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On Galois module structure of the cohomology

groups of an algebraic variety

BARGARMR) P EHE—

( Shoichi Nakajima )

§ 1. Main results

Let k be a field and f : X —= Y a finite Galois cover-
ing between projective varieties X and Y over k . Put
G = Gal(X/Y) . A coherent sheaf % on X is called a coher-
ent G-sheaf when the group G acts on f in a way compatible
with its action on X . TFor a coherent G-sheaf E} on X ,
the group G naturally acts on the cohomology groups
Hi(X,E%) (i=0) . We are concerned with the k[G]-module

structure of Hl(X,}') (i=0) .

Our general result is the following two theorems.

Theorem 1. Assume that f : X —> Y is tamely ramified,

i.e. for any geometric point ™ of X , the order of ifts

stabilizer group Gx in G 1is prime to char k . Then for a

coherent G-sheaf F on X , we have a finite complex

M) : 0 —— MO Mt ... Vi 0

of k[G]-modules with the following properties
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(1) Each M" is a finitely generated projective k[G]-module.

(2) The 1i-th cohomology group of the complex (M) is isomor-—

phic to Hl(X,f?) as a k[G]jmodule (i=0,1,2,u..) .

Theorem 2. In the situation of Theorem 1 , assume further

that f is unramified, i.e. Gw = {1} for any geometric point

) of X . Then, concerning the complex (M) in Theorem 1 ,

we can replace the condition (1) by the following stronger

condition (1)

(1) Each M' is a finitely generated free k[G]-module.

As a direct consequence of Theorems 1 and 2 , we give Corollary

below, which seems most useful in application.

Corollary. For a coherent G-gheaf F on X , assume that

H'(X,F) = O for all i except one value, say io , of i .

Then, when f 1is tamely ramified, the remaining cohomology

group H'o(X,F) is a projective k[G]-module. Further, if £

is unramified, H'o(X,#) is a free k[G]-module.

Remarks. (1) When the algebra k[G] is semi-simple ( i.e.
when ‘char k does not divide the order of G ) , all k[G]-
modules are projective and the property (1) of the complex
(M) in Theorem 1 is trivial. waever,‘when k[G] is not
semi-simple, it is a good information about a k[G]-module that

it is k[G]-projective.
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(2) The complex (M) in Theorems 1 or 2 is never unique. We
can change the modules Mi (i=0 ) in many ways keeping the
conditions (1) ( or (1)' ) and (2) . TFor example, in Theo-
rem 1 , we can take a complex (M) for which each Mi is a -

free k[G]-module for i =1 ( i.e. except O ) .

(3) Theorem 2 is proved in [3] . Although Theorem 1 is not
written explicitly in [3] , it is essentially proved in the

course of the proof of Theorem 2 .

The motivation éf thié work was to generalize Chevalley-
Weil's theorem to arbitrary characteristic. Chevalley-Weil [1]
treats a finite Galois covéring f : X —= Y of connected
complete non-singular algebraic curves X and Y over the
complex number field € ( i.e. X and Y are compact Riemann
surfaces ) , and determines the ' €[G]-module structure ( G =
Gal(X/Y) ) of HO(X,}() , where X 1is the canonical sheaf of
Xi. ( HO(X,)() is the space of holomorphic differentials on
X . ) Their theorem is obtained by calculating, using the
Riemann-Roch theorem, the character of the €[G]-module HO(X,K ).
If one tries to generalize Chevalley-Weil's theorem to arbi-
trary characteristic, i.e. to arbitrary base field k , diffi-
culties arise as to the case where p = char k divides |G| ,
the order of G . Even in this case we can calculate the Brauer
character of the k[G]-module HO(X,)() by use of the Riemann-
Roch thedrem, but, when p divides |Gl , the knowledge.of the
Brauer character does not suffice to determine the k[G]-module
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structure of HO(X,)&) since the algebra k[G] is no longer
semi-simple. The author found that this difficulty can be over-
come by making good use of (*) mentioned velow ( for (*) ,
see [4] §16 or [2] chap. 2 ) . ( Although HO(X,X) itself
is not necessarily k[G]-projective, we can determine its k[G]-
module structure by embedding it into some.other k[G]-module

whose structure is determined by virtue of (*) . )

(*) ... If two finitely generated projective k[G]-modules have
the game Brauer character, then they are isomorphic as

k[G]-modules.

The generalization of Chevalley-Weil's theorem to the case
of arbitrary base field is given in the next section.
It was pointed out by Professor J-P. Serre that the method
adopted in the case of curves is also effective in higher dimen—
sional cases, and Theorems 1 and 2 were obtained following his

suggestion.

§ 2. The case of curves
In this section we apply the general results of § 1. to the
special case where X and Y are of dimension one and the
G-sheaf F dis locally free.
Let k be an algebraically closed field of characteristic
p(p=0) , and let f : X —> Y be a finite Galois covering
of connected complete non-singular curves over k . Put G =

Gal(X/Y) . We assume that f 1g tamely ramified . To state
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our result, some notations are necessary. For each point P
of X, put Gp=1{ o eG|c-P=7P} ( the stabilizer of P)

and ey = |Gp| . We have ep = 1 except for a finite number

of P . BSince f is tamely ramified, GP is a cyclic group

of order ( = ep ) prime to P = char k .

Define O eHom(GP,k") by

P

SP(G") = %E ( mod(n) ) for g ¢ Gp

where T = Tp denotes a local uniformizing parameter at P .

Then B is a generator of the group Hom(GP,k") . For 4 ¢

P
Z , we also use the symbol 9% to denote the one-dimen-
sional k[G]-module corresponding to 9% £ Hom(GP,k") .
Suppose that a locally free G-sheaf & of rank r on X is
given. Then for P & X the group GP acts on the stalk EP

of & at P . The k[GP]—module EP@k ( @/P is the stalk
GP
at P of the structure sheaf © of X ) decomposes into a

direct sum of one-dimensional k[GP]—modules because pj’eP

and GP is c¢cyclic. Define integers lP,i (0L lP,i < eP-l )
for PeX and i =1,...,0 so that EP ® k is isomorphic
G—P

5 1
to i@l By Pi asa k[G]-module. ( We have £P,i = 0 for
all P and i if & is of the form f£*(%) for a locally
free sheaf 0 on Y . )

With the above notation, the result is as follows. ( For
a k[G]-module L and n € IN , nlL means the n-times direct

sum of L . )

_5_



[P~ 3
L

Theorem 3. (1) There exists a k[G]-module N such that

e—1

P
lelve @ ma¢ (@

a
d-85 )
PeX 9P 40 P

as k[G]-modules.

(ii) TLet ¢ ©be a locally free G-sheaf of rank r on X

and let [/ be as defined above. Then we have two finitely

1

P,i

generated k[G]-modules O and M~ with the following

properties :

(a) " We have an exact sequence

O _o ot m(x,£) — 0

0 —= 1o(x, £) M

f k[G]-modules.

(b)  The modules. M0 and Mt are k[G]-projective and

MDCDiﬁN ( N is the module defined in (i) ) is stably isomor-

r zP,i

phic to Ml@ (’B ® ®

QeY i-1 d=1

Indgq( @E{i) as a k[G]—‘module‘,

where for Qe Y , @ denotes an ( arbitrarily fixed ) point

of X such that f£(Q) = Q holds, and the sum denoted by

'pi |
means empty sum when lP . =0 .
) ,i
i=1
Remarks. (1) The k[G]-module N in Theorem 3 (i) is

determined by the covering f : X —> Y ( independent of
sheaves ) , and reflects the state of ramification of f . The

module N can be defined only "globally" . This means that
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divisible by |G| in general while their sum over all P e X

ep—1

P
each k[G]-module TInd. ( & d~9%) for P e X is not
d=0

is always divisible by |G| .

(2)  If the Xk[G]-module structure of either of the two modules
HO(X, €£) and Hl(X, €) is known, vWe can determine by Theorem 3
the k[G]-module structure of the.other ( cf. Schanuel's lemma,
[2] (2.24) ) . 1In this sense, Theorem % gives a "relation"

between k[G]-modules HO(X,S) and 'Hl(X,E) .

As for the canonical sheaf X of X , we know that
Hl(X,K Y=k as k[G]-modules, where k denotes the trivial

k[G]-modules. Hence, by Theorem 3 , the k[G]-module structure

of HO(X,K) can be determined. ( We have Lp ; =ep-1 in |
9

!

. this case. ) TFor the sake of gimplicity, we restrict ourselves
to thé case where f is unramified, i.e. ep = 1 for all P e .

X . Denote by I, the augmentation ideal of k[G] ;

Ip = { >z 8,0 € k[a¢] | > a,= 0} . Then we have
aeG aeG
Theorem 4. Assume that f : X —= Y is unramified and let

X ©be the canonical sheaf of X . Then we have an exact

sequence of k[G]-modules

0 — %X, X) —> k[6]® —> I, — 0,

where g 1is the genus of Y . This exact sequence uniquely

determines the k[G]-module structure of HO(X,)(} .
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When char k = O , the exact sequence i£ Theorem 4 splits
for every group G , and consequently we have HO(X,)() a4
k:C)l{[G]g_l as k[G]-modules. ( This isomorphism is proved
in Chevalley-Weil [1]. ) However, when char k > O , that exact
sequence does not necessarily split. Hence we find that, when
char k > 0 , the k[G]-module HO(X,)() is not isomorphic to

k:C)k{GJg_l in general, in contrast to the case char k = O .
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