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ON THE SOLVABILITY OF P(D)f==g FOR VECTOR VALUED FUNCTIONS

Dietmar Vogt

Let P(D) be an elliptic linear partial differential operator with
constant coefficients, & C rR" open and E a complete locally convex
space. By Cm(R,E) we denote the linear space of all E-valued ¢ -func-
tions. Our problem is under which conditions the equation R (D) f=g
has a solution f € Cw(ﬁ,E) for every g ¢ ¢ (2,E). This is known to be
true for any Fréchet space E due to a result of Grothendieck ([5])

We shall give a necessary and sufficient condition for the
case of E being the dual of a Fréchet space, i.e. for E = Fé where F

is a Fréchet space.

We use the standard notation on (F)-spaces and their duals

r9] [13]) and on partial differential equations and distributions
(s. [6] [15]). We put J(2) = {f € C(R) : P(D)E=0} , W (R,E) =
{f € ¢~ (,E): P(D) £ =0} and denote by.ﬂfanngE the correspdnding

n .
sheaves on R . We have a canonical exact sequence

P(D)

0 > (R,E) ~ C (%,E) ¢ @,E) »H @) ~0 .

where H](Q,MVE) is the first cohomology group on % with values in the
sheaf(A/E. Hence our problem is equivalent to the question under which

conditions Hl(ﬁ,JfE) = 0.

1. We start by giving examples which show in a relatively easy way

that both cases will occur.

It is a result of Grothendieck (s. [15] ) that an elliptic P(D) does
not have a right inverse or equivalently that /" (R) is not compleménted
in C (%) . Hence the equation P(D)f =g w1th g(t) = St has no solution
£ec (£, €'(2)) and therefore H (2, 8( )) # 0.

red

RS - . .

If B (l,4 7)) = Q Zor any E then P(D) cannot have a4 right iunverse.
Hence the above counterexample follows from any orher counterexample
and the following can be considered as a proof of Crothendieck's

result. It gives also some additional information.



are closed subspaces

1.1. Proposition: If E = L}E where E i E o+l
of E and if P(D) is nonconstdnt e111pt1c then Hl(@,s ) + 0.

]
Proof: We construct by induction a biorthogonal sequence in E,E

(c.f. [5] ) . We can assume dim En"']/En > n, El + {0}. We start
with choosing e $ 0, e, ¢ El and f] € E' such that fl(e]) =

Assume €rreees €0 f .y fn being determined then we can choose

n 12
X n : '
e 4 Ev(En+l\‘En>’\ N ker fk, € 41 + 0 and fn+] € E' such that
£ =0, £ (e} =1 |
n+1[E > Th+1'Cn+1 .
We obtain sequences €s€ns e in E, f], f2, ... in E' such that
fk(en) = Sk n for all k,n and fk!E =0 for k >n .

4 n
We can assume that @ is connected. We choose a sequence Bn =
: -x | =r - c B =
{x |x Xn‘ < n} of compact balls such that rn > 0, Bn 8, an\ n @
for n + m and such that for each K ¢€C & there exists n with K r\Bn =@

for n = n_. For each n we can find ®, € éD(Bn); ¢ ¢ P(D)éD(Bn). We put

g0 = L o () e

Clearly g € c”(2,E). Let us assume the existence of f € ¢”(R,E) with
P(D)f=g. We put % = Q\(J B . 2 is open. From Baire's theorem
(applied to the 1oca11y compact space ) we obtain the existence of

n_ such that £ (E )tﬂ %, has an inner point, i.e. there exists a non

empty open set QO < £ (E )f\ Q

We put v, = fn o f. For n > n, we have V¥ = 0. Moreover P(D)\Vn =

nlﬁ
0 .
fLoeg~= ¢, Hence A is real analytic on & \ }% and therefore vanishes

on this set. This means Vo 61)(3“) which is a contradiction.

Examples of spaces E satisfying the assumption of Proposition 1.1.

are g:= f? T, £'(%), & () etc. For E = é, F a Fréechet space it
means that F does not have a continuous norm. Hence the existence

. . . .. 1 E
of a continuous norm on F is a necessary condition for H (R, &/ ) = O.

We shall now give a positive example. It is of particular

significance as we will see in section 4. As usually we denote by

o k
= - M = Z 3 oo
s = {x (Xl’ XZ"") : Hka 521 [le j < +=for all k}
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the space of all rapidly decreasing scalar sequences. Equipped with

the norms |l it is a nuclear F-space. By the dual pairing

I
y(x) = ? X. yj its dual can be described as

_— -k
s' = dy= (yy5 vpe-0) 2 Iyl = 3up ly;1 37 <.+ = for some k}.

#

Here Hka = sup |ly(x)| is the Minkowski functional of the polar
=l =1

of 1x : Hka <71}. The topology of Sl'a is given by the seminorms

px(}') = ? lyJHXJl aXE’S'

‘1.2, Proposition: If P(D) is hypoelliptic and @ is convex then
: '
H](sz,vvi’) = 0 and Hl(sd,uvs ) = 0.

Proof: We put % =% xR and P(D) = P(D) acting as partial differen-
tial operator in the first n variables on functions of n+l variables.

~

£ 1s convex.

We put &' = £'"(R). An element g € Cm(ﬂ,@') defines in a canonical
way a E €D (®). We can find T €' () such that B(D) f=g . If we call
f the element in @ '(%, £') which corresponds to f this means P(D) f=g.
Since P(ﬁ) is hypoelliptic we have even f ¢ ¢ (R,2"). This proves
H](se,w"") = 0.

)
To show that HI(SB,WS ) = 0 it obviously suffices to show that s'
can be imbedded as a complemented subspace in «Z' ' or equivalently that

s can be imbedded as a complemented subspace into 2 .

We choose ¢ € & such that Z o (x-v) =1 for all x € R. Let
o v€Z “o

gp be the space of all periodic functions on R with period I. Then
¢ : f > f(po defines a continuous linear map from i.p into ¢ , which

imbeds Ep as a complemented subspace into & since ¥ : ¢ —*V%z ¢ (x=v)

~

defines a left inverse. By Fourier expansion ép =5,

2. We make now use of the theory of the functors Extl(' ) (s. [11],

[23] ) to give a necessary and sufficient condition for Hi(Q,uVE) =0

where E = Fl') , F a Fréchet space and P(D) elliptic.

From the exact sequence
L oo oo
0@ — ¢ Z2hc @) > o

we obtain an exact sequence
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3+ o
0+ L(F, V(@) — L, ")) 22 1r,c" @) & mxt! (F,ur (%)) Yo

1
Y mxt (F,CTQ) > ... .

In general Ext](F, Um(ﬁ)) will not vanish, but we have:

2.1. Lemma: J =0

Proof: We choose a sequence QICIIQZ cc ... cc ¢ of open sets such
that @ = U Qk and call Gy the completion of C (R) 2, with respect to
HfHk = sup {If(a)(x)l Px €8, la| =k 3, H thé~c10:ure of.A/(Q)! Q
in Gk' We obtain in a natural way a commutative diagram where the k

lines are canonical resolutions

oo q
9 1 Il
0~>C () -~ K Gk e K Gk -0

T 13 . 13
0 W@+ [ [y o

q is defined by q((fk)k) = (fk - fk+l[$k)k. This gives us the following
commutative diagram with exact lines.
oo n q 60 1 oo
0~ L(F,C (@) ~ [ L(F,G) — E L(F,G,) — Ext (F,C (2)) >0
To* 13* 13% (%

- 1 - ¢ 60 1 ¢
0 > LEWM() > I LER) — T LEK) — Ext (F,4 (D) >0 .

Let Ak € L(E,Hk), k = 1,2, ... be given. We choose Py € i)(Qk),

= 2 =
® = I on &k—l (90 := ¢ ) and put

k
Bk X = = i ¢ (Avx) + Akx'.

Then Bk € L(F,Gk) and

ka -~ (Bk+'X)l$k = cpk_H(Ak+l X) + Akx - Ak+lx = Akx

since wk+] - 1 vanishes on Qk .
#*
We proved Ll o 8% = 5%0 j = 0, hence L] = 0.

An immediate consequence of 2.1. is that we have an exact sequence
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0 » L(F, /(%) - L(F,C ()

and hence :

2.2. Proposition:

H (2w

3
P71 r,c"()) - Ext! (F, M (D) » 0

) Ext (F, /() .

We now make use of the results of [23] which give us rather precise
. . .o . 1
information about the conditions under which Ext (- We
assume therefore that F and H are Fréchet spaces from which one is nuclear,

, *) vanishes.

are fundamental systems of seminorms in T or H respec-

tively, lyll, = sup
. X
H=#(2) which is

|y(x)| for y € H. We shall apply the results for

k= nuclear, so no restrictions on F will remain. We define

(s) 3n, v,3k VKm 3n, S Vx €Fy €
* _ 4 ¥ *®
Il I = sClel, Wyl + Wl 1)
(S;) Vi 3n0 K,kVK,m 3n,s Vx € Fy¢€H:
| * _ * ’ *®
Il Dyl = SClxl lyll + Bl Wyl )
Then [23], Theorem 4.7. together with [?3], Prop. 4.9. says:

2.3. Theorem:

(s*l*) > Extl(F,H) =0 3 (s*z*) .

We shall use certain consequences of theorem 2.2. which will be
stated below. To formulate them and our main result we need the following
definitions. They describe certain properties for Fréechet spaces which
are linear topological invariants:

2

(ON) 3n, ¥m 3n, C: U2 =c ol I
SN R e RN
@ vp vk dc:| e H e

These invariants play an important role in the structure theory of
nuclear Fréchet spaces. Together with nuclearity properties they are
characteristic for the subspaces of infinite type or finite type power
series spaces or the quotients of infinite type power series spaces
, [19), [20], [25]).

(DN) characterizes the subspaces of s,(%) the quotient spaces of s

(s. [17], [24), [18]).

respectively (s. [ 3 Together with nuclearity
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(DN) is equivalent to the existence of a fundamental system of semi-
norms such that

I R

(2) to the existence of a fundamental system of seminorms with

*2 I

M I M

for all k = 2,3, ...

The following theorem contains consequences from 2.3. which are

proved in [23], § 5 and § 6. 2.4.b was in an equivalent formulation

first proved in [17] and [24].

2.4, Theorem: (a) Ext](s,H) = 0 iff H has property (Q).
(b) If F has property (DN) and H has property (&) then Extl(F,H) =0 .
(c) If H has property (DN) and Extl(F,H) = 0, if moreover there exists

a.
. . +

an increasing sequence (U.j)j with lim a, + © and sup i
J 3

< + = gsuch

that the following is true

(P) 3 Ho Yu = Ky 3 Ko YK= Ko iD>0,r>1,R>1 Yy

] <: <7
p R =8, W, U) sSDr

then F has property (DN).

For the formulation of 2.4. (¢) we used the Kolomogorov diameters
= . << N = { . <
6V(UK, UM) for the two convex sets Up {x : ”X”K < l}C-Uu {x : Hx”u__l}.
They are defined in the following way: let H be a linear space, U C V
convex sets. Then we define SV (U,V) as the infimum of all 5§ > O such
that there exists a linear subspace F C E with dimension at most v

and U ¢ &6V + F.

The main content of section 3 of this paper will be the proof of the

following proposition.

2.5. Proposition: Let P(D) be elliptic and @ ¢ R" open, then :

(a) If @ is connected then /(%) has property (DN)
(b) w (R) has property (R).



We are now ready to prove the main result of this paper. We assume
P(D) to be elliptic, & < R" non empty open and E = F}'J, where F is a
Fréchet space.

2.6. Theorem: HI(SB,JVE) = 0 iff F has property (DN).

Proof: By 2.1. we have Hl(Sd,J/E) = Extl(F,./V(SB)). One part of the

assertion now follows immediately from 2.4.(b) and 2.5.(b).

1 E
For the proof of the other implication we remark that H (2,4 ) =0
implies Hl( §¢ ,.,VE) = 0 for any connected component SBO + @ of @.
o
But then the result follows from 2.4.(c) and 2.5.(a) if condition (P)

in 2.3.(c) with appropriate (aj)j is. guaranteed for vb’(s‘ao).

We claim that for elliptic P(D) and an open set & C R (n>2)
(P) is true for 4 (R) with a, = vII'T . The right hand inequality is
exactly what is shown in the proof of [24], Satz 5.4. (see the definition
of A (a) - nuclearity as given e.g. in [24], Def. 1.1.). The assertion

holds for arbitrary Moo

We choose now a sequence of open sets m]CC Wy CCouns lﬁ W = Q@

and put HfHk = sy [£(x) ], B = {y € /()': I|y!l§ < 1}. For K> pu

we put BV = = log 5V(BM’ BK). We choose R € R {+ = }, R > ;’S‘lég]( |‘<| =ir,
and a sequence r, C r, ¢ ...~ R. For JV(UR) we take the norms
£l = el 5 Tel) = Nel, 12l = sup | £(x) | for k = 2. Theorem 3.1.

below implies that A’(UR) has property (DN)with n_

]

0. A slightly
modified version for the case of (DN) of the proof of [25], Lemma 4.3.
tells that for any absolutely convex bounded sef B¢ A/(UR)]; we have
another such set B with B € B and SV(B,E) =Cp By for all v with some
C>0, p>1. From [20], Satz 7.7. wg know that ut“"(UR) = Ao(n.) for

R < + =, Easy calcule]a.tion gives sup -&.;< +  which proves the assertion,
since 5 (U, UH) 557 P, By (s. [14], s. 72). We could also have

v+1
used the fact that J(/’(]Rn‘) = Aw(a) (s. [26_]).

It should be remarked that the condition in 2.6. is independent of &
and the elliptic operator P(D). An equivalent result was first proved in
o .
[16] for the operator P(D) = 35 - To see the equivalence and also give

an intrinsic conditicn on E not involving the space F we use an in-



variant for (DF)-spaces introduced in [16]. Let B, ¢ BZ ¢ ... bea
fundamental system of absolutely convex bounded sets in E. We define a
property (A) by:
. C
. C —
(A) HnOVmBn,C Yr > o : Bm‘an+rB

In [17], ‘1.4, it is proved that E = F}'), F Fréchet space, has property
(A) iff F has property (DN). We obtain for E = F];, F Fréchet space:

2.6." Theorem: H' (%, &) = 0 iff E has property (A).

Examples will be given in section 4,

3. We have still to prove proposition 2.5. i.e. properties (DN)
and (&), for the space A (R) where P(D) is elliptic. We use a result
from f_—19:[. .

Let X be an arbitrary N - dimensional real-analytic manifold, A
the sheaf of complex valued real analytic functions on X, F s
a subsheaf such that for every open set U ¢ X the space F (U) is
complete in the compact open topology. Then [19], Satz 5.1. says the
following:

3.1. Theorem: Let ¢ % 521 C 522 cc 583 cc X be open sets, 323
connected. For f € F(X) put Hij = }s(téﬁ']f(x)I, j = 1,2,3, Then there
exist C >0, A\ >0, u> O with A + p =71 such that Hflf2 <C Hfll)l\ Hf”g’
for all £ € v (X). '

An immediate consequence is one part of propasition 2.5. .

3.2. Corollary: If @ is conmected the & (%) has property (DN).

The other part of proposition 2.5. we obtain by applying 3.1. to an
appropriate respresentation of the dual space of U (R). We recall the

facts of Grothendieck's duality theory (s. [4 ], [ 1], [26] ).

v
Let E be a fixed tempered fundamental solution for t‘E’(D) = P(-D).
A solution f ¢ Cw(]Rn\ K), K kompakt, of tF(D) f = 0 is called regular
v

in infinity with respect to E if
Vv
() £y =E* PO (£}

for one (every) y € c”(R™) with supp ¥ € R" (K, supp (1-y) compact.



For compact K C R" we define by R(CK) the space of all such functions.
R(CK) is a Fréchet space in the compact open topology on RYNK.

We put

R(CR) = Lim R(CK)
| (9]

where K runs through the compact subsets of Q. For f ¢ #(&) and
g € R(CR) we put

(f,8) = j £ "p(D) (y8)

where | is as above. By the dual pairing ( , ) the space R(CR) with its

inductive topology can be identified with VVKQ)é .

V I3
Since E is tempered it follows from (1) that there exist m,C such

that for £ € R(CK) and ¥y as above we have

(2) |(fy) x| =¢C (]+|x|2)m sup | ¢(a)(§)]
. gé]Rn
la|=m

for all x ¢ R", where ¢ = "P(D) (F)) € Z(R™M.

We put K = {x ¢ @ : dist(x,3R) = -\17, |x] = v} (dist (x,8) = - «).
For given v we choose ¥ €c”(R™), supp v, < R~ K, such that

0 o
supp (I—WV) C KV+], i.e. v, = 1 in a neighborhood ofﬁRF‘NKv+l. Thenowe

obtain from (2) the existence of constants Cv and compact sets LV(;K +]\KV
. : Vv

with

2
(3) sup ]f(x)} (l+]x| )“m <C sup ]f(x)|
x€RO\K Vo xeL
v+l v
for all f ¢ R(CKV).LV has been chosen an account of the (hypo) ellipticity

of tP such that sup lf(x)}-estimates the derivatives of f on
x€L,, o
supp §, N supp (1=} ) € K \K .

We put
* 2,-m
R = {f ER(CKV) : Hf”v := sup [£(x) | (1+]x]7) < + =}
x€R ™K
v
: #*
With the norm || ”v this is a Banach space. From (3) we obtain that

R(CK) = lim R
————p v
v
topologically. Hence finally we obtain :
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N-
= 1im R .
D V
v

3.3. Lemma: \,4/(52)1')

It should be remarked that due to Baire's theorem this implies
that the unit balls in RV, v=1,2, ... are a fundamental system of
#
bounded sets in this space. Or equivalently : the || ”v are dual norms

of a fundamental system of norms in W (Q).

We are now ready to prove the second part of proposition 2.

3.4. Proposition: For elliptic P(D) the space W (R) has property
@) .

Proof: If suffices to show that for k > p + 1 > p > | we have

A >0, >0, A+ p=1and C > 0 such that

X

1%, = ¢ el NEl

for all f ¢ Rp-— For in the inductive lim we can replace Rp by the

r
closure of R in R_. We use 3.1.
- p-1 P

For open w C R" we put

Glw) = {0+]x]H™ £ f € c™W), PO £ = 0)

and call ‘g the sheaf generated by the G(w). Since "P(D) is elliptic ‘3
is a sheaf of real analytic functions which satisfies the assumption
of 3.1..
Let R be so large that K¢ {x : |x| < R} =: Up
n [ = n g = n
(RN Kk) ) UR’ g (R \KPH) al UR , 523 (R \Kp) ~ UR-!—I' Then
Ry ¢ 522 cc 523. Every bounded component of 523 contains a point of RY<G
hence of SB]. So we can apply 3.1. to each of the finitely many compo-

nents of Ec'3 and to the sheaf g on X = RN Kp—

. We put .Ql =

;e
We obtain X >0, w > 0, X + o =1 and C > O such that

sup (l+{x|2)*m]f(x)|SC(sup (I+|x|2)nm|f(x)|))\(sup (1+':»<[2)—m|f(x)!)LL

XESZZ XESBI XES¢33

and hence for £ € R
p-1
A v

* #* #*
1€l < C €L DED,
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because this inequality is trivial if the sup in l&lg:l is taken on

for |x| = R.

In the following situation we can get even more. Let us call Ro =
R"\ Q. If for every v each connected component of & N\ Kv has nonempty
=R NU

o

intersection with Qo’ then & R large enough, fulfills all

1 R’
requirements on QI we needed in the proof above. This will be the case
if Qo is unbounded and 50 = R" N2 . In this case we put for £ € R(CK)
2 -
£, = sup JeG) ] (+|x[HT.
X €8
O .
Il ”o is a continuous norm on R(CR). Hence there is a bounded absolutely

convex set B in A (R) such that HfHo = sup {(u,f) : u € B }.

We define another topological invariant

* d
P
This is equivalent to the existence of a bounded subsolutely convex set

~ ‘ 1+d
G v Ja,a vk 3c: T scll 0]

B in the underlying Fréchet space H such that with Hy”o = sup {y(x) :
x € B} fory € H' we have:

1+d ' *d
Vp 3q,d C : #rd o< ¢
p 3q I Hq i Hp

Property G plays an important role in the theory of holomorphic
functions on Fréchet spaces (s. [2], [lo]). It implies that every

continuous linear map into a space with property (DN) is bounded ([22])-

We obtain immediately:

3.5. Proposition: If SBO := R®\ R is unbounded and .SEO = R\ Q

then for elliptic P(D) the space # (R) has property (R).

We close this section by two remarks:

Remark: (1) In special cases there are much sharper results:
(@ NF@®R™ THE ) for n = 2 (s. Wiechert [26] ).
(b) TFor convex bounded Q < R : #(Q) = H(Dn_l) (s. [20], [26]) .

1

Here H(m“'l) denotes the space of entire functions on ™ s H(Dn—]) the

space of holomorphic functions on the (n-1)-dimensional polydisc.

(2) For a convex set QcR™ and hypoelliptic P(D) condition (R) for the
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[y
. i
o

space H(R) follows by 2.4.(a) also from 1.2. Condition () resp. (%)
for convex resp. convex bounded @ sets in R" and for solutions even
of (hypo) elliptic systems of partial differential equations have been

proved in Petzsche [12].

4. Examples of spaces with or without (DN) are given at various places.
The first list is contained in [5], 11, § 4, n° 3, Cor. 2., for the equi-
valence to (DN) of the conditions used there s.[?Z],‘7.2.. Many signifi-
cant examples arise from the following type of spaces.

Let a = (a],az,a3, o), an.77+ « be a sequence of real numbers,

r €R {+ «}, We define
a.

= = . — Z .] oo .
A_(@) {x (x],xz, cee) 8 Hpr : [lee < + « for f < r}

Then we know from []7], 2.4,

4.1. Proposition: Ar(a) has (DN) iff r = + = .

For aj = log j we have A_(a) ¥ s, hence we recovered !.2. from 2.6.
even for arbitrary open %. In the nuclear case s is in the following sense

universal for the class of F such that with E = Fé we have HI(Q,-A/E) =0 :

the nuclear spaces with (DN) are exactly the subspaces of s, the class of

all nuclear F with H](Q, JfE) E'Ext](F,JV(Q)) = 0 is closed under subspaces.
|

For aj = jN we have A_(a)

H(EN), AO(a) = H(DN) the space of entire
functions in N variables and the space of holomorphic functions on the
polydisc respectively. By Kéthe's duality we have A_(a)' %’C7N; Ao(a)'=

H(ﬁ N), the spaces of germs of holomorphic functions in O, or on ﬁN respec—

tively. 1
For aj = M(j) we have Ao(a) T ¢ (K) the class of {Mp} ultradifferen~

table functions in the sense of Roumieu on K (s. [21]). The sequence {Mb}
is assumed to satisfy conditions (M1), (M2), (M3) of Komatsu [7 ], K to be

a compact in I{N with_sufficiently smooth boundary (s. [ 8]). As usual we

My -

have M(t) = sgp log tM 2 | For Mp =1(p!)s, s > 1 we obtain the Gevrey
p 1

classes. In this case we have a; = SN.

A function f € Cw(Q,E) in the case of the spaces above we can consider
as C -function f(x,\) depending on a parameter A\, which is e.g. a complex
parameter in the case of E = & H(BN) or a Gevrey-parameter in the case of

e (@!S) 1 E, _ ) ]
(K). H (,#7) = 0 resp. # O .means in these cases that the equation
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P(D) f(x,\) = g(x,\) is solvable (resp. not solvable) for any given

parametrized family g(x,\) with f(x,\) parametrized in the same way.

With the above definition for instance in the case ofIFN the domain
of definition of the parameter may vary not only locally but also with
the order of derivative in x. This is avoided by means of the following
definition: C:(Q,E) is defined as the set of all functions f € Cm(R,E)
such that for every x € { there is a neighbourhood U(x) C & and a closed

absolutely convex bounded set B ¢ E such that flU € Cm(U,EB). EB is the
continuously imbedded Banach subspace of E generated by B. C;’ denotes

the corresponding sheaf.

Since for (hypo) elliptic P(D) clearly A (R,E) € C:(Q,E) and P(D)

~E o B, . . .
T - Cb’ is a surjective map of sheaves, we cobtain an exact sequence

Cb
0 -+ M(R,E) — C:(Q,E) E£91+ C:(Q,E) - H](R,JVE) )

Hence we have that P(D) : C;(Q,E) - C:(Q,E) is surjectiv if and only if

'@, #% =0 . For £ = F!

b? F Fréchet spaces we obtain:

4.2, Proposition: P(D) : C:(R,E) - C:(R,E) is surjective iff F has

property (DN).

Hence P(D) : C (R,E) - C (2,E) and P(D) : CZ(&‘,E) - C:(R,E) are

N =N

surjective e.g. for E =&, s', and not surjective e.g. for E = H(D"),

im 1
ﬁ'kb x), {Mp} and K as above.

It is easy to see that it is possible to analogize the theory of

[23] for an analysis of HI(R,MVE; ragher than using it. In this case we
obtain conditions analogous to 5, S, where the I “k are replaced by the
dual (semi-) norms for a fundamental system of absolutely convex bounded
sets in an arbitrary (DF)-space E, the | H: come from the canonical norms
in / (R). Hence we are able to prove for elliptic P(D) and an arbitrary
(DF)-space E that H](Q,JVE) = 0 iff E has property (A). Due to 2.5. (b)
and e.g. [12] » 3.3. we know the sufficiency of (A) in this case.

Finally we want to remark that the sufficiency part of 2.6. implies
that P(D) has a continuous linear right inverse on every continuously

imbedded subspace F € CW(Q) with property (DN).
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