DDDD?QDDDD
0 5150 /1884 0 16-61

A Mathematical Theory‘of Prolog

Shigeo Oyagi

(Electrotechnical Laboratory)

Abstract

Wevpresent a reflexive domain E, which is very similar-

' to the Plotkins T. Flat subspace Eq of E is selected which
has a regular open topology. Prolog pfoéedﬁré is shown to be
continuous on the open subset of Ep. It is also shown
that any function which is continuous on the open subset of
Ey can be extended to a continuous function on E. So Prolog
procedure is continuous on E and semantics of Prolog can
be defined on E.

Finally it is shown that functions of E; which can be
approximated by step functions coincides with the
continuous function of E on E\ A where A is a nowhere dense

subset of Ec.

[1]

—
—\I

Introduction

‘This paper provides a mathematical theory for “Prolog".
Semantics of Prolog has logical,denotétiénal and |
interpretive’éspéCts.’ Wholé'aséects' can be derived from
one mathematical object is desierable.

:The'logicaivséméntiCé of ?roloé can be obtained‘from
‘Herbrand model. However it is not sufficient if pfogrammer
use cut primitive. Cut primitive is relétéd to bofh
logical and procedural semantics. It reduces ﬁhe searchi
space of proof sequehces and ditects howﬁﬁo short—cut the
search. |

Kowalski-Emden approach to the procedural semantics of
Prolog cannot treat cut-operator. .Johnes;Mycfoft approach
is not’loéical. |

So no one is known which succeeds fo éive both logical
and procedural semantics of Prolog.

Prolog procedure gets a term and produce another term. A
term denotes the set of constant terms. So Prolog is a function
from the sets of constant terms to the sets of constant
terms.

Let'Ed bé\the power set of the constant terms. Prolog is
shown to be a continuous function on’the open subset of E,

which has regular open topology. From thevlogical point of

[2]

view, Prolog procedure is identified with its invariant
set. So it is comparable with invariant set-of or-parallel
evaluator of Horn sentence.

To assign program construct a higher order function,

a reflexive domain is required.

This is a denotational wéy of describing the semantics
of programing language.

The space E which is very similar to the Plotkin's T¥ is
introduced. The eiement of E is a pair <x,y> where x and y
are sets of constant terms satisfying XY =)‘. The space
E is shown to be reflexive.

Ey can be embedded into E by identifying x and <x,x">
where x¥ is the largest eiement of fy[ynx:=ﬁ}.

The key point is that a continuoﬁs functidn on the open
subset of E; can be extended to a continuous function on E.

Prolog procedure is a continuous function on the open
subset of E;. So it can be extended to a conﬁinuous function

on E.
1. Prolog procedure on the space E,
In this section the space E; is described and Prolog

procedure is defined as a function on this space. 1It is

proved that Prolog procedure is defined and continuous on

[3]

the open'subset of Eg .

19

The set of finite trees, FT, is defined inductively as

follows.

[Definition 1]
FT is a minimal set satisfying the following
conditions.
(i) cq € FT where n 2 1

(ii) If &, --. %, €& FT then
" «
£ (g, oon s Kpy) € FT

for n,m : 1L n,m<X£ N
Here cy 1is a constant symbol
and f;_is a function symbol
FT (N) is the set of elements of FT in which only

constants with index not larger than N appear.

[Definition 2]

A finite tree FeFT which has constants Cmyr--*1Cn
r

. p > N) as subexpressions is denoted as

F = F(c“i""'cnr)'

Define function b and its extension b as

b : FT—=> P(FT(N))

(4]

(nil"

7 b(F(ler “ 0 ’c“r))) =

{F(XL,...,Xr) ! xl,.‘.,xr € FT(N)}
D : P(FT) ~> P(FT[N))
; D(x) = U b(F)
FeXx
Let « and % be subsets of FT then above (%) and under(@)

is defined as

I

above (x) ?x] x)ot}
under (e) =? x| x¢(@}
respectively.
Finally define Aiaas
3,= | above () N under (ec)
™ is a finite subset of - FT (N)
and there exists a finite subsét’@' of
FT such that
B= B((s')
Eg is a sapce P(FT(N)) with the topology generated by

~

<,
Example 1
Define function fail (p(f(x)),z) as
(fail(p(f(x)),2)) (u) : .
= z in case u {p(f(x)” xéFT(Ng
A else
then fail(p(f(x)),z) is continuou;.

Example 2

Define function [q(x,f(x),y)&q(f(x),x,y)]]

[5]

19
»4‘-

as

g (x, £(x),y)&Eq(f(x),x, 7] ()

-lattw,xy a6 en).

Then ﬁq(x,f(x),y%%:q(f(x),x,y)ﬁ is continuous.
Here we define some functions to construct Prolog

procedure.

[Definition 3 1
Let §fn§nélj be a set of partial functions on the space
E, and (I,X) be a directed set. Then finite limit of

]
§fn§nfl} is defined as follows.

F-lim £y (x)

= (fN(x) in caseﬁthere exists N€I such that
fn(x) is defined and

falx) = fN(x) for n »-N

\ undefined otherwise

[Definition 4]
If F((x!,...,xn(u) is a partial function of u on the
space Ey for arbitrary partial functions x

l,...,Xn

then the notation

(6l

X 1(U)=Fl (Xi AL RE IR ’»Xr\ ,1.1)

x . (u)=F . oo
Y h‘() n‘(X‘; r leﬁlu)

denotes functions

Xi(u)zF—limFi([Xlldf""[xhngu)

for i=1,...,n

where [x‘] .,[X“Li are defined as follows.
n

o

[Xi]EQP(..(L})(),") =F1_([X_L]o(l ey [X“]o(r\lg)
[xn%%béglu) =Fn([xlkﬁl".’[$“]“(u)

and [XLh ,...,[x“% are totally undefined

functions.
[Definition 5]

While sentence is defined as follows.

(While Exp do S end) (x)
={ (While Exp do S end) (S(x))ux
in case Exp(x) D) {0,1}

(While Exp do S end) (S(x))

(7]

in case Exp(x)>{1} and Exp(x)}{0]}
X in case Exp(x)){0} and Exp(x)&?l}

undefined otherwise

[Definition 6]
Case construct is defined as follows.
(Case x of Yy i Zyieee¥ z,iend) (u)

=U z(u)
yie x(u)

where x and z; i=l,...,n are functions on E

[Definition 7]
If z; are functions for i=l,...,n then
ZL7"'%pﬁzn=Zn°"°za°zi

and

begin S end = S

[Definition 8]

Natural numbers are defined as follows.

—
3 e
| |
~kh Hh
b— =
53
t|_‘, -

The set of natural numbers are denoted as Nat.

[Proposition 1]

(8]

0

A partial function f on FT(N) can be extended to a

continuous function £ on P(FT(N)) as

E(ZL""'zn) =Ljif(xl,.-n,xn)‘XLéZL for i=l,...,n}

The notation f shall be used instead of f.

[Definition 9]
Pair function <x,y> and assignment
uév are defined recursively as follows. .
[x,y] = fé (x,y)
(>=10,01, <x>=[x,;< >]

KX oo X >=[% <%, 500X, 0]

length(<xL,;;;,Xm>)#n
Push(a,(xi,..;, ;»=<a,x,,.;.,xn>
P0p(<xl,...,x“>)=<xl,...,xm>
iR(xL,...,xn>)=x{
(i) (KXq 700X D)
=<XL""'XL-1'V'x;f1""'Xn>
(i.uev) (2)= (i (oev) (z;)) (2)

(i.u) (z)=u(i(z))
[Definition 10]

"if x then y else z £i"

[91]

means if x=1 then y and if x=1 then z.

"if x then y"

is an abrieviation of "if x then y else fi"

[Definition 11]
"let x = v in F(x)"
= F(v)
"F(k)>where xr= v"

=F(v)

Pure Prolog with no assert statement and evaluable

predicate can be definedqsyntactiCally as follows,

Program i:# Clause—groups
Clause-groups ::= Clause—g;oup}
Clause—gfoup Clause-groups
Clause—group ::= Clauses<i,j>
Clauses{i,j>::=Clause<i,j >
Claused{i, i) Clauées<i,j>
Clause(i,j> ::=‘Clause—Head<i,j> :- And-part

And-part ::= terms|/|!| terms| terms!

terms ::=term}termsftermsjterms,terms
. 7 L o
term ::= ci]...[qN}fl(arg)]...[fN(arg,...,arg)
arg ::= term|x, [x,| - | x| |
‘ F
Clause~Head<{i,3j) ::= fi(arg,...,arg)

Prolog program is a list of Clause—groups. A clause-

[10]

group is a list of Clauses which have heads that starts
from the same predicate symbol.
AvClause is a list of the form

“Head:— a list of terms"
and the list of terms has cut symbol! or, as delimitters.

If a program has a clause-group
d; 4 ---d,

we can specify the next clause. This function we denote

by next(d).

next (d;) d for i = 1,...,n-1

ot
next(d,) = undef

The head(d) is a Clause-Head part and the tail (d)

is an And-part for Clause d.

The pred-name (d) is the name of the clause group of 4.

The first(<i,3j>) denotes the first clause of the Caluse

group<i,j).

Let d bé a clause

d = "p:=&p - &P, &4y
where ¢£;= 1 or ,
The term P, is specified by term(d,i)

We define functions Cal, Ret, Fail, Suc, Unif
on P(FT(N)) as follows.

Cal(d,i) = | p=p; |

Ret (d,1i) = HPf?P”

Fail(d) = fail (p) (1)

Suc(d) = | p=l]|

[11]

Unif(d) = [pep|

[Proposition 2]

Cal, Ret, Fail, Suc, Unif are continuous functions.

For Prolog program we shall define a function on E,
which we call Abstract Prolog. First we will consider

the data structures which shall be handled by the

Abstract Prolog.
stack : list-of stack-element
stack-element :<(clause—name, stack-pointer-of
caller, logical-state, subprocess-status>
subprocesséstatus : list of <clause—name,
stack-pointer, Iogical—state)
state:(local-stack;,mode,stack)>
local-stack : list of local-state
local-state : list of variable-assigiment

variable-assignment :

<{stp, stpl,
We assign integers to the selecters.

clause—name = 1
stack-pointer-of-caller = 2
logical-state = 3

subprocess-status = 4

[12]

Il
N

stack-pointer

i
w

logical-state
local-stack =1
mode = 2

stack = 3

If u has é data tYpe bf state then
(stack.clause—nameed)
replaces the clause-name slot of the stack part of u
by 4 if it is applied to u.
Let clause group <i,j> be given. The process of its
execution we call "process". The process. status is
composed of the clause name it is currgntly executing,
the position of the process-status in the stack and the
state descriptions of the subprocess which it should call.
Subprocess status is made of three components. First one
is the next alte:native clause of the clause under execution;
The second is the base point of data for the‘process in
the stack.
The third one retains the partial return value of the
process.
If input Prolog sentence d, is ":-p," then the corresponding
element u, of E, is Cal(d;) (1).
The element u, is an input for the Abstract Prolog.

. . /
We define the function pred-name as

(13]

pred-name?u)= u Hf%(xil°"lxl)é<ilj>“ (u)
LS4)<N

v U llegd>l

P=4=N

The initial state of the stack becomes -

<) ,undef,

J

o <<pred~namé(u;J)’l'ul’<fir5t(pred—name(ui

l;é,)
undef >

- where

+ e
ui§=§ ”fi(xl"."xiyéfixi’."’xl)” (u)

for i,j=1,...,N
lesec, |l (w) for 1=0 and j=1,k. ..,N

It is depicted in the figure 1.

-

Gl /)]

undef

'l

pred-namé(uﬁ)

7/
first(pred-name(u;;))

J

fig. 1

[14]

In case

/
flrst(pred—name(ulg)) =d= -pL,pa!p3
and Suc (d) (u;; é

the stack becomes as in the figure 2.

. v . /
Unlf(d)(ukj) flrst(pred—name(p‘)) first(pred-namé&pé))

/
first(pred—name(pz))

[
IVOAUNAYSAUNE
B VAVE

——

pred- name(u next (d)

J
J. =undef

fig. 2

(15]

A
).,.A

A procedure which define "process" has four parameters.
First one is the kind of process. A "process" has two kinds.
One is clause selectién process usually called "or-process".
The other is subprocess monitoring process called "and-
process". They are further descriminated by clause-group
names and clause names respectivly.

Second parameter is the stack base positioﬁ for the
process. This is specified by pt. The third one is the
position of thekcurreﬁt term in the clause description.

The last parameter is the mode of execution,"normal"
‘order or "reverse" order.

Procedures require "local-stack" for local variables and a
mode parameter "mode™.

"The local stack should not be confused by the local stack
of the usual Prolog interpreter.

We introduce here the procedure declaration.

[Definition 12]

"Procedure m(xi,...,xn)

dcl a;,...,ay local
Body

end"

[16]

il

m(xL(...,xm)

=local—stackePush(<undef,...,undef),local—stack);

Body
local—StaCkf—-Pop(local—stack)

where ai=local~sta¢k.l.l

agy=local-stack.l.m
Abstract Prolog is defined as follows.

initii(u)=<1oc,undef,sg;>

where loc=)
/
sg =<(pred—name(u&é)4l:u‘

< first ({i,j>) ,undef ,undef >>>

u..

g

ble? (Rypoee X)EET (X g0 x)] ()

for i,j=1,...,N

L 1 caécé I ()

for i=0,j=1,...,N

(171

Main (w) _ .
=y [if kké(stack.l.logical—state(w) then
g .
d stack.l.logical-state(

process (<i,j»1,1,norm) (w))]

where
k.= (fé(X~k?f;(x))
Lc’)~ -L Xi,..., L L L,...,Xi'

-for i,j=1,...,N
for i=0,j=1,...,N

procedure process(q,pt,ix,norm)
dcl d local
destack.pt.subprocess-status.ix.clause-name;
if dkundef then
begin
stack.pt.SprroCesS—statuS;ix;clause;nameenext(db;
if Suc(d) (stack.pt.logical-state) £hen
begin
process (d], pt,ix,norm) ;
if mode=fail then
process (q,pt,ix,norm)

end {begin};

(18]

if Fail(db(stack.pt.logical—statéﬁ then

process (q,pt,ix,norm)

end fbegin}

end iprocedure}

procedure process(q,pt,1ix,reverse)
dcl stpl,d,r,dl local
stpL%stack.pt.subprocess—status.ix.stack—pointefE
d&stack.sthLclause—naméB
relength (d) ;
if r¥0 then
process(dﬂstpiﬁundef,reverse);
if mode=fail then
begin |
dk&stack.pt.subprocess—status.ix.clause—naméE
stack.pt.subprocess—status.ix.clause—nameenext(diBf
While dﬂ%undef and modekfail
do
stack&Pop(stackﬁ;
process(pred—name(diB,pt,ix,norm)
end {while}
end fbegin}

end fprocedure}

procedure process(d,pt,ix,t)

(191

= dcl stp,ixl,r,d1l,/,stpl local
Case t of |
norm:
stack&Push(<d,pt,v,<<first(pred—name%pi)),
undef, undef>,-'=,<first(pred-namé%pr))5>>'
stack)

where v = Unif(d)eCal (stack.pt.clause~-

namétix)(W)'W=Stack.pt;sUb§decess-status.
._‘(iX+l).logical—statef in case ix¥l1,

stack:pt:lééical-stateT in case ix=1
pL=term(d,i) for i =1,...,rl1,

rl=length(tail (d)) ;
stack.pt.subprocess-status.ix.stack-pointer
é--length(stackT);1
if length(tail(d)) = 0 then
begin
mode+suc;
stack.pt.subprocess-status.ix.logical-state
eRet(stack.pt.clause—nametix)(
stack.length(stackb.
logical—statéB
end Ebegin}
else
begin
stpelength(stacKB;

ixlel;

[20]

RE¥

r&length(d) ;
modeésuc;
while-sentence
fi
»reverse?
ixlslength (tail(d));
if ixIF=0 then
begin
modeé¢fail;
stackePQsztackB,
end ?begin%
else
begin
mode4fail;
stp éiength(stackb;
réixiﬁ
while-sentence.

end,}Case}'_

where while-sentence=

While 1<ixikdl
do '
dlsstack.stp.subprocess-status.
ixl.clause-namel;
if d1f=1 and modeékfail then

begin

[21]

J@E—-length(stackﬁi
While stpT4 4T
do
stackePoP(stackﬁ;
Le4T-1
end }while};/
stackéPoP(stacﬁb;
stack.pt.subprocess-status.ix.
 clause—hame$firét(head(d));
‘ixleﬁ;Z
end ?begin}t
else
begin
if a1f=! and model= suc then
begin
if ix1T= 1 then

begin

stack.stpl.subprocess-status.

ixltlogical—stateestack.

stp.logical—statéﬁ
ixleixifrl
end ibegin}
else

begin

stack.stpltsubprocess—status.

ixltlogical—state

estack.stpltsubprocess—status.

(22]

(ixﬂll).logical—statéﬁ
Cixleixihl
end 2begin}
f£i
end %begin§
else

if modeT='suc then

process(pfed—name(dib,stpitixitnorm)
elée
process(pred—name(diB,stpiﬂixiﬁreverse)
£fi;
Case modeTof
suc:
ixleixifil
fail:
ixleixifl
end {Case}
fi
end ibegin}
fi

end %while}

(23]

Case ixlTof
0: modesfail;

stackrPop(stackb;

stack.pt.subprocess-status.ix. .

clause-name «—first (head (d))

rf1: mode<suc;
stack.pt.subprocess-status.ix.
logical-state<Ret (d,ix) (stack.
stp .subprocess-status.r.
logical—statéﬁ

rﬁ-Z :

end fCase

end {procedure |

Some properties of Prolog procedure shall be stated here.

[Lemma 1]

Let f be a partial function on E; .

If for any xe¢D(f) there exists an open neighborhood U

of x such that £ is continuous on U then D(f) is

open and £ is continuous on D(f).

[Lemma 2]

Let u,e,U,S are totaly defined continuous functions on

E, and Im(x)=Im(Q)=?fl§,%}.

If<X(xN\e(xX¥l‘then the function defined as

[24]

f(x)=1if x(x) then f(¥(x));

if @(x) then §(x)
has an open domain and it is continuous.

(Proof)
Let x be an element of D(f).

Define U? and U, as

From‘xeD(f) xeUy, or xéUé.yk

In case eré' f(u) is defined for uéU@ and f coincides
with a continuous function § on Ug -

fAis continuous on U@. ‘

If xéU“ then there exists N such that

WMx)eUg, Px)eu, for i=1,...,N

and £ (x)=5(¥N(x))

by the definition of recursion.
Define V as

)*L

v=Un () T n A N)

LEEN

[25]

=
b.A

then V is an open neighborhood of x and
£(v)=S (3N (v)) for vev.

So £ is continuous on V.

From Lemma 1 and the above fact, the Lemma 2 holds.

Extended version of Lemma 2 can be easily obtained and if
we apply it to the Abstruct Prolog then the following

proposition will be shown.

[Proposition 3]

Abstruct Prolog has an open domain and it is

continuous.

2. Reflexive domain E

In this section a space E is introduced. It shall be shown
that E is a continuous lattice, E is reflexive and the
paradoxical combinator coincides with the least fixed point
operator. This section is a preparation forlthe next

section in which the relationship between E and E, shall be

[26]

discussed.

[Definition 13]

Let above' () be the set
‘above'(x)=§x]x)qoxCFT}

for a finite subset & of FT.
We introduce the topologyfzf into P(FT) which is

generated by the sets

~5

7 '=labove' ()| e is finite].

[Definition 14]
In case a finite tree F has constant symbols

for n

Cryrev+1Cn_ R

/0, >N on its leaves,

F is denoted as
F=F(chi,...,chr).

Define function b' : FT»P (FT) as

,...,cﬂr))

=tF(xL,...,xr)lxi,...,xreFT}.

[27]

43
Further the extention b' of b' is defined as

b'(x)=uU b'(F)

Fex

[Proposition 4]

b' is a continuous retraction map.

[Proposition 5]
The map r defined as

r : P(FT(N))xb (P (FT))>P (FT (N))x b (P (FT))
X, D> when xny=%
r(<x,y>)= |

T else
is a retraction map.

[Definition 15]
Define space E as

E=r (P (FT (N))xb (P (FT))) .

The first element of the pair <x,y> of E represents

positive information and the second element represents

(28]

negative one.
[Definition 16]

Let e and ¥ be as

£ m
(3’=<F,b' (G, X=(y Fn, U D' (Gy) D
=1 m={
for F,FR¢FT(N) G,G,¢FT

A pair function g(@,a) for such pair (Q,q)s is

defined as follows.

g($'<><) =

< E,KF,B'(G) Ay (Fy)yenn, @y (Fy) e (B'(G)),nusen(D' (Gy))D

3194 3 2!
where d;=(£]) ,e =(f])

for
i=1l,...,max(l,m)
To assure the uniqueness of the function values, the order
of arrangement of F, ,G; must be determined.

Let n(£¥(¥,,...,5/)) be as

n(x,) n(y)
: BRI s B
n(ET (X, /o0 7)) =0 (£])

[29]

where n(ff)=PrG%(i+j)(i+j—l)~i+l).
and Pr (n) denotes a n-th prime number

Then the order is defined as

n(FL)S...Sn(EQ)

and n(G4) <£...<n (Gy)

Using this pair function g the graph of a continuous

function of E can be defined as in the following.

[Definition 17] v ,
F4
Let §=(F,b'(G) and x=ui{F, D' (G;)).
=

Define the function '(’j as follows.

(ﬁ- if «Ex
Yi(X)é

L else

Then the graph of arbitrary continuous function f is

defined as

AXE (x)= g(@,x)

Ziéf

[Proposition 6]

[30]

e N
[]

‘Define function ¥ as

R @

T(u)=t= Tt (u)

}\z*(‘i.(Z)E?f
for any u€E.
Then |
| 1) § is continuous.
2) [Azf(2)] (u)=£(u)

To assure the soundness of this graph interpretation, we

will show the fixed point theorem.

[Proposition 7]

The paradoxical combinator Y defined as
Y=Aulx u(x(x)) \\xu(x(x)))

coincides with the least fixed point operator fix

defined as
. RN
fix(x)=wf (x)
n

in the graph model of E.

[31]

ol
-1

(Proof)
Let N bé a functién bn Dé?b'(G)iGéFT} defined as
N(b'(G))=the number of nodes‘in the tree G.
Then trivialy
N(g (KF,G> KuF, ,uG, D)) > N(F,), N(Gy)
holds.

From Scott{4], this is a sufficient condition for

the theorem.

3. The relationship between E, and E

In this section how E0 can be embedded into E shall be

clarified and the following properties of Eq shall be shown.

(i) Any continuous function on the open sugset of E,
can be extended to a continuous function on the
space E.

(ii) Any lower semi—cbntinuous function on the space

EO can be extended to a continiuous function of E

[32]

except for some nowhere dense subset.
From the fact (i) we can conclude that Abstract Prolog

can be extended to a continuous function on E.

[Definition 18]

Define E: as

E§=§xjx is maximal in E\?T}}

[Proposition 8]
The map I : E§*>Eo,<x,y>r>x
is homeomorphic
(Proof)
1 is clearly one to one.
<x,y><sabove@xy\above(e)
& xéabove (x) and y > e

So

ngﬁamFT(N))enFT(N)
ﬁ;xnignFT (N)=g
=xC ({%nFT (N))C
That is <x,y>eabove«xy\above(§)

implies

x6above§q)munder((%aFT(N))L).

[33]

Conversely if xeabove&xk\under((%nFT(N))C)

then
xmginFT (N)y=gZ.
Trivially
XA @\FT(N))=%
So

xAB=F.

If <x,y>eEc then

Y)@
because y is a maximal element satisfying

XnY:FZ
This shows

<x,y>eabove(u)nabove(@)_

g.e.d.

We can identify the space E with the space‘Et.

[Definition 19]

¥
The function X“ is defined as

{

where‘mu are finite sets of FT(N)

k s else.‘

[34]

13

Y1y
X)=) ¥ in case x an =
}g() se x)x and Xn@ w

(W]

o~

and@ is a set described as
t=pn
for some finite subset (' of FT.
[Proposition 9]

¥ . . .
)gﬁls a continuous function

\

on E, .
(Proof)

[q,@°]= ?xg x)x and x(%c}

is both open and closed.

So this is trivial.

[Proposition 10]
Xuy 1s continuous on E,
{(Proof)

It is possible to select finite sets & x,

such that
u:mmjﬁamix)d“y)dz.
Trivially
Xé[_o(y 335] Y ¢ [o(z,ff]
hold and

uyv € 'l:o‘ ?C:)

for any ué[&lecl and anY“JGBXu@CJ

\

[35]

[Proposition 11]

If fTL is continuous on Ec for n>1

then the function
ufm

=4

is lower semi~-continuous.
(Proof)
Assume
(UEy) (x)€ [, FT (N)]
for open set EN}FT(N)}.
Trivially there exists a number N
such thét.
U £, (x) e[, FT ()]
M<LN
From the continuity of uf, there exists
a neighborhood [7r §¢] ni? x such that
O Ealy) € [o,FT(N)]

n<N

for any ve(¥,5°]

This shows

(E,) (L¥,51) C [, FT(N)]

[36]

-

52}

b |

-
1.

[Proposition 12]
If £ is lower semi-continuous on E,

then
£ T
- ;{ rxoi.a
gl
(Proof)

Let x be an arbitrary element of E,.
For any finite subset X, of f(x) there

exist ¥ and & such that.

xe[¥,59]
and £([7.5D > «,
So
X
£
) ><K$
It means
f(x) D \) >\W” (=)D Xy
X CT
While f (x) can be written as

f(x)= (O

A

for finite sets & with x1=¢

So

f(x)>u Xj(x) v o(i=f (x)
Cf

zr 3
A
4
§

[37]

g.e.d.
[Definition 20]
. NP
Define the function ﬁd? as
S ¥r¢ in case xe[d,ecj

M) =
\ FT(N) else.

[Proposition 13]

-
;?xﬁls continuous.

[Proposition 14]
If f is lower semi-continuous then

the closure of the set ?x[f(x)% O z:(x)}
nT f
: Mg 2 ‘
P
does not include any open set except ¥.
(Prbof) |
Let U be the set
o v
U :TXIf(x)# A Nx) }
} . . ,
?MéD F"’ .
For any x€[Jwe can select c (x)¢FT(N)

Sucﬁ that

. : ¥)
f(x)Rc(x) and N ﬁd}G(X)'BC(X)
nt ,
Lm§> £ ‘ .
Assume the closure of U includes a non-null

open set.

(38]

N

Then there must exist an open set

(o, ;};% such.that
[, 851 CU

The function c determines a partition‘A

defined as

A= i C'C | ')CGU}

We denote ('t(x) by [J“x).
Then

Ux)y

g o
N ¢ v U
[0, Po] x‘U
The set {t]dn(:<d:% is countable. So we can

denote the element by 'V, .

‘Assume there exists index n such that
V. includes an open set.

Then there éxists an open set [£,5°] such

that

V.o le,s¢]

So there exists an element X, such

that

(39]

Uccxo) is dense in [e,5°]
From the lower semi-continuity éf f this
implies |
f£(x)yc(x,) in [E, 3]

So
fC(x0)}

7[2 J)f ,

This shows
SN Magx)ye(x,) inl€, §°
T
This contradicts.
So V, does not include any non empty open
set for any n.

Vy, does not include any non empty open

set. So

[dolf;:] \V, ¥ ¥

and there exists non-empty open set

[d,,ﬁf} such that
Ea.[@.‘] ¢ Leto, g NV,

This procedure can be applied successively for
any natural number n.

So there exists [dn,?i] for n20 so that

[anBa] € Lotmy, B]\ Vi,

(40]

R

are satisfied.

If

A Lot fu]=f holas
n=0 . : ;
then

u” dhf\?h;#}!:'.

Mm==g

must be satisfied.

C
Let a be the element of U umr\§“
MN=p

Then there exists a number N such

that

QA € Ud'n(\ mn

N=¢ -

This means

N
A [O('n, f-:]=;&
m=0
So

an.?a:]'=)‘

This contradicts.

This shows

O Lo, B] 7

[41]

However
ANCHES I N(ERI A AL A®

CUNU V=X

This also contradicts.
g.e.d.
[Definition 21}
A continuous function Y from E to
E is defined as
@ | x 1
X else

Sbi () =

Further the function f is defined as

~ <TED LR, (T
J(:= o yl . vV Y’ -
> Nl feg Se L >

for a lower semi-continuous function f.
[Proposition 15]
N\
(i) £ is continuous
/N
(ii) The closure of ?xterb and f(xﬁ#f(xq'includes

no non-empty open set.

[Proposition 16]

(42]

If function f is defined and continuous
on the open subset of E, then f can be

extended to E as a continuous function

(Proof)

Let f be as follows.

f(x)=) f(x) if x€ D(f)

jo else
The function 8 defined as

3= N "7:.
3 YI%D*F' e

~ is upper semi-continuous.

Moreover
g=f on D(f)

f' is lower semi-continuous because
D(f) is open.
So
(3
v y; =f on D(f)

2

[43]

53

Define H as

KT, B <#,@FY>

PERPNINTYY 2N Uar <et, (YD
,F {’CI,I '%

H is continuous and H=f on D (f).

[44]

DU

References

1. S.Oyagi.(l982)"Fixed point semantics of logical formula" seminar
report of research institute of mathematical science ,kyoto

university

2., Scott,D. (1972)"Continuous lattices" Lecture Notes in Mathematics

Vol.274 pp97-136 Springer Verlag

3. Scott,D.(1972)"A~Calculus and recursion theory"prc. 3rd

Scandinavian Loqic Symposium ppl54-193 North Holland

4. Scott,D.(1980)"Lambda calculus: Some models, some philosophy" in

Kleene Symposium pp381-421 North Holland

5. Scott,D. (1980) "Related theories of the A—Calculus" Essays on
Combinatory logic, lambda calculus and Formalism pp402-448 North

Holland

6. Plotkin,G.D. (1978)"T™ as a universal domain" J.Computer and Systen

61

Sciences 17.2 pp209-236

7. Apt. K.R. and van Emden, M.H.
Contributions to the theory of logic programming.

Journal of the ACM 29(3):841-862, 1982.

g. Jones, N. D. and Mycroft, A.
Stepwise Development of Operational and Denotational Semantics for .
Prolog

27 April 1983

9. Kowalski, R.
Algorithm = Logic + Control.

Communications of the ACM 22(7), 1979. .

