goooboooogn
05110 19840 1-25

[,

A Fast Parallel Merging Algorithm

for
2-3 trees

DL ERAE R

(Etsuya SHIBAYAMA)

Introduction

A parallel algorithm is presented which merges two sorted
lists represented as 2-3 trees of lengths m and n (msn),
respectively, with at most 2m processors within 0(log n) time. The
consideration for the time complexity includes comparisons,
allocation of processors, and construction of an output 2-3 tree.
The algorithm is performed without read conflicts.

Since a 2-3 tree is a dynamic data structure, the algorithm
inevitably becomes dynamic and thus it is hard to be expressed on a
static parallel computation model such as a SIMD (single
instruction stream, multiple data stream) model. In section 2 we
introduce a new parallel computation model consisting of processors
which are connected via communication lines to form a 2-3 tree.

The most significant feature of the model is that its communication
lines are allowed to be changed dynamically during execution time.
The parallel merging algorithm introduced in section 3 is designed
and analyzed on the model.

The algorithm presented in this paper is competing with those
which merge sorted lists represented as arrays (e.g. [8]).
Generally speaking, however, it takes at least O((m+n)/p) time to
construct an array of length m+n using p processors. Therefore our
merging algorithm is more effective than those whose outputs are

arrays especially when n is by far greater than m and p.

Section 1 2-3 trees

Definition 1.1
A 2-3 tree [1] is a tree which satisfies that:

(1) each non-leaf node has 2 or 3 sons (i.e. descendant nodes).

-1 =

]

(2) each path from the root to a leaf is of the same length.

[

In the sequel, if a non-leaf node has 3 sons, they are called
the first son, the second son, and the third son, respectively,
from left to right. On the other hand, if a node has 2 sons, they
are called the first son and the second son, respectively, from
left to right.

Remark that a tree which consists of the single node is also a
2=-3 tree.

Definition 1.2
A 2-3 tree represents a sorted list in the following manner

[11].

(1) Bvery element of the sorted list is assigned to a leaf of
the 2-3 tree in increasing order from left to right.

(2) Every non-leaf node N which has 3 sons contains 4 values
min(N), 1stmax(N.), 2ndmax(N), and max(N) defined below, whereas
every non-leaf node N which has 2 sons contains 3 values min(N),
1stmax(N), and max(N).

min(N) = " the least element assigned to the leaves of the

subtree whose root is N "

max(N) = " the largest element assigned to the leaves of the

' subtree whose root is N "
1stmax{N) = " the largest element assigned to the leaves of the
subtree whose root is the first son of N "
2ndmax(N) = " the largest element assigned to the leaves of the
subtree whose root is the second son of N " »

For each leaf node N, we also define min(N) = max(N) = "the
element assigned to N".

0

The 2-3 tree of Fig. 1.1 represents the sorted list {2, 3, 5,
7, 8, 9, 11, 15, 16}. Here N1, NZ’ **t, and N7 are the names of
the non-leaf nodes. In each non-leaf node N, (0=is7), min(Ni),
1stmax(Ni), 2ndmax(Ni) (if N, has 3 sons), and max(Ni) are written

from left to right.

-2 -

In order to execute dictionary operations (e.g. search,
insert, and delete operations) efficiently on a 2-3 tree, l1stmax(N)
and 2ndmax(N) provide sufficient information [1]. However, min(N)
and max(N) are necessary for the algorithm presented in section 3.

4
>

Example 1
We show a way to delete the leaf in Fig. 1.1 to which the

element 9 is assigned.

STEP 1 : Traversing each node N which satisfies
min(N)<9<max(N) from the root to a leaf. That is, Ny, Nz,
Ng, and the leaf to which the element 9 is assigned are
traversed.

STEP 2 : Detaching the leaf. (See Pig. 1.2.)

STEP 3 : Fusing N, and N7. (See Fig. 1.3.)

STEP 4 : Fusing N, and N3' (See Fig. 1.4.)

STEP 5 : Deleting N,. (See Pig. 1.5.)

Definition 1.4

(1) The height of a node in a 2-3 tree is the length of a
path from the node to a leaf. The height of a leaf node is O.

(2) The height of a 2-3 tree is that of its root. If T is a
2-3 tree, high(T) stands for the height of T.

(3) The depth of a node in a 2-3 tree is the length of the
path from the root to the node. The depth of the root is O.

O

For instance, the height of the 2-3 tree in Fig. 1.1 is 3.

Section 2 Parallel Computation Model

In this section we introduce a parallel computation model
consisting of processors which form a 2-3 tree via communication
lines. Here, for convenience, we regard a tree as a 2-3 tree
even if some of its nodes has only one son. Remember that in
Example 1 the delete operation is performed cleverly by allowing
some node to have only one son temporarily.

Definition 2.1

A 2-3 parallel computation model consists of either the

-3 =

(™)

single processor or the ones which are formed via bi-directional
communication lines so that:

(1) the root processor has 2 or 3 sons.

(2) each processor which is neither the root nor a leaf has
1, 2, or 3 sons. However, each one which has no brothers must
have 2 or 3 sons.

(3) each leaf is of the same depth.

(See Pig. 2.1.)

O

In order to change communication lines of a 2-3 parallel
computation model dynamically, we introduce the following
operations, which are a generalization of the delete operation
in Example 1. Prune Operations detach useless leaves and
Re~balance Operations attempt to let each non-leaf processor
have two or three sons. Remark that the height of a non-root

processor never changes by the operations until it is detached.

Prune Operation :

A processor whose sons are leaves detaches some but not all
of them. (See Fig. 2.2.) Detached processors are disabled.

0

Re-balance Operation :
(1) When the root processor Pr has only 2 or 3 grandsons, it

detaches the sons and adopts its grandsons as its own sons.
(See Fig. 2.3)

(2) When the root processor Pr has more than 3 grandsons and
some of them has just one son, processors are re-formed as
follows: first, Pr adopts some grandsons as sons of their uncles
in order that every son of Pr has 0, 2, or 3 sons; next, Pr
detaches each son which has no sons. (See Fig. 2.4.)

(3) If a non-root processor P_ has 2 or 3 sons and some of
them has Jjust one son, processors. are re-formed as follows:
first, PX adopts some grandsons as sons of their uncles in order
that each son of PX has 0, 2, or 3 sons; next, PX detaches each
son which has no sons. (See Fig. 2.5.)

0

- 4 -

When a processor PX executes‘Re—balance Operation,
communication lines between PX and its sons as well as those
between its sons and its grandsons are changed. Therefore,
Re-balance Operation of PX and that of its parent conflict with
each other if they are performed simultaneously. On the other
hand, since Re-balance Operation of P, and that of its
grandparent do not change the same communication lines, they do
not conflict with each other even if they are performed
parallelly. Supposing that the parent of PX in Pig. 2.5 has
just one son, the re-formation violates the condition (2) of
Definition 2.1. In order to avoid this problem, P_ and its

\ X
grandparent must perform Re-balance Operations in parallel.

Definition 2.2

A 2-3% dynamic computation model satisfies:

(1) the conditions as a 2-3 parallel computation model (i.e.
Definition 2.1).

(2) each non-leaf processor is able_to perform‘Prune
Operation or Re-balance Operation in parallel with arbitrary
processors except its parent and sons.

0

With Prune and Re-balance Operations, an effective dynamic
scheduling algorithm for a sequence of associative operations
can be implemented.

Example 2 : Computing 3.1+5+6+18+7+2+11+4.

In Fig. 2.6, each node is a processor, each edge is a
communication line, each number enclosed in a node is stored on
the local memory of the corresponding processor.

Attaching the symbol '+' to each non-leaf node in Fig 2.6,
the processor system is regarded as a parse tree of
((3.145)+(6+18))+((7+2)+(11+4)), which suggests a natural way to
solve the problem in parallel. However, if we assume that it
takes ten time units to add a decimal fraction and an integer
number, whereas it takes only one time unit to add two integer
numbers, the parsing does not give an efficient answer. In this
case the problem is solved more cleverly by Prune and Re-~balance

-5 =

¥
Operations as follows.

Step 1: Each processor of a height 1 receives a value from the
second son, sends it to the first son, and detaches the second
son. Here Prune Operations are used. (See Fig. 2.7.)

Step 2: Each leaf processor adds the numbers allocated. 1In
parallel, each processor of a height 2 performs Re-balance
Operation. (See Fig. 2.8.)

Step 3: The leftmost leaf processor continues to compute
3.1+5. The rightmost processor of a height 1 performs the
similar operation to that in Step 1. In parallel, the root
processor performs Re-balance Operation. (See Fig. 2.9.)

After Step 3, the processors are re-formed as PFig. 2.10.
Here, the leaf processors add numbers and the non-leaf ones
devote to allocation of their respective sons. This problem is
solved as if the parsing (3.1+5)+((6+18)+((7+2)+(11+4))) was
used. Neglecting the cost of communication and that of
Re-balance Operations, this method is more efficient than that
given by the parsing ((3.1+5)+(6+18))+((7+2)+(11+4)).

In the following, we show a parallel algorithm which
concatenates several 2-3 trees on a 2-3 dynamic computation
model. = This algorithm will be used as a subroutine in the
parallel merging algorithm in section 3.

Definition 2.3
(1) Suppose that T and T' are 2-3 trees whose roots are N and

N', respectively, TKT' stands for max(N)<min(N'). In other
word, T<T' means that each element in the sorted list
represented by T is less than each element in the sorted list
represented by T'

(2) If 2-3 trees T and T' (T<T') represent the sorted lists
{u1,u2,°" <vy)s
respectively, a 2-3 tree which represents {u1,u2, ',uk, VisVo,

e o 0 e s 3

,uk}’(u1<u2<"'<uk) and {v1,v2, ,v1} (v1<v2<

,Vl} is called a concatenation of T and T'.

0

A concatenation of T and T' (T<T') is obtained by applying

-6 -

the féllowing operation, repeatedly. For simplicity, we omit
the detail of updating information on the non-leaf nodes.

Concatenate Operation :
CASE 1 high(T)=high(T"')
Creating a new node and letting the roots of T and T' be

its first son and the second son, respectively. (See Fig.
2.11.)
CASE 2 high(T)<high(T")
The leftmost node of T' whose height is high(T)+1 is called
N. If N has 2 sons, T and T' is concatenated as Fig. 2.12.
Otherwise, they are splited and fused as Fig 2.13.
CASE 3 high(T)>high(T")
Similar to CASE 2.

L

In case of Fig. 2.13, a concatenation of T and T' is
obtained by applying Concatenate Operation, repeatedly. In any
case, the operation produces one or two 2-3 trees which are
higher at least by one than the lower one of T and T'.

[Algorithm - Concatenating several 2-3 trees-— |

For simplicity, first, we consider the case of Fig. 2.14,
where each node is a processor, each edge is a communication
line, each triangle is a 2-3 tree, and each arrow represents a
pointer to the corresponding 2-3 tree. We assume that the 2-3

e e

trees are on a shared memory and that T1<T2< <T8 is
satisfied.

Step 1: Each processor of a height 1 performs Re-balance
Operation as if each 2-3 tree pointed by an arrow from its son
were its grandson. (See Fig. 2.15.)

Step 2: Each processor of a height 2 performs Re-balance
Ope?ation. In parallel, each leaf processor applies Concatenate
Operation. (See Fig. 2.16.)

Step 5: Each processor of an odd height performs Re—balénce

Operation. (See Fig. 2.17.)

L

-

)

After completing Step 3, Re-balance and Concatenate
Operations are repeatedly performed until only one 2-3 tree
remains. (PFig. 2.18)

Generally, the following program computes a concatenation
of several 2-3 trees. Here the processors are synchronized such
that each processor which finishes Step 1 (or 2) waits until the
others complete the Step.

Program 1 :
Comment: Assume that each non-leaf processor has 2 or 3 sons

and that each leaf processor has just one 2-3 tree;
While there remain more than one 2-3 trees Do
Step 1: Each processor of an odd height performs a
Re-balance Operation;
Step 2: FEach leaf processor performs Concatenate
' Operation. 1In parallel, each non-leaf processor of
an even height performs Re-balance Operation;
EndWhile;

0

By the following lemma, the 2-3 dynamic computation model
does not violate the condition of Definition 2.1 in execution
time.

Lemma 2.4

If a 2-3 dynamic computation model satisfies the followihg
condition (1), Re-balance Operations of the non-leaf processors
whose heights are even re-form the model so that the condition
(2) is satisfied. On the other hand, if the model satisfies the
condition (2), Re-balance Operations of the non-leaf processors
whose heights are odd re-form the model so that the condition
(1) is satisfied.

(1) Each non-leaf processor of an even height has 2 or 3 sons
and each non-leaf processor of an odd height has 1, 2, or 3
sons. ;

(2) Each non-leaf processor of an odd height has 2 or 3 sons
and each non-~leaf processor of an even height has 1, 2 or 3
sons.

Proof: Obvious.

O

Theorem 2.5
On a 2-3 dynamic computation model with at most 2m

processors, m 2-3 trees which contain n leaves can be
concatenated within O(log n) time by Program 1.

Proof:

By Lemma 2.4, before entering Step‘2 in Program 1, each
leaf processor has 2 or 3 2-3 trees. If it has 2 2-3 trees, it
can apply Concatenate Operation to them so that the height of
the lowest 2-3 trees is increased at least by 1. Otherwise, by
applying the operation at most twice, the height of the lowest
2=3 trees is increased at least by 1. Since there exist only n
leaves, Step 2 is not executed more than logzn time.

U

Section 3 A Parallel Merging Algorithm

In this section, we design and analyze a parallel algorithm
which merges two sorted lists A = {a1,a2,"',am} (a1<a2<"'<am)
and B = {b1.,b2,"',bn} (by<by<"""<b,). For simplicity, we
assume that;

1) A and B are disjoint from each other; 2) ms<n; 3) b <ap. The
last assumption seems strange but the algorithm can be easily

modified so that it merges two sorted lists which do not satisfy

the assumption. 1In the sequel, A and B are 2-3 trees which

represent A and B, respectively.
In order to use pipelining, we had better consider that a

list of subtrees in B represents a subset of B. To speak more
precisely, when B, Ez;...,Ek (E1<32<"’<§k) are disjoint
subtrees of B and represent the subsets B1, B2, ..., and Bk,
respectively, the list of them represents the union of By,
Byy..., and By -

In this section, for convenience, the notations for the
sets (e.g. € and u) will be used as if the sorted lists and the
lists of 2-3 trees were sets. TPor instance, if S is a sorted

- 9 -

1y
list, veS means that v belongs to S.

Definition 3.1
The list of 2-3 trees which represents the sorted list
{bjeElu<bj<v} with the fewest number of disjoint subtrees in B

is denoted as Blu,v].

U

The sorted list B[u,v] is determined uniquely by Theorem
3.2 which are to be stated.

In the sequel, we assume that the sorted list A is
represented by a 2-3 dynamic computation model, whereas B is
represented by an ordinal 2-3 tree. For instance, Fig. 3.1
illustrates the 2-3 dynamic computation model which represents
the sorted 1list {6, 10, 13, 21, 23}. Here each node is a
processor, each edge is a communication line, P1, P2, tty P8
are the names of the processors, each value enclosed with a node
is steored on the local memory of the corresponding processor.

The merging algorithm is divided into the following 3
phases.

Phase 1: Dividing B into m lists of subtrees E[—“,aj],
E[ai,az],
than every element of AuB.

*, and E[am_1,am]. Here, we assume that -® is less

Phase 2: Constructing m 2-3 trees which represent

| H 2 0 @ :
{bj;bj<a1}u{a1}, {bj.a1<bj<a2}u{a2}, , and
{bjiam_1<bj<am}u{am}, respectively. |
Phase 3: Concatenating the 2-3 trees constructed in Phase 2

using the algorithm introduced in section 2.

L

By Phase 1,2, and 3, A and B can be obviously merged. For
example, when A and B are the 2-3 trees in Fig. 3.1 and 3.2,
respectively, each Phase is executed as follows. For
simplicity, in Fig. 3.2, the information stored on the non-leaf
nodes is omitted. In the sequel, "Pi sends a 2-3 tree %o Pj"
means that Pi sends the address of the root in the 2-3 tree
(i.e. a pointer to it) to P.. Before execution the processors

= J
and B are formed as PFig. 3.3.

- 10 -

Phase 1:

Step 1: P, divides B into B[-=,10] and B[10,23], and sends
the 2-3 trees belonging to them to P2 and P3’ respectively.
Here the value 10 is the 1stmax of the root in A.

Step 2: P, receives the 2-3 trees in B[-=,10], divides it
into B[{-«,6] and B[6,10], and sends the 2-3 trees belonging to
them to P4 and P5, respectively. In parallel, P3 receives the
2-3 trees in B[10,23], divides it into B[10,13], B[13,21], and
B[21,23], and sends the 2-3 trees belonging to them to P6’ P7,

and Pg, respectively.

0

Step 1 and 2 mentioned above is improved by pipelining.
For instance, just after P2 receives the leftmost itree in
Fig. 3.4, the processor can determine that the tree belongs to
B[-»,6] and send it to P4. For this, P, need not wait until it
receives the other 2-3 trees. In this respect it is
advantageous to represent a sorted list by a list of 2-3 trees
instead of a 2-3 tree itself.

Phase 2:

Each leaf processor concatenates the 2-3 trees received in
Phase 1 and one which represents the sorted list consisting of
the element assigned to the processor. For instance, P4
concatenates the 2-3 trees in B[-=,6] and one which represents

{6}.

Phase 3:
By the algorithm introduced in section 2, the 2-3 trees

developed in Phase 2 are concatenated.

L

By Theorem 2.5, Phase 3 is completed in O(log n) time. 1In
Phase 2, each leaf processor performs several Concatenate
Operations.

The most essential part of Phase 1 is to divide some Blu,v]
into Blu,w] and B[w,v] (u<w<v). That is, in Fig. 3.3 - 3.5, P,
and P obviously divide B[-»,10] and B[10,23], respectively, and
if we consider that B and B[-~,23] consisting of B alone are

- 11 -

12

identical, P, divides B[-=,23]. TFor the time being, we show
some properties of B[u,v] and an efficient way to compute Blu,w]
and B[w,v] from B[u,v] (u<w<v). By the following theorem, we
can determine which 2-3 trees belong to Blu,v].

Theorem 3.2
Assuming that N is a node in B, the following (1) and (2)

are equivalent.

(1) the 2-3 tree whose root is N belongs to Blu,v].

(2) u<min(N)Amax(N)<v 1s satisfied but if N has its parent
Np in B, u<min(Np)Amax(Np)<v is not satisfied.

Proof :
Assume that T and Tp are the 2-3 trees whose roots are N

and Np, respectively.

(1) => (2)

The 2-3 tree T represents a subset of {b.ju<b.<v} since it
belongs to Blu,v]. Therefore u<min(N)Amax(N)<v is satisfied.
On the other hand, if u<min(NP)Amax(N)<v were satisfied, by
removing each subtree of Tp from Blu,v] and adding T _to it; we
dudbi<v} but

- J J
which has fewer elements than B[u,v]. Since this would

would get a list of 2-3 trees which represents {b

contradict the definition of Blu,v], u<min(Np)AmaX(NP)<v is not
satisfied.

(1) <= (2)

By u<min(N)Amax(N)<v, the 2-3 tree T, a subtree of T, or a
supertree of T must belong to Blu,v]. If a subtree of T
belonged to B[u,v], by removing each subtree of T in B[u,v] and
adding T to it, we would get a list of 2-3 trees which
represents {bj}u<bj<v} but which has fewer elements than
Blu,v]. If a supertree of T belonged to B[u,v], Blu,v] could
not represent {b.|u<b.<v} since u<min(N_)Amax(N_)<v is not
gsatisfied. Therefore T belongs to E[u,v].

0

Corollary 3.3

- 12 -

Assuming that N is a node in B, the following (1) and (2)
are equivalent. 7
(1) N is a node in a 2-3 tree which belongs to Blu,v].
(2) u<min(N)amax(N)<v are satisfied.

Proof :
Obvious from Theorem %.2.

O

The next theorem suggests how to compute Blu,w] from Blu,v]
(u<w<v).

Theorem 3.4
Agssume that T whose root is N is a subtree of B When

uwdv is satisfied, a necessary and sufficient condition for T's
belonging to Blu,w] is that either (1) or (2) is satisfied.

(1) T is an element of B[u,v] such that max(N)<w is
satisfied.

(2) T is a subtree of some element in B[u,v] such that
max(N)<w is satisfied but when N_ is the parent of N, max(Np)<W

P
is not satisfied.

Proof :

=> (1) or (2)

By Theorem 3.2, max(N)<w is obvious. By Corollary 3.3, N
is a node in some 2-3 tree which belongs to Bl[u,v]. Therefore,
T is either a 2-3 tree in B[u,v] or one which is a subtree of
some 2-3 tree in B[u,v]. In the former case, (1) is satisfied.
In the latter case, u<m1n(N) A max(Np)<w is not satisfied. 1In
thls case, however, since N is also in some 2-3 tree which

belongs to Blu,v], u<m1n(Np§ is satisfied. Therefore, max(N

p)<w

ig not satisfied.

(1)

By Theorem 3.2, min(N)<u is satisfied. Therefore if N does
not have its parent in B, T belongs to B[u,v]. Otherwise
supposing that Np is the parent of N, u<min(Np) A max(Np)<v is
not satisfied by Theorem 3.2. Therefore u<min(Np) A max(Np)<w

- 13 -

[sLN

is not satisfied and so T belongs to B[u,w].

<= (2)

Obvious.

0

Similarly supposing that T whose root is N is a subtree of

B and that u<w<v is satisfied, a necessary and sufficient
condition for T's belonging to Blw,v] is that either (1') or
(2') is satisfied.

(1') T is an element of Blu,v] such that w<min(N) is
satisfied.

(2') T is a subtree of some element in B[u,v] such that
w<min(N).

When B is the 2-3 tree in Fig. 3.2, B[-=,21] consists of
the 2-3 trees §1,
consider how to determine B[-=,6] and B[6,21] from them. PFirst,
by Theorem 3.2, B,, EB’ and 34 belong to B[6,21]. On the other
hand, §1 which does not belong to neither B[-»,6] nor B[6,21]
has to be divided. By the theorem, if N is a node in B, and 1is
the root of some 2-3% tree in either B[-«,6] or B[6,21],
min(N)<6<max(N) must be satisfied. Therefore, if only we

§2, EB’ and §4 in Pig. 3.8. As an example, we

examine the sons of N,, N3, and N, in Fig. 3.8, B[-=,6] and
B[6,21] are determined. By the following lemma, every node N
which satisfies min(N)<6<max(N) are searched by traversing them
from the root of B, to a leaf.

Lemma 3.5

Assume that N and N'(NXN') are nodes in a 2-3 tree. For
some value w, if nin(N)<w<max(N) and min(N')<w<max(N') are

satisfied, N is either an ancestor or a descendant of N'.

Proof :

If N is neither an ancestor or a descendant of N', the 2-3
trees whose roots are N and N', respectively, would be disjoint
from each other. This would contradict min(N)<w<max(N) and
min(N')<w<max(N"). '

- 14 -

[

Now we show that Phase 1 can be performed in 0(log n) time

with at most 2m processors. The following program, which is a
generalization of the example of Fig. 3.3-3.5, expresses how
each processor works in Phase 1. Here, min(P), 1stmax(P),
2ndson(P), and max(P) are defined analogously to Definition
1.2, pred(ai)zai_1 (if i>1), and pred(a1)=—w. The processors

are synchronized by message passing.

[Program 2 - dividing B -]
For each processor P:
For h From high(B) To O Step -1 Do
If P is not the root Then
P receives each 2-3 tree of a height h which belongs to
Blpred(min(P)),max(P)] from the parent
EndIf;
If P has 2 sons
Then |
P sends the 2-3 trees of a height h which belong to
Blpred(min(P)),1stmax(P)] or B[1stmax(P),max(P)] to
the respective sons
Else If P has 3 sons Then _
P sends the 2-3 trees of a height h which belong to
Blpred(min(P)),1stmax(P)], B[1stmax(P),2ndmax(P)], or
B(2ndmax(P),max(P)] to the respective sons
EndIf EndIf;
EndFor

U

.

The following lemmas and theorem guarantee that Phase 1 is
completed in O(log n) time.

Lemma %.6

Suppose that Pa is the root processor of A and it has just
2 sons. By executing Program 2, Pa sends each 2-3 tree of a
height h (O<hs<high(B)) which belongs to either §[—m,1stmaX(Pa)]
or B[1stmax(P,),max(P_)] to the appropriate son within
O(high(B)~h+1) time.

- 15 =

£y}

16
Proof :

If h=high(B), the lemma is obviously satisfied. When
O<h<high(B), P_ searches the node Ny in B of a height h+l which
satisfies that min(Nb)<1stmax(Pa)<max(Nb) within O(high(B)-h)
time if exist. Therefore the 2-3 trees which belong to
B[—m,1stmaX(Pa)] or E[1stmax(Pa),max(Pa)] are determined in
O0(high(B)-h+1) time.

O

Similarly, if the root processor Pa has 3 sons, it is
proved that P, sends the 2-3 trees of a height h which belong to
E[—w,1stmax(Pa)], E[1stmax(Pa),anmax(Pa)}, or
E[anmax(Pa),max(Pa)] within O(high(B)-h+1) time to the

respective sons.

Lemma 3.7

Assume that a processor Pa which is neither the root nor a
leaf in A is in a depth 4 and has just 2 sons. If Pa receives
the 2-3 trees of a height h (O<h<high(B)) which belong to
E[pred(min(Pa)),max(Pa)] within O(high(B)-h+d) time, the
processor sends the 2-3 trees of a height h which belong to
B[pred(min(P)),1stmax(P)] or B[1stmax(P),max(P)] to the
respective sons within O(high(B)-h+d+1) time.

Proof :

Suppose that T is a 2-3 tree of a height h which belongs to
Blpred(min(P)),1stanx(P)] or B[1stmax(P),max(P)]. If T also
belongs to B[pred(min(P)),max(P)], P,
the appropriate son within O(high(B)+d-h+1) time. Otherwise the

can obviously send it to

lemma is proved similarly to Lemma 3.6.

O

Similarly, if Pa receives the 2-3 trees of a height h
(0Oshshigh(B)) which belong to E[pred(min(Pa)),max(Pa)] within
O0(high(B)-h+d) time, the processor sends the 2-3 trees of a
height h which belong to B[pred(min(B)), 1stmax(By],
B[1stmax(39 2ndmax(B)] or B[anmax(d) max(By)] to the respective
sons within O(high(B)-h+d+1) time.

- 16 -

et
-~3

rem 5.8
g[_m,a1], E[a1,a2], Tty andVE[am_1,am] are obtained within

0(log n) time by Program 2.

Proof :
By Lemma 3.6 and 3.7, the following (*) is proved by
induction on h.
(*) If P, is a non-root processor of A whose depth is d, the
processor receives the 2-3 trees of a height h (0<hshigh(3B))

which belong to Blpred(min(P)),max(P)] within O(high(B)+d-h)
time.
Therefore, the i-th leaf processor in the left to right

order has received the 2-3 trees in E[pred(ai),ai]‘within

O(high(B)+high(R))=0(log n) time. N

By Theorem 3.8, Phase 1 is completed in 0(log n) time.

Lemma 3.9
Supposing that Blu,v] is the 1list of 2-3 trees

{r,,0,," ", 1y} (T1<T2<"'<Tk), there exists k' (15k'Sk) such
that the following conditions (1),(2), and (3) are satisfied.

(1) hign(T,)Shigh(T,)<" " Shigh(T,,)> " >high(T,)

(2) In {T1,T2,"’,Tk,}, there are at most two 2-3 trees of
the same height.

(3) Tn A1 g0 Tyryps
of the same height.

,Tk}, there are at most two 2-3 trees

Proof :

By dividing a list of 2-3 trees which satisfies the
condition (1), (2), and (3) in the way we have described, two
lists of 2-3 trees which also satisfy the conditions are
obtained.

[

If a 1list of 2-3 trees which represents a sorted list of a
length n' satisfies the conditions (1),(2), and (3) in Lemma
5.5, it is known that the 2-3 trees can be concatenated within
0(log n') time [1]. Therefore Phase 2 is performed within 0(log
n) time. Since Phase 3 is also completed within O(log n) time

- 17 -

18

by Theorem 2.5, the parallel merging algorithm is performed
within 0(log n) time.

At last we show that the parallel merging algorithm is
executed without read conflicts (i.e. simultaneous reading of
the same memory word). Obviously, Phase 2 and 3 are executed
without read conflicts. On the other hand, in Phase 1, the
following are satisfied.

(1) Bach non-root processor reads a node only if it is in a
2-3 tree which has been received from the parent.

(2) Bach non-leaf processor does not read a node in a 2-3
tree which has been sent to a son.

(3) Bach non-leaf processor sends 2-3 trees which are
disjoint from one another.

By (1) and (2), if a processor is either a descendant or an
ancestor of another, read conflicts between them never happen. |
By (3), if a processor is neither a descendant nor an ancestor
of another, read conflicts between them never happen.

Acknowledgement

The author would like to express his deep gratitude to
Professor Reiji Nakajima for his kind and appropriate advice.
The author also thanks Tatsuya Hagino, Tatsuyuki Akiyama, and
Takashi Sakuragawa who read earlier drafts and gave him
worth-while suggestions.

Reference

1. AHO, A.V., HOPCROFT, J.E., and ULLMAN, J.D. The Desingn and
Analysis of Computer Algorithms. Addison-Wesley, (1974).

2. BROWN, M.R. and TARJAN, R.E. A Past Merging Algorithm. JACM,
Vol. 26(1979), No. 2, pp. 211-226.

3. DEKEL, D. and SAHNI, 3. Binary Trees and Parallel Scheduling
Algorithms. CONPAR 81, Lecture Notes on Computer Science
Springer-Verlag, Vol. 111, pp. 480-492.

4. GAVRIL, F. Merging with Parallel Processors. CACM, Vol. 18, .
No. 10(1975), pp. 588-591. |

- 18 =

oot
[Sae]

5. HIRSCHBERG, D. 8. PFast Parallel Sorting Algorithms. CACM,
Vol. 21, No. 8(1978), pp. 657-661 ,

6. HWANG, F.K. and LIN, S.A. A Simple Algorithm for Merging Two
Disjoint Linearly Ordered Sets. SIAM J. on Computing, Vol. 1, No.
1(1972), pp. 31-39.

7. PREPARATA, F. P. New Parallel Sorting Schemes. IEEE Trans. on
Computers, C-27 No. 7(1978) pp. 669-673.

8. SHILOACH, Y. and VISHIKIN, U. Finding the Maximum, Merging,
and Sorting in a Parallel Computation Model. Journal of
Algorithms, Vol. 1, No. 2(1981), pp. 81-102.

9. VALIANT, L.G. Parallelism in Comparison Problem, SIAM J. on
Computing, Vol. 4, No. 3(1975), pp. 348-355.

-19 -

Fig.2.] — A 2-3 computation model— ﬁb
& @))ﬁ

® (R)

a8 8 ﬂ ﬂﬂ Fig, 22

Fig. 23

& ®)
KRR
ONCNOROINORCRCONG
AAAR A

/]

Fig 24

22

(@)

Rg. 216

Fg. 217

(C) @ ©

Fig.35

