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RINGS OF INVARIANTS WHICH ARE COMPLETE INTERSECTIONS

Haruhisa NAKAJIMA

Department of Mathematics, Tokyo Metropolitan University

1. Introduction

Let G be a finite subgroup of GLn(E) acting naturally on an affine
space L" of dimension n and denote by En/G the quotient variety of t" under
this action of G. We shall give the complete answer to the next problem.
Problem. When is EH/G a complete intersection (abbrev. C.I.)?

Stanley solved this in [20] under the assumption that G is the inter-
section of a finite reflection group in GLn(E) and SLH(E), and conjectured
in [22] that if €"/G is a C.I., there is a finite reflection group L in
GLn(E) such that G is normal in L and L/G is abelian. But this conjecture
was solved negatively ([26]). On the other hand, Watanabe and Rotillon
solved the above problem for abelian G (cf. [25]) and for any G in SLB(E).
If G is in SLQ(E), EZ/G'S are hypersurfaces which aré rational double points
of type (A ), (D), (E), (E,), (Eg) (e.g. [19]).

Recently Goto and Watanabe proved that if €"/G is a C.I., then the
embedding dimension of t"/G is at most 2n-1, which follows from an ideal
theoretic result on rational singularities ([4]). Moreover Kac and Watanabe
showed that if C"/G is a C.I., then G is generated by pseudoreflections and
special elements ([8]). Here an element g in GLH(E) is said to be a pseudo-
reflection (resp. a special element) if rank(g-1) = 1 (resp. rank(gfl) = 2).
Consequently we can use the classification of some finite linear groups

given by Blichfeldt, Huffman and Wales ([1, 6, 23]).



Since C.I.'s are Gorenstein varieties, using the classification of
quotient singularities of complex manifolds ([5, 17]), we see that the study
in case where G is unimodular is essential ([24]). By [3, 18], the general
case follows immediately from the special one.

As an application of our result, in principle, we can classify the
representations of simple Lie groups whose algebra of invariants are C.I.'s.

The contents of this note are similar to [15] and the detailed accounts
were written in [11, 12, 13, 14].

The following notation will be used except in Sect. 4.

X the complex number field

\Y an n-dimensional vector space over K

G a finité subgroup of GL(V)

S the symmetric algebra of V

S(U) the symmetric algebra of a vector space U

[A,B,...] the block diagonal matrix (endomorphism) on V, for A in

End(U), B in End(W), ..., where V = U@W... .
gl[[n]] the permutation matrix associated with g in the symmetric

group Sn of degree n

e(m) a primitive mthyroot of 1

Em the cyclic group <e(m)>

Dm the binary dihedral group of order 4m

T the binary tetrahedral group bf order 24
0 the binary octahedral group of order 48

I : the binary icosahedral group of order 120
(u,v;H,N) the group (EUIEV;HIN) defined in [3]
V-det or det the determinant on V

The notation A(u,v,n), G(u,v,n), W(F) is defined in [3].
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2, Definitions and preliminary results

For any finite group H, a subgroup N of H and a linear representation g
of H in GL(V), we adopt the following notation and terminology. H is said to
be reducible (resp. irreducible, imbrimitive, primitive, monomial) in GL(V)
if q is so. Let VKN> be the KN-submodule of V generated by (g-1)V for all g
in N and R(V;N) the largest reflection subgroup of g(N). A subspace U of
‘codimension one in V is said to be a reflecting hyperplane relative to N if
V<g> = U for an element g in N. We denote by P(V,N) the set of feflecting
hyperplanes relative to N and, for U in B(V,N), by IU(N) the éyclic subgroup
of g(N) consisting of all elements g in g(N) such that U is a subspace of
V<g>. Let LU(V,N) be a fixed nonzero element in V<IU(N)>. For a 1linear
character X of H whose kernel contains Ker g, let sU(K) be the smallest
natural number u satisfying X(g) = det(g)u fér all g in IU(N) and £(V,N,X)
be the product of LU(V,N)SU(X) where U runs through P(V,N). Furthermore SN’X
denotes the set of all f in S such that g(f) = X(g)f for g in N, whose
elements are known as X-invariants (relative invariants) of N.-

(2.1) Theorem (Stanley[20]). SN’K-is a graded free SN—module of rank one if
and only if £(V,N,X) is a X-invariant of N. Especially if these equivalent
conditions are satisfied, then SN’X-iS generated by f£(V,N,X).

P(V,N)/N stands for a complete system of representatives of P(V,N)
modulo N under the action of N. The linear characters

det:<IU,(N) : U'eNU> —> (K*)U
induce the natural homomorphism
O, RN = @yep iy, 3y Ky = CLypy, ny | (B
where QUEE(V,N)(K*)U is embedded in GL|E(V,N)/N1(K) diagonally ([9]). For a

linear representation q' of a finite group L in GL(V), (R(V;N),L,V) is
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defined to be a CI-triplet, if R(V;N) contains g'(L), g'(L) contains the
commutator [R(V;N),R(V;N)] of R(V;N) and @N,V(g'(L)) is conjugate to GE in
GLIE(V,N)/NI(K) for some datum D (for definition of the datum D and GE’ see
[25]). Furthermore L is said to be extended to a CI-triplet in GL(V), if
(M,L,V) is a CI-triplet for a finite reflection group M in GL(V). When N is
normal in H and gq(N) is a reflection group, we denote by V(H#N) a KH/N-

N and has a

submodule of SN of dimension n which satisfies S(V(H#N)) = S
K-basis consisting of graded elements.

(2.2) Theorem (Watanabe[Zé]). SN is a Gorenstein ring if and only if f(V,N,
V—det_l) is a det_l—invariant of N.

(2.3) Theorem ([9, 10]). Let L be a normal subgroup of a finite reflection
group M of GL(V) such that M/L is abelian. Then

(1) SL is a C.I. if and only if (M,L,V) is a CI-triplet.

(2) 1f SL is a C.I., there is a CI-triplet (L*,L,V) such that a regular
system of graded parameters of SL* can be extended to a minimal system of
graded generators of SL.

(2.4) Example (The Slice Method). For any v in V, SGV is etale over SG at
the maximal ideals induced from v, and hence if SG is a C.I., then SGV is
also a C.I., where Gv is the isotropy group of v in G. (Clearly this can be
extended to the case where G is a reductive algebraic group, under the
assumption on closedness of the 6rbit).

(2.5) Example. Let G be a 6-dimensional representation of nonsplitting
central extension of Z/3Z by A6 of order 1080 such that G is generated by
special elements of order 2. The Taylor series expansion of the Poincare
series of SG is

1427471041674 38T %4, . .

([7]). From this we can easily see that emb(SG) > 11, and SG is not a C.I..
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(2.6) Example. Suppose that n = 4 and G is monomial in SL(V) such that the
permutation group which is induced from the action of G on a complete system
of imprimitivities for the KG-module V is <(12)(34),(13)(24)> in 84. Then SG
is a C.I. if and only if G is conjugate to one of the following groups: 1)
<gys85shyshy> (4alc), 2) <gg.8,,85,hy,h,> (a < c/2, ale/2, 2]e), 3) <g§,g§, |
g»hy,hy> (4]c), &) <g§,g§,g7,hi,h2> (a =c/b4), 5) <g2,g§,g6,h1,h2> (4alc,
b-a = ¢/2, a < ¢c/4, b/a = 3 mod 4 ; assume this condition for the groups
below), 6) <g2,g§,g6,hi,h2>, 7) <8,,85:8¢:07,0,>, 8) <32’85’g6’hi’h2>' Here
[e(c),1,1,e(c) ™ ], gy = [1,1,e(a),e(a) ™ ], gq = [e(c/2),e(c/)7,1,1],
g, = [Le@,e(@) 1], g = [Le(c/2),e(c/2)7],11, g = [e(e)™?
e(0)2,e(0)], 8, = [e(e)re(e) e(e)Lee)], by = (12)(3)[[4]], hy = (13)

28)[[411, hi‘ = [1,1,e(2a),e(23)_1](12)(34)[[4]] and a, b, ¢ are natural

g1
,e(e)7!,

numbers.

In general we have
(2.7) Lemma. Suppose that n = 4 and G is a finite imprimitive irreducible
subgroup of SL(V) generated by special elements such that the KG-module V
has a system of imprimitivities with 2-dimensional subspaces. Then SG is a
C.I. if and only if G is conjugate to one of the groups in (2.6) or there is
a system W, of imprimitivities consisting of 2-dimensional subspaces Wi (i =
1,2) for the KG-module V which satisfies the following conditions.

(1) SL(W*) is a C.I..

(2) L(W,) is the intersection of kernels of the restrictions of some
linear characters of L*(W,)G to L¥(W,).

(3) In GL(V(L*(W)#R(V;L*¥(W,)G))), L¥(W,)G is extended to a CI-triplet
or conjugate to one of the groups in (2.6).
Here L(W,) is the subgroup of G generated by all elements g in G preserving

W, such that rank of g-1's on W1 or W, is smaller than 2, and L*(W,) is the

2
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direct product of the images of L(W,) in GL(Wi) (i =1, 2) (GL(Wi)'s are

naturally regarded as subgroups of GL(V)).

(2.8) Remark. We note the next remarks on (2.7).

(2.8.1) 1If SG is a C.I. and L*(W,)G is not extended to a CI-triplet in
% % L% =

GL(V(L*(W, ) #R(V;L*¥(W,)G))), R(V;L¥(W,)G) = E4D2@E4D2.

(2.8.2) The conditions in (3.1) can be replaced by a concrete classification

of some subgroups of GL(V), but it is rather complicated.

3. The classification

We now state the classification of G whose invariant subring is a C.I,
under the following circumstances. Let Vi's be irreducible KG-submodules of
V with dim Vi = n, which satisfy V = @ilei and Py the representation of G
in GL(Vi) afforded by the KG-module Vi' Let G¥* be the direct product of all
pi(G)'s where pi(G)'s are naturally regarded as subgroups of GL(V), and, for
simplicity, put R = R(V;G¥), G(i) = pi(G), G[i] = Ker(Qj#ipj), G<iE> =
pi(G[i]) and R(i) = pi(R) respectivelyf
(3.1) Proposition ([12]). Suppose that G is a subgroup of SL(V). Then SG is
a C.I. if and only if G is generated by special elements, (R,RN\G,V) is a
CI-triplet and, for each i, the following conditions are satisfied.

(1) For any linear character X of G* which is trivial on G, f(Vi,G(i),
X) is an invariant of G<id>.

(2) S(Vi) is a C.I..

This is a formal solution to our problem, if the irreducible case is
solved.

(3.2) Theorem ([12, i3]). SG is a C.I. if and only if G is generated by
special elements, (R,RN\G,V) is a CI-triplet and, for each i, the following

conditions are satisfied.
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CASE T "pi(R(V;G)) = 1":

Case A "R is irreducible in GL(Vi)". If R(i) # G(i), up to conjugacy,
the groups G(i), R(i), Gi> respectively agree with one of the following
triplets; 1) G(1) = <[e(2"),-1/e(2®)1,R(3)>, R(1) = G(u,u,2), Gi> = G(i)A

SL(Vi) 5 2) E4T, E G(i)\SL(Vi) ; 3) E6O, E6T, G(i)\SL(Vi); 4) <—1,R(i)>,

42’
G(u,u,3), G(NSL(V,) (u odd) ; 5) <[e(3u)™,e(3u),e(3u)1,R(1)>, G(u,v,3),
<[e(30)™,e(3u),e(3u)],6(u,u,3NSL(V,)> (u > 1) 5 6) <W(LNSL(V,),R(1)>,
6(3,3,3), GENSL(V,) ; 7) EGR(1), W(Ly), G(LNSL(V,) ; 8) EgR(i), W(My),
G(i)nSL(Vi) ;5 9 E18R(i), W(M3),G(1X\SL(V1) ; 10) ESR(i), W(J3(4)), G(iN
SL(V,) 5 11) <[e(2”),e(2%),1/e(2%),1/e(2®)1,R(1)>, G(u,v,4), <[e(2®),e(2"),
1/e(2%),1/(2)1,6(u,u,4NSL(V,)> 5 12) ER(i), W(F,), GENSL(YV,) ; 13)
E,R(1), W(A,), GGINSL(V,) ; 14) ER(3), W(L,), G(LNSL(V,) ; 15) EgR(),
EW(N4), G(iX\SL(Vi) ; 16) EZR(i)’ W(AS), G(i)\SL(Vi) s 17) E6R(i), W(K5)’
G(LNSL(V,) ; 18) ER(i), W(Eg), G(iMNSL(V,).

Case B "R(i) is reducible and not abelian". (1) n, = 4, (2) G(1)/R(1)

is conjugate in GL(Vi(G*#R)) to one of the groups in (2.6) or is extended to
a CI-triplet in GL(Vi(G*#R)). (3) For any element x in Vi with dim Vi<G[i]X>
= 3, in GL(Vi<G[i]X>), G[i]X is extended to a CI-triplet or conjugate to one
of the groups in [26, Sect. 3]. (4) If, for an irreducible KR-submodule U of
Vi’ (G[i])U is not contained in R, up to conjugacy, the groups (G(i))U,
(R(i))U. and (G<i>)U agree, in GL(Vi<RU>), respectively with G(i), R(i)
and G<i> of n; =>2 listed in Case A, where LU denotes the intersection
of the isotropy groups LX of all x's in U in a group L.

Case C "R(i) is reducible in GL(V.) and nontrivial abelian". For each g

in G<i>, the product of nonzeroc entries of the matrix [gij] of g is equal to
one, where [gij] of g is afforded by a K-basis on which R(i) is represented

as a diagonal group, and G<i> is conjugate in GL(Vi) to one of the groups;
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G(u,u,n NSL(V,) ((u,u,0,)4(2,2,2)), <G(u,u,4NSL(V,), [e(2),e(2"),1/e(2"),
l/e(Zb)]>, the groups in (2.6), <G(u,u,3Y\SL(Vi),[e(3u)_2,e(3u),e(3u)]> (u >
1), <G(u,u,3X\SL(Vi),[e(7u),e(7u)2,e(7u)_3]>.

Case D "R(i) = 1". G(i) can be extended to a CI-triplet in GL(Vi) or is
conjugate in GL(Vi) to one of the following groups; 1) G<i>'s in Case A;
2) the groups in (2.7) (ni = 4); 3) <A(u,u,4),g,(123)[[4]1],(234)[[&4]1D>,
<G(u,u/2,6NSL(V),g> (n = &) where g = [e(2D),e(2®),1/e(2"),1/e(2®)1; &)
EZmTEZ, Ezmomz, EzmIEz (m =1, 2), (4,2;O,T)®2 (n = 4); 5) the groups in
[26].

CASE TT "p, (R(V;G)) # 1 and p,(R(V;6)) # R(1)":

Case E "R(V;G) is irreducible in GL(Vi)". If G(i) # R(i), the groups
pi(R(V;G)), R(i) and G<i> are respectively listed in the following triplets;
1) pi(R(V;G)) = G(u,v,3), R(i) = G(u,v',3), GHE> = <G(p,q,3),[e(3u)_2,e(3u),
e(3u)1>; 2) W(L3), W(M3), E9W(L3); 3) G(u,v,4), G(u,v',4), <G(u,v,4),[e(2b),

e(2),1/e(2%),1/e(2%) 1>.

Case F "pi(R(V;G)) is reducible in GL(Vi) and not abelian". n, = 4, If
R(i)/pi(R(V;G)) is abelian, G(i) can bé extended to a CI-triplet in GL(Vi(G#
R(V;G))) and f(Vi(G#R(V;G)),G/R(V;G),det) is a det-invariant of G(i)/pi(R(V;
G)). Otherwise, R(i)/p;(R(V;G)), G(i)/p,(R(V;6)), G<i>/p;(R(V;G)) and V. (G#
R(V;G)), respectively satisfy the conditions for R(i), G(i), G<i> and Vi in
Case B.

Case G "pi(R(V;G)) is reducible in GL(Vi) and abelian". The group G(i)
is monomial, and R(i)/pi(R(V;G)), G(i)/pi(R(V;G)), G<i>/pi(R(V;G)) and Vi(G#
R(V;G)), resbectively, satisfy the conditions for R(i), G(i), G<i> and
Vi’ in CASE I.

CASE III "p,(R(V;G)) = R(i) # 1": If R(i) # G(i) and G(i) is not extended to

a CI-triplet in GL(Vi), G(i) is conjugate to G(i) in Case A or G(i)/R(i)
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satisfies the conditions for G = G(i)/R(i) and V = Vi(G(i)#R(i)) in CASE I.
Here the 2-part of u is Zb—l.
(3.3) Remark If necessary, we can replace any condition in (3.2) by some

concrete classification of subgroups in GL(Vi). However it is rather compli-

cated.

4., Simple algebraic groups

Let G be a simple algebraic group over the complex number field’K and
denote by K[p] the symmetric algebra of the dual p* of a finite dimensional
linear (rational) complex representation p of G (we confuse representations
with their spaces).

By our classification in Sect. 3, we have
(4.1) Theorem ([14]}). Fix a simple G. Then, up to outer automorphisms,
the set of all representations p's of G such that K[p]G's are C.I.'s and p's
do not have nonzero trivial subrepresentations. is finite.

In general, if a system of generators of graded algebras with rational
singularities are constructive, then their relation ideals are constructive.
(4.2) Proposition ([12]). Let A be a graded algebra defined over a field k
and B an n-dimensional graded polynomial algebra over k. If A is pseudo-
rational at A+ and h is a graded epimorphism from B to A, the intersection
of Ker h and (A+)dimA+1 is contained in A+Ker h.

The next result follows immediately from [2, 21].

(4.3) Proposition. Let A be a Gorenstein graded K—algebré and suppose that

AA is a rational singularity. If a system of generators of A as a K-algebra
+

is known, a minimal graded free resolution of A is constructive.
It was proved in [16] that a minimal system of generators of K[p]G is

constructive, Because K[p]G is a Gorenstein graded K-algebra with rational

-9 =



{
[

singularities, by (4.1) and (4.3), (in principle) we can determine the
representations of G whose algebras of invariants are C.I.'s.

For example, suppose that G = SL2 and p is the representation of G
satisfying pG = 0. Then K[p]G is a C.I. if and only if p is a subrepresen-

tation of one of g, g q2+q3, ®ra*, 204q%, a+20%, 20°, 4q, 307, g+’

q+q4, 2q4. Here q is, the irreducible representation of SL2 associated with

the fundamental dominant weight and q1 is the ith symmetric power of q.
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