The Fixed Point Property for Continua
with Finitely Many Arc Components

Akira TOMINAGA (富 永 晃)

1. Introduction. A space X has the $fixed\ point$ $property\ (FPP)$ if each map $f:X\longrightarrow X$ leaves some point fixed — that is, there is a point $x\in X$ such that f(x)=x. Let X be a space approximated from within by subsets with FPP. Then it is natural to ask when X has FPP.

In [5] Young showed that if X is an arcwise connected Hausdorff space such that every monotone increasing sequence of arcs is contained in an arc, then X has FPP. While Borsuk [1] proved that every dendroid has FPP. Afterward Ward [3] generalized both of these results as follows: Let X be a chained acyclic Hausdorff space. Suppose that there is a point $e \in X$ such that for every ray R with initial point e the set $\bigcap_X \{R - \{e, x\}\}$ has FPP. Then X has FPP.

In Section 2 of this article we show a sufficient condition that a continuum, approximated from within by Peano continua with FPP, has FPP. As a consequence we have that for every positive integer n the Cartesian product of n Warsaw circles is a \mathbb{T}^n -like continuum with FPP and the n-fold suspension of Warsaw circle is an \mathbb{S}^n -like continuum with FPP, where \mathbb{T}^n , \mathbb{S}^n mean an n-dimensional torus, an n-sphere, respectively. Here refer that Dyer [2] proved that the Cartesian product of n chainable continua has FPP.

In Section 3 we consider FPP for continua with two or more arc components.

2. Continua approximated from within by Peano continua with FPP.

DEFINITION. A continuum is a compact connected metric space and a Peano continuum is a locally connected continuum. A map is a continuous function. Let (M, d) be a metric space and ε a positive number. A map $f:M \longrightarrow M$ is said to be ε -near to the identity map or simply to be ε -near if $d(x, f(x)) < \varepsilon$ for every $x \in M$.

THEOREM 1. Let X be a continuum for which there exists a sequence $C_1 \subset C_2 \subset \ldots$ of Peano continua such that X = $\bigcup_i C_i$ and every C_i has FPP. If the following (1) and (2) hold, then X has FPP.

- (1) For every $\varepsilon > 0$, there exist a C_i and a function $f: X \longrightarrow X$ such that for each s > i the restriction $f|_{S}$ is an ε -near map of C_s to C_i .
- (2) There exists a closed subset A, which may be empty, of $\bigcap_j \overline{X-C}_j$, such that every f in (1) is continuous on A, $f(A) \subset C_1$ and every point $x \in \bigcap_j \overline{X-C}_j$ A has a neighborhood U whose component containing x lies in a C_1 .

PROOF(SKETCH). Let $g:X\longrightarrow X$ be an arbitrary map. For every C_i and every $\delta>0$, there exists a C_s with $g(C_i)$ - $N_\delta(A)\subset C_s$, where $N_\delta(A)$ is a δ -neighborhood of A in X.

Then for every C_i , we have $f \circ g(C_i) \subset C_i$, and there exists an $x \in X$ with g(x) = x.

REMARK. An n-sphere S^n $(n \ge 1)$ satisfies condition (1) in Theorem 1 but has no FPP.

THEOREM 2. Suppose that for each k $(1 \le k \le n)$ X_k and $C_{k1} \subset C_{k2} \subset \ldots$ satisfy the conditions in Theorem 1. If every $C_{1i} \times C_{2i} \times \ldots \times C_{ni}$ $(i = 1, 2, \ldots)$ has FPP, then so does $X_1 \times X_2 \times \ldots \times X_n$.

To prove this it is sufficient to show that $X=X_1\times\ldots\times X_n$ and $C_i=C_{1i}\times\ldots\times C_{ni}$ $(i=1,\ 2,\ldots)$ satisfy the conditions in Theorem 1.

DEFINITION. Let X and Y be compact metric spaces. Then X is said to be Y-like if for every $\varepsilon > 0$ there is a map f of X onto Y such that for every $y \in Y$ the diameter of $f^{-1}(y)$ is less than ε .

COROLLARY 1. The Cartesian products of n Warsaw circles is a T^n -like continuum with FPP for $1 \leq n \leq \omega$.

COROLLARY 2. The Cartesian product of the above T^n -like continuum and an m-cell (1 \leq m \leq ω) has FPP.

For a set P, the symbols $P^{\#}$ and P^{*} denote the cone

over P and the suspension of P, respectively.

THEOREM 3. Assume that X and $C_1 \subset C_2 \subset \ldots$ satisfy the conditions in Theorem 1. If every $C_i^{\#}$ (C_i^*) $(i=1,\ 2,\ldots)$ has FPP, then so does $X^{\#}$ (X^*) .

To prove this, it is sufficient to show that $X^{\#}$ (X^*) and $C_1^{\#} \subset C_2^{\#} \subset \ldots$ ($C_1^* \subset C_2^* \subset \ldots$) satisfy the conditions of Theorem 1. In this case the vertex of $X^{\#}$ and the suspension points of X^* correspond to the set A in Theorem 1.

COROLLARY 3. For every positive integer n, the n-fold suspension of Warsaw circle is an S^n -like continuum with FPP. Also the Cartesian product of this continuum and an m-cell (1 \leq m \leq ω) has FPP.

REMARK. Recently Watanabe [4] obtained fixed point theorems for cones over certain general spaces.

3. Continua with finitely many arc components.

DEFINITION. A finite set T is called an ordered tree if (1) T is the set of vertices of a one-dimensional polyhedron containing no simple closed curve, and (2) T is a partially ordered set such that a pair p, q of points is the vertices of an edge if and only if one of them covers the other. (By "p covers q" in a partially ordered set $\{P, \geq\}$, it is meant that p > q, but that p > x > q for no $x \in P$.) A function $f:P \longrightarrow Q$ between partially ordered sets is isotone if $f(x) \geq q$

f(y) whenever $x \geq y$. A partially ordered set P has the fixed point property (FPP) if every isotone function $f:P \longrightarrow P$ leaves an element of P fixed, i. e., there exists an $x \in P$ with f(x) = x.

LEMMA 1. Let P be a partially ordered finite set. If there exists a maximum or minimum element in P, then P has FPP.

The case where \it{P} has a minimum element follows from Knaster-Tarski's theorem.

LEMMA 2. Every ordered tree has FPP.

This follows from induction on the number of elements of T. Let g be a collection of mutually exclusive subsets G_{λ} of a topological space X such that $\bigcup_{\lambda} G_{\lambda} = X$. Then we define a binary relation \leq on g as follows: For G_{λ} , $G_{\mu} \in g$, $G_{\lambda} \leq G_{\mu}$ if and only if there exists a finite sequence G_{1} , G_{2} ,..., G_{k} of elements of g such that $G_{1} = G_{\lambda}$, $G_{k} = G_{\mu}$ and $\overline{G}_{i} \cap G_{i+1} \neq \emptyset$ ($1 \leq i \leq k$). The relation \leq is not necessarily a partial order.

LEMMA 3. Let G_1 , G_2 be arc components of a space X, and let $f: X \longrightarrow X$ be a continuous map. If $f(G_1) \cap G_2 \neq \emptyset$, then $f(G_1) \subseteq G_2$.

Let g be the collection of arc components of a topological

space X. If $f: X \longrightarrow X$ is continuous, then for every $G_{\lambda} \in g$ there exists a $G_{\mu} \in g$ with $f(G_{\lambda}) \subset G_{\mu}$. Thus we define a function $f^*: g \longrightarrow g$ by $f^*(G_{\lambda}) = G_{\mu}$. From Lemma 3 we have

LEMMA 4. If $G_1 \leq G_k$, then $f^*(G_1) \leq f^*(G_k)$.

THEOREM 4. Let X be a continuum with finitely many arc components G_1, G_2, \ldots, G_n such that each \overline{G}_i has FPP. If $g = \{G_1, G_2, \ldots, G_n; \leq \}$ is an ordered tree or a partially ordered set with a maximum or minimum element, then X has FPP.

This follows from Lemmas 4, 2 and 1.

COROLLARY 4. Let X be the continuum in Theorem 4. Let Y be an arcwise connected continuum such that each \overline{G}_i × Y has FPP. Then X × Y has also FPP.

THEOREM 5. Let X be a continuum with finitely many arc components G_1 , G_2 ,..., G_n satisfying the following conditions:

- (1) For every i there exists a monotone increasing sequence $C_{i1} \subset C_{i2} \subset \ldots$ of subsets of G_i such that $G_i = \bigcup_j C_{ij}$ has FPP.
 - (2) $\bigcap_{j} \overline{G_{i} G_{i}}_{j} = \overline{G}_{i} G_{i} \quad (1 \leq i \leq n).$
- (3) $g = \{G_1, G_2, \ldots, G_n; \leq \}$ is an ordered tree each of whose elements is covered by at most one element.

Then X has FPP.

PROOF(SKETCH). Let $f: X \longrightarrow X$ be a map. Then by Lemma 2

there exists an s with $f(G_s)\subset G_s$. If G_s is the maximum element of g, then $G_s=C_{sj}$ for some j, and hence f leaves a point of C_{sj} fixed. Suppose that G_s is not the maximum element. If $f(C_{sj})\subset C_{sj}$ for some j, then there exists a fixed point of f in C_{sj} . If for every j, $f(C_{sj})$ is not contained in C_{sj} , then there exist a point $x_0\in X$ and G_t such that $x_0\cup f(x_0)\subset \overline{G}_s-G_s\subset G_t$. Therefore we have $f(G_t)\subset G_t$. Continuing this process, we can find a fixed point of f.

COROLLARY 5. Let X be the continuum in Theorem 5. Let Y be an arcwise connected continuum such that $C_{ij} \times Y$ $(1 \le i \le n, j = 1, 2, ...)$ have FPP. Then X × Y has FPP.

REFERENCES

- [1] Borsuk, K.: A theorem on fixed points, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 2 (1954), 17 20.
- [2] Dyer, E.: A fixed point theorem, Proc. Amer. Math. Soc. 7 (1956), 662 672.
- [3] Ward, L. E. Jr.: A fixed point theorem for chained spaces, Pacific J. Math. 9 (1959), 1273 1278.
- [4] Watanabe, T.: Approximative shape theory, 1982 (preprint).
- [5] Young, G. S.: The introduction of local connectivity by change of topology, Amer. J. Math. 68 (1946), 479 494.

Fuculty of Integrated Arts and Sciences,
Hiroshima University, Hiroshima, JAPAN