The Nilpotent Subvariety of the Vector Space Associated to A Symmetric Pair

- Survey -

Jiro SEKIGUCHI Tokyo Metropolitan University

§1. Introduction.

1.1. This note is a survey of my paper [S].

1.2. Let \underline{g} be a simple Lie algebra over $\mathbb C$ and let \underline{g}_{Ω} be its real form. Let $\, heta\,$ be a Cartan involution of $\,{f g}_{\Omega}\,$ and let $\underline{\mathbf{g}}_0 = \underline{\mathbf{k}}_0 + \mathbf{V}_0$ be the corresponding Cartan decomposition. Extend θ to \underline{g} as a complex linear involution and let \underline{k} , V be the complexifications of \underline{k}_0 , V_0 , respectively. In this note, $(\underline{g}, \underline{k})$ is called a symmetric pair and V is the vector space associated to it. Put $G = Int \underline{g}$ and $K_{\theta} = \{g \in G; \theta g = g\}$. Let K be the identity component of $K_{\boldsymbol{\theta}}$. Let $\underline{\underline{\mathbb{N}}}(\mathsf{V})$ be the nilpotent subvariety of V, that is, an element X of V is contained in $\underline{N}(V)$ if and only if $\operatorname{ad}_{\mathfrak{g}}(X)$ is nilpotent (cf. [1]). Let $\mathbb{C}[V]$ be the polynomial ring over V and let $\mathbb{C}[V]^K$ be the subring of $\mathbb{C}[V]$ consisting of K-invariant elements. Then there exist homogeneneous polynomials P_1, \dots, P_q of $\mathbb{C}[V]^K$ such that $\mathbb{C}[V]^K = \mathbb{C}[P_1, \dots, P_q]$ (cf. [1]). It follows that $\underline{\underline{N}}(V) = \{X \in V; P_1(X) = \cdots = P_{\ell}(X) = 0\}$ and that $codim_{V}\underline{\underline{N}}(V) = \ell$, in other words, $\underline{N}(V)$ is a complete intersection. The number ℓ is nothing but the restricted rank of the corresponding Riemannian symmetric pair $(\underline{a}_0, \underline{k}_0)$.

- 1.3. The subjects of [S] are concerned with the following problems:
 - (1) Determine the irreducible components of N(V).
 - (2) Construct an analogue of Springer's resolution for N(V).
 - (3) Examine the generic singularities of N(V).

We determine the number of the irreducible components of N(V)completely in [S] (cf. §2). The cotangent bundle over the complete flag manifold of G is regarded as a desingularization of the nilpotent subvariety of the Lie algebra g. This is called the Springer's resolution (cf. [4]). It seems to be interesting to construct an analogue to the Springer's resolution for N(V). This will be done in \$2. As to (3), we recall Brieskorn's result (cf. [3]). His famous result states: A simple singularity of type A_{ℓ} , D_{ℓ} or E_{ℓ} appears in the nilpotent subvariety $\underline{\mathsf{N}}_{\mathsf{q}}$ of the corresponding simple Lie algebra g. More precisely, take a subregular nilpotent element of \underline{g} and a transversal slice S_{χ} to the G-orbit of X at X. Then $S_X \cap \underline{\mathbb{N}}_g$ is nothing but the simple singularity. It is interesting to examine the analogue of Brieskorn's result for N(V). This is the precise meaning of (3). Although I do not obtain a complete answer to this at present, I shall explain the result for this problem in §4.

§2. The irreducibility of $\underline{N}(V)$.

The variety $\underline{\mathtt{N}}(\mathtt{V})$ is not irreducible in general. In constrast

to the fact that the nilpotent subvariety of a simple Lie algebra is irreducible, this is a remarkable difference.

Example 1. Consider the case where $\underline{g} = \underline{sl}(2, \mathbb{C})$ and $\theta(X) = -{}^t X$. Then $\underline{\mathbb{N}}(V) = \{ \begin{pmatrix} x & y \\ y & -x \end{pmatrix}; \ x^2 + y^2 = 0 \}$. It is clear that $\underline{\mathbb{N}}(V)$ has two irreducible components defined by the equations $x + \sqrt{-1}y = 0$ and $x - \sqrt{-1}y = 0$.

In general, we show the following ([S, Th.1]).

Theorem 1. Let $(\underline{g}, \underline{k})$ be a symmetric pair, \underline{g} simple.

- (1) If the corresponding Riemannian symmetric pair $(\underline{q}_0, \underline{k}_0)$ is Hermitian symmetric and the restricted root system of \underline{q}_0 is reduced, then $\underline{N}(V)$ has two irreducible components. Each irreducible components is also a complete intersection.
- (2) If $(\underline{g}, \underline{k})$ is one of the following. If d is the number of irreducible components of $\underline{N}(V)$, then d is given in the right column.

(<u>g</u> , <u>k</u>)	d
(<u>sl</u> (2n, C), <u>so</u> (2n, C))	2
(<u>so</u> (2n+1, C), <u>so</u> (n+1, C) + <u>so</u> (n, C))	2
(<u>so</u> (4n, C), <u>so</u> (2n, C) + <u>so</u> (2n, C))	4
$(\underline{so}(4n+2, \mathbb{C}), \underline{so}(2n+1, \mathbb{C}) + \underline{so}(2n+1, \mathbb{C}))$	2
$(\underline{so}(4n+k, \mathbb{C}), \underline{so}(2n+k, \mathbb{C}) + \underline{so}(2n, \mathbb{C}))$ $(k, n \geq 2)$	2
(<u>e</u> ^ℂ 7, <u>s1</u> (8, ℂ))	2

(3) If $(\underline{g}, \underline{k})$ is not the one treated in (1) and (2), then $\underline{N}(V)$ is irreducible.

<u>Problem.</u> In the case of (2), each irreduicible component of $\underline{\underline{N}}(V)$ is not a complete intersection. Determine the defining ideal of each irreducible component.

I have no idea to this problem at present.
Put

$$\underline{\underline{N}}(V)_r = \{X \in \underline{\underline{N}}(V); dP_1, \dots, dP_\ell \text{ are } linearly independent at } X\}.$$

$$\underline{\underline{N}}(V)_{pr} = \{X \in \underline{\underline{N}}(V); K \cdot X \text{ is open in } \underline{\underline{N}}(V)\}.$$

An element of $\underline{\mathbb{N}}(V)_{pr}$ is called principal nilpotent (cf. [1]). It is clear that $\underline{\mathbb{N}}(V)_{pr}$ is contained in $\underline{\mathbb{N}}(V)_{r}$. But in general they do not coincide. We now give an example of such a pair that $\underline{\mathbb{N}}(V)_{pr} \subseteq \underline{\mathbb{N}}(V)_{r}$.

Example 2. $(\underline{s})(n + 1, \mathbb{C}), \underline{g}(n, \mathbb{C}))$ (n > 1).

Let $\underline{g} = \underline{sl}(n+1,\mathbb{C})$ and let θ be an involution of \underline{g} defined by $\theta(X) = \begin{pmatrix} I_n & 0 \\ 0 & -1 \end{pmatrix} X \begin{pmatrix} I_n & 0 \\ 0 & -1 \end{pmatrix}$. Then $\underline{k} = \{ X \in g; \theta(X) = X \}$ is isomorphic to the Lie algebra $\underline{gl}(n,\mathbb{C})$. We identify $\mathbb{C}^n \times \mathbb{C}^n$ with $V = \{X \in g; \theta(X) = -X \}$ by the map $(x_1, \dots, x_n, y_1, \dots, y_n) \mapsto \begin{bmatrix} x_1 \\ \vdots \\ y_1 \dots y_n \end{bmatrix}$. Under the identification, we find that

$$\underline{\underline{N}}(V) = \{ (x,y) \in \mathbb{C}^n \times \mathbb{C}^n : x_1y_1 + \cdots + x_ny_n = 0 \}.$$

By direct calculation, we also find that $\underline{\mathbb{N}}(V)$ has four K-orbits 0, (i = 1, ..., 4) defined by

$$O_1 = \{ (x,y) \in \mathbb{C}^n \times \mathbb{C}^n ; x_1y_1 + \cdots + x_ny_n = 0, x \neq 0, y \neq 0 \}$$

$$0_2 = \{ (x,y) \in \mathbb{C}^n \times \mathbb{C}^n ; x = 0, y \neq 0 \}$$

$$0_3 = \{ (x,y) \in \mathbb{C}^n \times \mathbb{C}^n ; x \neq 0, y = 0 \}$$

$$0_4 = \{ (x,y) \in \mathbb{C}^n \times \mathbb{C}^n ; x = y = 0 \}$$

and that $O_1 = \underline{N}(V)_{pr}$, $O_1 \cup O_2 \cup O_3 = \underline{N}(V)_r$. Hence $\underline{N}(V)_{pr} \nsubseteq \underline{N}(V)_r$ in this case.

In general, we have the following.

Theorem 2 ([S, Th.4]). Let $(\underline{g}, \underline{k})$ be a symmetric pair and let Σ be the restricted root system of the corresponding Riemannian symmetric pair $(\underline{g}_0, \underline{k}_0)$.

- (1) If Σ is reduced, then $\underline{\underline{N}}(V)_{pr} = \underline{\underline{N}}(V)_{r}$.
- (2) If Σ is not reduced, then $\underline{\mathbb{N}}(V)_{pr} \subsetneq \underline{\mathbb{N}}(V)_{r}$. Moreover, in this case, if X is in $\underline{\mathbb{N}}(V)_{r} \underline{\mathbb{N}}(V)_{pr}$, then $\underline{\mathbb{N}}(V)_{r} \underline{\mathbb{N}}(V)_{pr}$

§3. A resolution of the nilpotent subvariety.

Take $X_0 \in \underline{N}(V)_{pr}$ and fix it. If tollows from [1] that there exist $H_0 \in \underline{k}$ and $Y_0 \in V$ such that

$$[H_0, X_0] = 2X_0, [H_0, Y_0] = -2Y_0, [X_0, Y_0] = H_0.$$

We define

$$\underline{g}(j) = \{ A \in \underline{g}; [H_0, A] = jA \}$$

$$\underline{\tilde{I}} = \underbrace{\oplus} g(j), \quad \underline{\tilde{n}} = \underbrace{\oplus} g(j)$$

$$\underline{j} \geq 0 \qquad \qquad j > 0$$

$$\underline{I} = \underline{\tilde{I}} \cap \underline{k}, \quad \underline{n} = \underline{\tilde{n}} \cap V.$$

We note here that $\underline{\tilde{1}}$ is a parabolic subalgebra of \underline{g} , that $\underline{\tilde{n}}$ is its nilpotent radical and that $[\underline{\tilde{1}},\underline{\tilde{n}}] \subseteq \underline{\tilde{n}}$. Let $\underline{\tilde{L}}$ be the parabolic subgroup of \underline{G} with lie algebra $\underline{\tilde{1}}$ and put $\underline{L}_{\theta} = \underline{\tilde{L}} \cap K_{\theta}$.

Every element p of L_{θ} induces an automorphism of $K_{\theta} \times \underline{n}$ in the following way: $(k, X) \rightarrow (kp, Ad(p^{-1})X)$. We denote by $\underline{\tilde{N}}(V)$ the quotient of $K_{\theta} \times \underline{n}$ by the action of L_{θ} and put $k^*X = (k, X)L_{\theta}$ for any $(k, X) \in K_{\theta} \times \underline{n}$. Let π be the canonical mapping of $\underline{\tilde{N}}(V)$ to $\underline{N}(V)$. By the construction, connected components of $\underline{\tilde{N}}(V)$ correspond to irreducible components of $\underline{\tilde{N}}(V)$. Hence in general $\underline{\tilde{N}}(V)$ is not connected (cf. Th.1).

The following theorem shows that $\underbrace{\tilde{N}}(V)$ is an analogue of the Springer's resolution of the nilpotent subvariety of a simple Lie algebra (cf. [4]).

Theorem 3 ([S, Th.5]). The mapping $\pi: \widetilde{\underline{\mathbb{N}}}(V) \to \underline{\mathbb{N}}(V)$ has the following properties.

- (a) $\widetilde{\underline{N}}(V)$ is smooth.
- (b) π is proper and surjective.
- (c) π induces an isomorphism $\pi^{-1}(\underline{N}(V)_{pr}) \rightarrow \underline{N}(V)_{pr}$.

We give here examples which illustrate the resolution of the nilpotent variety $\underline{N}(V)$.

Example 3.
$$(\underline{so}(n+1, \mathbb{C}), \underline{so}(n, \mathbb{C}))$$
 $(n \ge 2)$.

In this case, V is identified with \mathbb{C}^n and the nilpotent subvariety $\mathbb{C}(V)$ with the set

$$S = \{ x \in \mathbb{C}^n; x_1^2 + \dots + x_n^2 = 0 \}.$$

Then the resolution $\widetilde{\underline{\underline{N}}}(V)$ is identified with

$$\tilde{S} = \{ (x,\xi) \in \mathbb{C}^n \times \mathbb{P}^{n-1}; x_1^2 + \dots + x_n^2 = 0, \\ \xi_1^2 + \dots + \xi_n^2 = 0, x /\!\!/ \xi \}.$$

Define $S_1=\{x\in S;\ x\neq 0\}$ and $S_2=\{\ 0\ \}$. Then the K-orbits of S are S_1 and S_2 . If x is contained in S_1 , then $\pi^{-1}(x)$ is clearly a single point. On the other hand, if x=0, then $\pi^{-1}(x)=|P^{n-1}|$.

Example 2 (continued).

In this case, V is identified with \mathbb{C}^{2n} and $\underline{\mathtt{N}}(\mathtt{V})$ is with the set

$$S = \{ (x,y) \in \mathbb{C}^n \times \mathbb{C}^n; x_1y_1 + \dots + x_ny_n = 0 \}.$$

The resolution $\widetilde{\underline{\underline{N}}}(V)$ is identified with

$$\widetilde{S} = \{((x,y),(\xi,\eta)) \in S \times \mathbb{P}^{n-1} \times \mathbb{P}^{n-1}; \ \xi_1\eta_1 + \cdots + \xi_n\eta_n = 0, \\ \times /\!/ \xi, \quad y/\!/ \eta \quad \}.$$

We may regard O_i (i=1,2,3,4) as subsets of S. Then S_i ($i=1,\dots,4$) are the K-orbits of S. In particular, S_1 is the totality of the principal nilpotent elements and $S'=S_1\cup S_2\cup S_3$ is non-singular and identified with $\underline{N}(V)_r$. If (x,y) is in S_1 , then $\pi^{-1}((x,y))$ consists of a single point. On the other hand, for any $x\in\mathbb{C}^n$ ($x\neq 0$), we have $\pi^{-1}((x,0))=\mathbb{P}^{n-1}$. Moreover $\pi^{-1}(0,0)=\mathbb{P}^{n-1}\times\mathbb{P}^{n-1}$.

Remark. Put $L = L_{\theta} \cap K$. Then L is a parabolic subgroup of K. But L is not the Borel subgroup of K in general.

 $\underline{Problem}$. Does there exist an analogue of Grothendieck's simultaneous resolution for $\,\,$ V $\,$

§4. The generic singularities of N(V).

Put

$$\underline{\underline{N}}(V)_{\varsigma} = \{X \in \underline{\underline{N}}(V); dP_1, \dots, dP_{\ell} \text{ are }$$

linearly dependent at X3.

It is pathological that $\underline{\mathbb{N}}(V)_s$ is neither irreducible nor equidimensional in general. Let O_1,\dots,O_r be K-orbits of $\underline{\mathbb{N}}(V)$ such that $O_i \cap O_j = \emptyset$ ($i \neq j$) and $\underline{\mathbb{N}}(V)_s = \bigcup_{i=1}^r \overline{O}_i$. In particular, each \overline{O}_i is an irreducible component of $\underline{\mathbb{N}}(V)_s$. Put $\underline{\mathbb{N}}(V)_s' = \bigcup_{i=1}^r O_i$. Take $X \in \underline{\mathbb{N}}(V)_s'$. Let S_X be a transversal slice

to the K-orbit of X at X. A standard one is constructed as follows. Let $H \in \underline{k}$ and $Y \in V$ be such that [H, X] = 2X, [H, Y] = -2Y, [X, Y] = H (cf. [1]). Then $S_X = X + [Y, \underline{k}]$ is a transversal slice. It seems to be interesting to determine the intersection $S_X \cap \underline{N}(V)$. In fact, as stated in the Introduction, a simple singularity is appeared in this manner if we consider a symmetric pair $(\underline{g} \oplus \underline{g}, \underline{g})$.

Let $X \in \underline{\mathbb{N}}(V)_S^*$. It is not clear whether the intersection $S_X \cap \underline{\mathbb{N}}(V)$ is a hypersurface singularity or not. But I conjecture that this is true.

From now on, assume that $(\underline{g}, \underline{k})$ is of the classical type, that is, \underline{g} is simple of the classical type. I give the concrete expression of $S_{\chi} \cap \underline{N}(V)$ for such an $\chi \in \underline{N}(V)$, that $S_{\chi} \cap \underline{N}(V)$ is a hypersurface singularity (cf. [S, §§3, 4]).

(<u>sl</u> (n, ℂ), <u>so</u> (n, ℂ))	$x^n + y^2 = 0$
$(\underline{s1}(2n, \mathbb{C}), \underline{sp}(n, \mathbb{C}))$	$x^{n} + u_{1}v_{1} + u_{2}v_{2} = 0$
$(\underline{s}\underline{1}(2n+k, \mathbb{C}), \underline{s}\underline{1}(n+k, \mathbb{C})+\underline{s}\underline{1}(n, \mathbb{C})+\mathbb{C})$	$x^n + yz = 0$
	$x_1y_1 + \cdots + x_{k+1}y_{k+1} = 0$
(<u>so</u> (n+1, ℂ), <u>so</u> (n, ℂ))	$x_1^2 + \cdots + x_n^2 = 0$
$(\underline{so}(n+3, \mathbb{C}), \underline{so}(n+1, \mathbb{C}) + \underline{so}(2, \mathbb{C}))$	xy = 0
	$x_1^2 + \cdots + x_n^2 = 0$
$(\underline{so}(2n, \mathbb{C}), \underline{so}(n, \mathbb{C}) + \underline{so}(n, \mathbb{C}))$	$x^{n-1} + xy^2 = 0$

$(\underline{so}(2n+1, \mathbb{C}), \underline{so}(n+1, \mathbb{C}) + \underline{so}(n, \mathbb{C}))$	$x^{2n} + y^2 = 0$
	xy = 0
$(\underline{so}(2n+k, \mathbb{C}), \underline{so}(n+k, \mathbb{C}) + \underline{so}(n, \mathbb{C}))$	$x^n + y^2 = 0$
(k > 1)	$x_1^2 + \cdots + x_{k+1}^2 = 0$
(<u>so</u> (4n, C), <u>gl</u> (2n, C))	$x^{n} + u_{1}v_{1} + u_{2}v_{2} = 0$
	xy = 0
(<u>so</u> (4n+2, C), <u>gl</u> (2n+1, C))	$x^{n} + u_{1}v_{1} + u_{2}v_{2} = 0$
	$u_1v_1 + u_2v_2 + u_3v_3 = 0$
(<u>sp</u> (n, C), <u>gl</u> (n, C))	$x^{2n} + y^2 = 0$
	$x^{2n} + xy^2 = 0$
$(\underline{sp}(2n, \mathbb{C}), \underline{sp}(n, \mathbb{C}) + \underline{sp}(n, \mathbb{C}))$	$u_1v_1 + u_2v_2 = 0$
$(\underline{sp}(2n+k, \mathbb{C}), \underline{sp}(n+k, \mathbb{C}) + \underline{sp}(n, \mathbb{C}))$	$x^{n} + u_{1}v_{1} + u_{2}v_{2} = 0$
	$\sum_{i=1}^{2k+2} u_i v_i = 0$

Remark. In [2], Mr. Y. Shimizu and I treaded the case where $(\underline{g}, \ \underline{k}) \ \text{is of normal type, that is, } \underline{g}_{\underline{0}} \ \text{is a normal real form of} \ \underline{g}.$

References

- [S] J. Sekiguchi; The nilpotent subvariety of the vector space associated to a symmetric pair, to appear in Publ. RIMS, Kyoto Univ.
- [1] B. Kostant and S. Rallis; Orbits and representations associated with symmetric spaces, Amer. J. Math. 93, 753-809 (1971).
- [2] J. Sekiguchi and Y. Shimizu; Simple singularities and infinitesimally symmetric spaces, Proc. of Japan Acad. 57, Ser. A, 42-46 (1981).
- [3] P. Slodowy; Simple Singularities and Simple Algebraic Groups, Lecture Notes in Math. 815, Springer Verlag.
- [4] T. A. Springer; Th unipotent variety of a semisimple group, Proc. of the Bombay Colloqu. in Algebraic Geometry, ed. S. Abhyanker, London, Oxford Univ. Press, 1969, 373-391.