goooboooogn
0 5140 19840 173-191 173

VECTOR COMPILER AND ITS ALGORITHMS

Michiaki Yasumura, Yoshikazu Tanaka, Yasusi Kanada
Central Research Laboratory*ﬁ

Hitachi Co. Ltd.

Abstract

This paper describes the compiling algorithms and
techniques for the Hitachi S-810 vector processor. The data
dependency analysis method presented here 1is based on the
algorithm by R. Takanuki,et.al.[l]-The results are similar to
but the approach different from the loop distribution algorithm
by D. Kuck, et.al[6]. A new data flow algorithm for data
dependency of variables under IF statements is described. For

this purpose data flow operators are newly introduced. Some

program transformation techniques are shown to be useful for
enhancing vectorization. The issues on vector object
optimization technigues are also described. With these
algorithms, typical vectorization ratio of the S-810 vector
compiler 1is about 30% higher than that of Hitachi’s previous
vector compiler and more than 68@MFLOPS are attained for a
FORTRAN program. Most of these algorithms and techniques are

easily adaptable'to other vector processors.

) "
THAR - Hh— @ = By - B

-1 -

174

Introduction

Over the past decade Hitachi has been developing two types
of vector processors and their compilers. One, called
IAP(Integrated Array Processor), 1is integrated in general
purpose mainframes. Examples are the Hitachi M188 IAP, M200H
IAP, and M28¢H IAP. Other companies in Japan also make this
kind of vector processor, for example, Nippon Electric Company (

ACOS109@ IAP) and Mitsubishi(MELCOM COSMO708 1IAP). The

conceptual. base of IAP is transparency and high
cost/performance. Transparency is achieved through the
interruptable vector instructions(thus they are

memory~to-memory instructions) and automatic vector compilers.

Therefore, IAP can be wused not only for FORTRAN programs in
batch mode but also for APL programs in interactive mode. The
IAP system can be put together with a small amount of extra
hardware. However, the performance ratio of IAP to scalar
processor is generally not so high. A typical performance
ratio for IAP is about 2 to 3 , with a maximum ratio of about
19.

The other type of vector processor is the Hitachi S-810
model 20 and model 18. This type is a dedicated scientific
super computer with vector registers. Other companies in- Japan
have developed or have been developing‘this type as well, e.qg.,
Fujitsu(VP-2068 and VP-1448), and ﬁippon Electric Company(SX-2
and SX-1). The primary goal of these processors is high

performance. But user friendliness is also important, and the

automatic vector compiler is the key to achieving this goal.

175

A basic data dependency algorithm has been developed for
the M188 and M200H IAP compiler([l]. Techniques for vectorizing
IF statements and program transformation techniques have been
developed for the M28¢H IAP compiler(4],[5],[12]. Based on the
above algorithm and techniqugs, we have developed extended
vectorization techniques and algorithms for the S-819 compiler
to enhance vectorization and to generate more efficient vector
objects.

In this paper, we first briefly describe basic algorithms
fof data dependency analysis. The data dependency analysis
under IF statements is then explained. Finally, the issues on

vector object optimization are described.

Data Dependency Analysis

To vectorize FORTRAN programs automatically, the order of
operation execution in DO 1loops has to be changed. 1In the
scalar processing mode, one operation is executed for each
index wvalue. After all operations in a DO loop are executed
for an index value, the index value is incremented, and each
operation is executed again for the new indek value, and so on.
In the vector processing mode, each operation is ekecuted for
all index wvalues, and the next operation is executed for all
index wvalues, and so on. This change in execution order is

called loop distribution or vectorization (Fig-1).

176

FORTRAN DO loop - Vector mode

DO 19 i=1,N
A(i)=B(i)+C(i) => (Ai=Bi+Ci,i=l,N)

10 D(i)=A(i)*E (i) (D,=A;*E,,i=1,N)
Fig. 1 Loop Distribution(Vectorization)
Whether or not a loop distribution is permissible depends

on the value defined and its usage for each data. This

dependency is generally called data dependency. Data

dependency analysis has been studied for many vyears for
variables in the field of scalar object optimization. However,
the study of data dependency analysis of arrays for
vecto;ization is relatively new. One study publicized in this
field is the work done by D. Kuck,et.al.[6].

The method of data dependency analysis described here is
'slightly different from theirs. In this methdd, data
dependency relations are classified into five categories: the

first 1is suitably dependent, the second unsuitably dependent,

the third specially dependent, the fourth unknown dependent,

and the fifth independent.

Examples of the unsuitably dependent case are shown in
Fig. 2. Array - A 1is unsuitably dependent in DO 18, whereas

variables S is unsuitably dependent in DO 24.

DO 14 i=1,N
A(i-1)=B(i)+C (1)

19 D(i)=A(1)*B(1)

DO 20 i=1,N
A(1)=S*B(1i)

20 S=C(i)+A (1)

Fig. 2 Unsuitably Dependent Case

The specially dependent case is a variation of unsuitably

dependent case. Examples of the specially dependent case are
§
shown in Table 1. These special operations can be vectorized

with special hardware support.

Table 1 Specially Dependent case

Macro Operation Example
Rl et B -
Vector Sum S=S+A (1)

Vector Product S=S*A (1)

Inner Product S=S+A (1) *B (1)

Vector Iteration |A(i+1)=A(i)#*B(1i)+C (1)
Vector Max S=MAX(S,A (1))

Vector Min S=MIN(S,A (1))

This basic dependency analysis is done for variables and

for arrays according to the following two rules:

(1) A wvariable is unsuitably dependent 1if there 1is a

defining occurrence and its first occurrence is not a
defining occurrence.

(2) An array is unsuitably dependent if one of the two

occurrences is a defining occurrence and the preceding
occurrence contains a subscript, the value of which is
"less than" (*) the value .0of the subscript of the

succeeding occurrence.

For more details on the basic algorithm, see[l].

(*) The value of subscript Fi is
"less than" the value of subscript Fj
iff

P,q(1<p<asn) f;q=£,p
where Fi=(fil,fi2,.....,fin) and

F-= L] L] ® o o 0 o 3
j (fjl,fJZ, ,f]n)

are ordered set of subscript values.

‘The vectorization analysis is based on this basic
algorithm([l] and is enhanced by the program transformation
techniques. At least three program transformation techniques
are related to data dependency analysis. These are statement

exchanging, 1loop splitting, and 1loop unrolling for a cyclic

index.

175

During data dependency analysis if two statements are
exchangeable, they are exchanged to reduce unsuitable

dependency. Two statements are exchangeable iff

variables/arrays in two statements are mutually unsuitably
dependent or 1independent but not suitably dependent nor
unknown.,

In the course of the data dependency analysis, a loop is
split into vectorizable parts and unvectorizable parts. Thé

loop splitting algorithm is as follows:

(1) Let an assignment statement or a conditional statement
be a S-Block(Split-Block).

(2) Analyze data dependencies within a vectorizable S-Block
and among S-Blocks and mark unvectorizable on the S-Block
if it contains unsuitably dependent or unknown dependent
variables/arrays.

(3) Combine adjacent unvectorizable S-Blocks. Repeat step 2
until all S-Blocks are checked.

(4) Combine adjacent vectorizable S-Blocks.

The resultant S-Block 1is quite similar to the PI—Bchk
produced by the data dependency graph[6].

Data dependency analysis 1is effective - only for linear
indexes. Data dependency analysis for non-linear indexes, such
as indirect addressing is quite difficult. Therefore, an array
with a non-linear index can be vectorized if its occurrences
are use only or it appears only once. Otherwise it should be

declared independent by the user. (Fig. 3)

130

*VOPTION VEC
DO 10 i=1,N
A(L(1))=A(L(1))+B(1i)

19 CONTINUE

fig. 3 Forced to Vectorize Case

A cyclic index 1is a non-linear index. A program with a
cyclic index, however, can be vectorized through a 1loop
unrolling technique. In Fig. 4 cyclic index j is removed by

loop unrolling.

Original loop Unrolled loop

Jj=N . A(1)=B(N)+C(1)

DO 10 i=1,N DO 18 i=2,N

A(i)=B(j)+C(i) => A(i)=B(i-1)+C(1i)
14 j=i 13 CONTINUE

Fig. 4 Loop Unrolling for Cyclic Index

Vectorizing IF Statements

To vectorize IF statements, control flow and data flow, or
data'dependehcy under IF statements are first analyzed.

The main purposes of control flow analysis are to detect
anomalies, such as internal 1loops, or branches into control
structures (see Fig. 5) and clarify . control and controlled

relationships.

DO 164 i=1,N
IF(el) GOTO 2
1 sl
GOTO 3
2 1IF(e2) THEN
s2
ELSE
s3
GOTO 1
END IF
3 s4

19 CONTINUE

Fig. 5 An Anomalous Control Structure

Control flow analysis is relatively easy and little is new

to vector compilers.

The situation is different for data flow analysis. Data
dependency of arrays within IF statements is the same as that
without IF statementst However data dependency of variables

with IF statements is slightly different.(Fig. 6)

| e
o &}
ro

Case A: IF() THEN

Case B: IF() THEN

Case C: IF() THEN

ENDIF

Fig. 6 Data Dependency Under IF

Case A 1is unvectorizable, even though the definition of
variable S precedes its use textually. Case B is vectorizable,
since the wvariable 1is totally defined and both definitions
precede 1its use. Case C is vectorizable, though the variable
is partially defined.

The data dependency condition is modifiedsas follows:

- 19 -

U
o0
oD

(1) " A wvariable 1is wunsuitably dependent if there is a
defining occurrence and there is a path on which the
defining occurrence does not precede the other

gccurrence.

To check the above condition, the depth-first traverse

approach are first attempted for the IAP compiler. This method
is simple and there is no extra memory except for backtracking.
However it was too slow to analyze a fairly large DO loop with

many IF statements. Therefore we have introduced if-then-else

reduction method which reduces if-then or if-then-else branches

and that makes the depth-first method practical.[12]
Nevertheless, the depth-first method is intrinsically time

consuming process.

So we have developed the breadth-first data flow method for

the S-818 compiler. To facilitate this method we havé
introduced the data flow operators,/)* and U*.

For each variable v and each index i in flow graph, there
are three data flow variables INi(v), OWNi(v), OUTi(v) defined

as follows:

IN; (v)= [1* OUT; (v)
j€Pred (1)
-1 (use precedes)
OWNi(v)= @ (not appear)
bl (def precedes)

OUTi(V)= INi U* OWNi(V)

Here, INi(v) is the input status for the variable v in

vertex i, OWNi(v) is the own status for the variable v in

- 11 -

184

vertex i, OUTi(v) is the output status for the variable v in

vertex 1i.

Semantics of (* and U* is defined in Table 2.

Table 2. Data flow operators.

n* u*

+1 -1 9 +1 +1 +1 +1 +1

R N SRS ——— - Fommm b +

Unary [}* is defined by binary *
as follows:
*Xj = X1 O*X2 O* N*Xn

j=1l..n

Using these operators and status variables, the flow graph
is traversed in breadth-first order. 1If the value OUT of the
final vertex is not -1, then it is suitably dependent. - (See

the example in Fig. 7)

This algorithm 1is efficient in the sense that each vertex
is traversed only once. In general this algorithm is quite
useful for various data dependency of variables, such as

variables under nested IF statements or partially defined

variables.

- 12 -

0
Fig. 7 Example of Data Flow Analysis

Vectorization of IF statements be extended based on the

algorithm. For example, if semantics analysis is employed,

some special cases can be vectorized as well. Such an example

is shown in Fig. 8.

DO 10 i=1,N
"IF(A(K) .EQ.X) S=B(I)
C(I)=S*D(I)

19 CONTINUE

Fig. 8 Semantics analysis of IF statement

This example is an unsuitably dependent case by definition,
since there 1is a definition of a variable and there is a path
on which there 1is no preceding definition of the usage.
However, when the semantics of IF statement is considered, this
IF expression 1is index independent(we call this type of IF

statement loop invariant IF statement). Therefore this

definition of the variable 1is either always executed or not

- 13 -

(B4

186

executed at all for all index values. Thus this type of
variables can be vectorized. |

The other technique for enhancing vectorization of IF
statement is related to the program transformation techniques.
One example 1is the loop unrolling of edge conditions. (See
Fig. 9) IF statement of edge condition 1is removed by loop

unrolling.

DO 19 i=1,N

IF(i.EQ.1) THEN A(1)=0.0
A(i)=0.0 DO 14 i=2,N
ELSE => A(i)=S*B(i)

) A(i)=S*B(i) 10 CONTINUE
END IF

18 CONTINUE

Fig. 9 Loop Unrolling for Edge Condition

Vector Object Optimizations

Object optimization techniques for vector compilers are
vector text optimizations, vector register assignments, vector
memory managements, and other machine dependent optimizations.

Vector text optimization is a common technique for the IAP

and the S-810 vector processor and it is similar to scalar text
optimization. Some of the vector text optimization techniques
are common expression elimination, invariant expression
moveout, and dead code elimination. Among them the first two

are most effective for vector processors.

- 14 -

—
o0
-1

Vector register assignment is the one of the important

tasks for the S-810 type vector processor. Vector memory

management is the important task for IAP type vector
processors. Main target of vector memory management is the
efficient use of temporary vector in memory.

Examples of machine dependent optimization for the S-810

are:

(1) Use of VMA(Vector Multiply and Add) instruction instead
of VM(Vector Multiply) and VA (Vector Add).
(2) Parallel execution of vector instructions with their

pfeparing instructions. (Fig. 10)

DO 18 j=1,N
A(1,3)=0.0
DO 10 i=2,N

19 A(l,])=B(l,])+C(l,])

.K ________ >
foommm e 1
Sequence of fomm e -
Preparing Sequence of
Instructions Vector
»—————T ——————— - Instructions
/
EXecuteVP ¢«—————t——mmmmmmo 1
o W
TestVP
N

- 15 =

Fig.

18 Scalar/vector Parallel Execution

(3) Compression of vector arguments for intrinsic functions

under IF statements. (Fig. 11)

DO 10 i=1,N
IF(A(i) .NE.@) THEN
B(i)=SQRT(A(1))

ENDIF

19 CONTINUE

Fig.

SQRT

11 Compression of Function Argument

- 16 -

189

Amqng these optimization ’techniques, the vector register
assignment is the most important and most difficult one.
Little has been reported on vector register assignment. The
strategy should be different from scalar register assignment,
since vector processors like S-8140 execute multiple vector
instructions in parallel and the »aécess to the same vector
register by different instructions may hinder their parallel
execution. The wvector instruction specification also imposes
some restrictions on the vector register assignment for each
instruction. Thus we employ tabulated LRU (Least Recently
Used) method to assign vector registers in place of simple

Round-Robin.

Conclusion

Though the basic data dependency analysis of S-818 is the
same as that of IAP, a 1lot of techniques o0f enhancing
vectorization are used for the S-810 compilers. Some are shown:
in this paper, but some are not. With these enhancement, fhe
vectorization ratio of typical FORTRAN programs has increased
about 30%. And the performance ratio of S-818 vector mode to
scalar mode is about 10-100. Maximum speed which wasrattained
for a thermal conduction program written in FORTRAN program
compiled by the S-818 compiler is 687 MFLOPS (Million Floating
Operations Per Second). |

Thus the algorithms and techniqgues developed for the S-810
vector compiler are effective as well as practical. Some

program - transformation techniques are especially useful for

- 17 -

130

enhancing vectorization, We believe that program
transformations by vector compilers should be further extended

to vectorize much more ordinary programs.,

References

[1] R. Takanuki, Y. Uﬁetani and ‘I. Nakata, "Some Compiling
Algorithms for an Array Processor", Proceedings of 3rd
USA-JAPAN Computer Conference, pp 273-279, 1978.

[2] Y. ﬁmetani, S. Kawabe, H. Horikoshi and T. Odaka, "An
Analysis on Applicability of the Vector Operations to
Scientific Programs and the Determination of an Effecti&e
Instruction Repertoire", ibid, pp 331-335,1978.

[3] R. Takanuki and Y. Umetani, "Optimizing FORTRAN77", Hitachi
Review, vol. 30,No. 5 ,1981.

[4] Y. Umetani and M. Yasumura, "A Vectorization Algorithm for
Control Statements", Journal of Information Processing, To
be published.

[5] M. Yasumura, Y. Umetani and H. Horikoshi, "Partial
Vectorization Method for Automatic Vector Compilers",
Journal of Information Processing(in Japanese), Vol.24,
No.1l, 1983.

[6] D. Kuck, R. Kuhn, D. Padua, B. .Leasure and M. Wolfe,
"Dependence Graphs and Compiler Optimizations", Proceedings
of the 8th ACM Symposium on Principles of Programming
Languages, pp 207-218, 1981.

[7] D. A. Padua, D. J. Kuck, and D. H. Layrie, "High-Speed

Multiprocessors and Compilation Techniques", IEEE

Transaction on Computer, Vol. C-29, pp 763-776, Sept. 198%.
t8] D. J. Kuck, "Parallel Processing of Ordinary Programs",
Advances in Computer, Academic Press, Vol.l5, 1976.

[9] A. V. Aho and J. D. Ullman, "Principles of Compiler
Design", Addison-Wesley, 1977.

[19] D. B. Loveman, "Program Improvement by Source-to-Source
Transformation”, | Journal of the ACM, Vol. 20, No. 1,
Jan. 1977. |

[11] R. L. Sites, "An Analysis of the CRAY-1] Computer",
Proceedings of the 5th Annual Symposium on Computer
Architecture, pplfil-106, 1978.

[12] M. Yasumura, T. Matsunaga, Y. Tanaka, and Y. Umetani, "A
Method of Control Structure Analysis for a Vector Compiler",
Proceedings of National Conference of Information Processing

Japan (in Japanese), pp211-212, Oct. 1981.

- 19 -

