40

On Galois module structure of the cohomology groups of an algebraic variety

東大理(大学院) 中島匠一 (Shōichi Nakajima)

§ 1. Main results

Let k be a field and $f: X \longrightarrow Y$ a finite Galois covering between projective varieties X and Y over k. Put G = Gal(X/Y). A coherent sheaf $\mathcal F$ on X is called a coherent G-sheaf when the group G acts on $\mathcal F$ in a way compatible with its action on X. For a coherent G-sheaf $\mathcal F$ on X, the group G naturally acts on the cohomology groups $H^i(X,\mathcal F)$ ($i \ge 0$). We are concerned with the k[G]-module structure of $H^i(X,\mathcal F)$ ($i \ge 0$). Our general result is the following two theorems.

Theorem 1. Assume that $f: X \longrightarrow Y$ is tamely ramified, i.e. for any geometric point $\overline{\eta}$ of X, the order of its stabilizer group $G_{\overline{\eta}}$ in G is prime to chark. Then for a coherent G-sheaf $\mathcal F$ on X, we have a finite complex

 $(M): 0 \longrightarrow M^{O} \longrightarrow M^{1} \longrightarrow \dots \longrightarrow M^{m} \longrightarrow 0$ of k[G]-modules with the following properties:

- (1) Each Mi is a finitely generated projective k[G]-module.
- (2) The i-th cohomology group of the complex (M) is isomorphic to $H^{i}(X,\mathcal{F})$ as a k[G]-module (i = 0,1,2,...).
- Theorem 2. In the situation of Theorem 1, assume further that f is unramified, i.e. $G_{\overline{\eta}} = \{1\}$ for any geometric point $\overline{\eta}$ of X. Then, concerning the complex (M) in Theorem 1, we can replace the condition (1) by the following stronger condition (1)':
- (1)' Each Mi is a finitely generated free k[G]-module.

As a direct consequence of Theorems 1 and 2, we give Corollary below, which seems most useful in application.

Corollary. For a coherent G-sheaf \mathcal{F} on X, assume that $H^{i}(X,\mathcal{F})=0$ for all i except one value, say i_{0} , of i. Then, when f is tamely ramified, the remaining cohomology group $H^{i}o(X,\mathcal{F})$ is a projective k[G]-module. Further, if f is unramified, $H^{i}o(X,\mathcal{F})$ is a free k[G]-module.

Remarks. (1) When the algebra k[G] is semi-simple (i.e. when chark does not divide the order of G), all k[G]-modules are projective and the property (1) of the complex (M) in Theorem 1 is trivial. However, when k[G] is not semi-simple, it is a good information about a k[G]-module that it is k[G]-projective.

- (2) The complex (M) in Theorems 1 or 2 is never unique. We can change the modules M^i ($i \ge 0$) in many ways keeping the conditions (1) (or (1)') and (2). For example, in Theorem 1, we can take a complex (M) for which each M^i is a free k[G]-module for $i \ge 1$ (i.e. except M^0).
- (3) Theorem 2 is proved in [3]. Although Theorem 1 is not written explicitly in [3], it is essentially proved in the course of the proof of Theorem 2.

The motivation of this work was to generalize Chevalley-Weil's theorem to arbitrary characteristic. Chevalley-Weil [1] treats a finite Galois covering $f: X \longrightarrow Y$ of connected complete non-singular algebraic curves X and Y over the complex number field C (i.e. X and Y are compact Riemann surfaces), and determines the $\mathbb{C}[G]$ -module structure (G = $\operatorname{Gal}(X/Y)$) of $\operatorname{H}^{O}(X,K)$, where X is the canonical sheaf of X . ($H^{O}(X, K)$ is the space of holomorphic differentials on X.) Their theorem is obtained by calculating, using the Riemann-Roch theorem, the character of the $\mathbb{C}[G]$ -module $H^{\cup}(X,K)$. If one tries to generalize Chevalley-Weil's theorem to arbitrary characteristic, i.e. to arbitrary base field k , difficulties arise as to the case where p = char k divides |G|, the order of G . Even in this case we can calculate the Brauer character of the k[G]-module $H^{O}(X, K)$ by use of the Riemann-Roch theorem, but, when p divides |G|, the knowledge of the Brauer character does not suffice to determine the k[G]-module

structure of $H^O(X,K)$ since the algebra k[G] is no longer semi-simple. The author found that this difficulty can be overcome by making good use of (*) mentioned below (for (*), see [4] § 16 or [2] chap. 2). (Although $H^O(X,K)$ itself is not necessarily k[G]-projective, we can determine its k[G]-module structure by embedding it into some other k[G]-module whose structure is determined by virtue of (*).)

(*) ... If two finitely generated projective k[G]-modules have the same Brauer character, then they are isomorphic as k[G]-modules.

The generalization of Chevalley-Weil's theorem to the case of arbitrary base field is given in the next section.

It was pointed out by Professor J-P. Serre that the method adopted in the case of curves is also effective in higher dimensional cases, and Theorems 1 and 2 were obtained following his suggestion.

§ 2. The case of curves

In this section we apply the general results of § 1 to the special case where X and Y are of dimension one and the G-sheaf ${\mathcal F}$ is locally free.

Let k be an algebraically closed field of characteristic $p\ (p\ge 0)$, and let $f:X\longrightarrow Y$ be a finite Galois covering of connected complete non-singular curves over k . Put G=Gal(X/Y) . We assume that f is tamely ramified . To state

our result, some notations are necessary. For each point P of X , put $G_P = \{ \sigma \in G \mid \sigma \cdot P = P \}$ (the stabilizer of P) and $e_P = |G_P|$. We have $e_P = 1$ except for a finite number of P. Since f is tamely ramified, G_P is a cyclic group of order (= e_P) prime to $p = \operatorname{char} k$. Define $\Theta_P \in \operatorname{Hom}(G_P, k^*)$ by

$$\Theta_{P}(\sigma) = \frac{\sigma \cdot \pi}{\pi} \pmod{\pi}$$
 for $\sigma \in G_{P}$,

where $\pi=\pi_P$ denotes a local uniformizing parameter at P. Then Θ_P is a generator of the group $\operatorname{Hom}(G_P,k^{\times})$. For d ϵ Z, we also use the symbol Θ_P^d to denote the one-dimensional k[G]-module corresponding to Θ_P^d ϵ $\operatorname{Hom}(G_P,k^{\times})$. Suppose that a locally free G-sheaf ϵ of rank r on X is given. Then for P ϵ X the group G_P acts on the stalk ϵ_P of ϵ at P. The $k[G_P]$ -module $\epsilon_P \otimes k$ (δ_P is the stalk at P of the structure sheaf δ of X) decomposes into a direct sum of one-dimensional $k[G_P]$ -modules because $p \not\models_P$ and ϵ_P is cyclic. Define integers ϵ_P (ϵ_P) (ϵ_P) be and ϵ_P is cyclic. Define integers ϵ_P (ϵ_P) (ϵ_P) k is isomorphic to ϵ_P and i = 1,...,r so that ϵ_P k is isomorphic to ϵ_P and i if ϵ_P is of the form ϵ_P for a locally free sheaf ϵ_P on Y.)

With the above notation, the result is as follows. (For a k[G]-module L and n $\epsilon\, {\rm I\!N}$, nL means the n-times direct sum of L .)

Theorem 3. (i) There exists a k[G]-module N such that

$$|G| \cdot N \cong \bigoplus_{P \in X} \operatorname{Ind}_{G_P}^G (\bigoplus_{d=0}^{e_P-1} d \cdot \Theta_P^d)$$

as k[G]-modules.

- (ii) Let \mathcal{E} be a locally free G-sheaf of rank r on X and let $\ell_{P,i}$ be as defined above. Then we have two finitely generated k[G]-modules M^O and M^I with the following properties:
- (a) We have an exact sequence

$$0 \longrightarrow H^{0}(X, \mathbf{E}) \longrightarrow M^{0} \longrightarrow M^{1} \longrightarrow H^{1}(X, \mathbf{E}) \longrightarrow 0$$

of k[G]-modules.

- (b) The modules M^O and M^1 are k[G]-projective and $M^O \oplus r \cdot N$ (N is the module defined in (i)) is stably isomorphic to $M^1 \oplus \bigoplus_{Q \in Y} \bigoplus_{i=1}^r \bigoplus_{d=1}^{\ell_{P}, i} \operatorname{Ind}_{G_{\widetilde{Q}}}^G (\bigoplus_{Q}^{-d})$ as a k[G]-module, where for $Q \in Y$, \widetilde{Q} denotes an (arbitrarily fixed) point of X such that $f(\widetilde{Q}) = Q$ holds, and the sum denoted by $\ell_{P,i}$ means empty sum when $\ell_{P,i} = O$.
- Remarks. (1) The k[G]-module N in Theorem 3 (i) is determined by the covering $f: X \longrightarrow Y$ (independent of sheaves), and reflects the state of ramification of f. The module N can be defined only "globally". This means that

each k[G]-module $\operatorname{Ind}_{G_P}^G (\bigoplus_{d=0}^{e_P-1} d \cdot \Theta_P^d)$ for P ϵ X is not divisible by |G| in general while their sum over all P ϵ X is always divisible by |G|.

(2) If the k[G]-module structure of either of the two modules $H^0(X, \mathcal{E})$ and $H^1(X, \mathcal{E})$ is known, we can determine by Theorem 3 the k[G]-module structure of the other (cf. Schanuel's lemma, [2] (2.24)). In this sense, Theorem 3 gives a "relation" between k[G]-modules $H^0(X, \mathcal{E})$ and $H^1(X, \mathcal{E})$.

As for the canonical sheaf X of X, we know that $H^1(X,X) \cong k$ as k[G]-modules, where k denotes the trivial k[G]-modules. Hence, by Theorem 3, the k[G]-module structure of $H^0(X,X)$ can be determined. (We have $\ell_{P,i} = e_P - 1$ in this case.) For the sake of simplicity, we restrict ourselves to the case where f is unramified, i.e. $e_P = 1$ for all $P \in X$. Denote by I_G the augmentation ideal of k[G]; $I_G = \{\sum_{G \in G} a_{G^*} : G \in k[G] \mid \sum_{G \in G} a_{G^*} = 0\}$. Then we have

Theorem 4. Assume that $f: X \longrightarrow Y$ is unramified and let X be the canonical sheaf of X. Then we have an exact sequence of k[G]-modules

$$0 \longrightarrow H^{0}(X, X) \longrightarrow k[G]^{g} \longrightarrow I_{G} \longrightarrow 0,$$

where g is the genus of Y. This exact sequence uniquely determines the k[G]-module structure of $H^O(X,X)$.

When char k=0, the exact sequence in Theorem 4 splits for every group G, and consequently we have $\operatorname{H}^0(X, \mathsf{X}) \cong \mathbb{R} \times \mathbb{R}[G]^{g-1}$ as k[G]-modules. (This isomorphism is proved in Chevalley-Weil [1].) However, when char k>0, that exact sequence does not necessarily split. Hence we find that, when char k>0, the k[G]-module $\operatorname{H}^0(X,\mathsf{X})$ is not isomorphic to $k \oplus k[G]^{g-1}$ in general, in contrast to the case char k=0.

References

- [1] C.Chevalley and A.Weil: Über das Verhalten der Integrale der 1. Gattung bei Automorphismen des Funktionenkörpers.

 A.Weil:Collected Papers, vol.I, p.68-71. Springer Verlag, 1979.
- [2] C.W.Curtis and I.Reiner: Methods of representation theory with applications to finite groups and orders, vol.I.

 John Wiley and Sons, 1981.
- [3] S.Nakajima: On Galois module structure of the cohomology groups of an algebraic variety. To appear in Invent. Math.
- [4] J-P.Serre: Linear representations of finite groups.

 Springer Verlag, 1977.