p/(28),
* *
w =x.-9,v = 22 + (x. - 8)2.
x,
Let y, = w /v , then, it is easy to examine y, €C, with ay = 1/p, thus y,
¥*

is optimal in C,. As for the lower bound, since 566 = p/&, by letting vz

2
o -19_ -1
= limn “X&, ~, we have
n-so i=1” 1
-1 2 -1 _-2= 2
g =1/(Mp), 8 +8 f(s,) =1/{vip-2}l.
Example 5. Let x = (Xl’ XZ)’ where Xl and X, are mutually

independent, and subject to the exponential distributions e{0, 1/(0E&)}
and e(0, 1/&), respectively. The density function is
p(x;6,¢) = 088exp{- (Ox; + x,)8},
so that the scores are
W = E;[(x?_/e) - xl}/Z, vo= - (8% +x,) + RE).
This again is the type (6.1) with

% *
c=f/2,d=-1,e=2/E, w = (x2/9) - Xy, Vv =€3x1 + X,
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Then, it 1is shown that y, eC, with ay = 2/3, from which follows the
%*

optimality of y,. Meanwhile, since §66 = l/(262), we have for the lower

bound

gl =26, g7l 4 g% (s, = 30

2
Note that in these examples, y, = 4, i.e. the maximum likelihood

estimators are efficient as in Examples 1, 2.

7. DISCUSSION
Various bounds can be obtained for the asymptotic variance of
estimators 8 in wvarious situations. They have proper meanings as
follows. The simplest bound is the inverse of the Fisher information vy

= g—l, where g = lim n_l.g g66(6’€ﬁ)‘ This can be attained when all
>0 1=1
the gi are identical, Ei = £ and the value of common & is known. The
second bound is the inverse of the partial information v, = g'l defined
by (3.5). This bound is attained when all the Ei are identical but we do
not know its value. Hencg, the difference vy - vy >0 accounts for the
loss of information which is carried by the exact knowledge of &. The
third bound is given b& Théorem 3, vy = §_1 + g'ZE. This takes account
that Ei are different and unknown, but the tangential restriction 1is-
imposed on S. The tangential restriction corresponds to the evaluation
of the effect of distributed unknown Ei by using the local curvature of
the statistical manifold. Hence, it cannot bé attained qnless the modél
is uniformly curved, i.e. the higher-order curvatures vanish. We can
obtain stricter bounds further by evaluating the effect of higher-order

curvatures successively. However, the results are tedious ‘and

complicated. We finaily have the bound given by (4.4) in Theorem 1.
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This bound is attainable, whenever there exists the optimal estimator in

C We have discussed the asymptotic efficiency of estimators in the

9°
class C2 of the uniformly informative estimating functions. Meanwhile,
Lindsay (1982) introduced the concept of information unbiasedness, which
requires
<y2>-+<aey>= 0
in the present terminology. By using the decomposition (2.10), this is
rewritten as
azgee + <n2> = agee.

Then, it follows that an estimating function y € C1 is both information
unbiased and uniformly informative, if and only if the ratio <n2>/'g'ee is
independent of &. We return to the examples to examine this point. 1In
Examples 2, 4, and 5, the optimal uniformly informative y*e C2 are shown
to be information unbiased at the same time. They coincide with the
estimators obtained by Lindsay's method of seeking the optimal weights
for the conditional score function. However, the y*€ C2 in Example 1 is
not information unbiased. It is proved that the asymptotic variance of
the information unbiased one is larger than our uniformly informative y*
in Example 1. Of course, this ié merely a warning to rely too much on
the concept of the information unbiasedness. - In general, it seems
difficult to judge the superiority between the two criteria from the
point of view of efficiency, because in some special examples treated by
Godambe (1976), the optimal estimator exists in C1 which is information

unbiased but is not uniformly informative. Further researches are

necessary in this respect.
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