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ABSTRACT In this paper we propose a transformation algorithm from
equational programs written in equational form into logic programs. In
order to facilitate program transformation we extend the programming
language Prolog into a new logic programming language based on a new
computation model called a cluster reduction system. It is shown that any
equational program is transformed into an equal or more powerful logic
program. As for a recursive equational program, there exists a logic
program with the equivalent computational power.

We believe our paper is the first attempt to clarity relationship among
descriptive languages. Our results suggest the introduction of the notion
data abstraction and computation strategies into a logic programming

language.
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1. Introduction
In the last vears substantial efforts have been made to develop an

(2,4,8,14)

equational programming language and / or a logic programming

(1’5’9’12), so called descriptive languages. Both languages are

language
based on some mathematical éystems and show certain similarities each
other. This indicates some possibility of program transformation. As for
program transformation, the equational language concerns with an algebraic

(6)

specification for abstract data types and a recursive program scheme

(2’4). The transformation provides introduction of ﬁotions data abstracﬁon
and computation strategies in a logic programming language.

In this paper we propose a transformation algbrithm from equational
programs into logic programs. It is shown any equational program is
transformed into an equal or more powerful logic program. When we
restrict our attention to recursive equational progréms any recursive
equational program is simulated by some Horn program with the equivalent
computational power.

In order to facilitate program transformation we extend the programming
language Prolog, which was more popular and investigated by many

researchers, into a new logic programming language based on a new

computational model. This language is more suitable for representation of

knowledge for predicates, and is oriented to knowledge based
programming.
This paper is organized as follows : In chapter 2 some preliminary

definition are discussed. The formulation of equational and logic

programming languages are described in chapter 3 and in chapter 4,
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respectively. There some results are also considered. In chapter 5 we

propose a transformation algorithm and wvalidity of the method is proved.

2. Preliminary Definitions

In this chapter some preliminary definitions and basic results for them
are pvresented. In particular, we state some notions signatures, terms,
substitutions, and term rewriting systems. See (10,11,14,15) for detail
discussions.

2.1 Signatures, Terms and Substitutions

(11

It is assumed that we are given a finite set S of "sorts" , which are

(6)

names of various data types under consideration.

Definition 1 A (S-sorted) "signature" is an indexed family {Zw S;/

*
of disjoint sets Z , Where S denotes a set of all finite

.

(w,s) € S xS Ww,S
+

sequences on S with a null string /1 (S is a set of all non null sequences

on S). A symbol O‘GZW < is called a "function symbol" of sort s with arity

w, sometimes written ™ : w -> s. If w =A, @ is called a "constant". (+)

For ease of notation, let J,= U and we use Y, to

*
(w,s)€S x S Z’w,s’
denote the signature.

Let X = XS be a disjoint union of denumerable sets XS of

Us €S
"variables" of sorts s and fixed throughout this paper.

Definition 2 For a signature} , ‘fz,—terms“ (or "terms" whenever J_, is
clear from the context) t of sorts s together with sets Var(t) of variables
appearing in t are defined in the recursive way:

(1) Each variable x¢ XS is a Z,—term of sort s, and Var(x) = {x ; ;

(2) Each constant ¢~ : A --> s is a 3 ~term of sort s, and Var(\) = §;
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3) H a:s , sn --> s is a function symbol and ti are 5 -terms

LR
of sorts Si’ then t = 0\(’(1, oo tn) is aZ—term of sort s, and
Var(t) = Var(tl) U... U Var(tn). (+)

The set of alle,—terms of sort s is denoted by T(Z:,,X)s. Finally we
define T(Q,,X) as a disjoint union of sets T(Z,X)S, s€S.

We now- formalize notions of subterms and occurrences of subterms in
the term. Let N* be a set of all strings on the set N of positive integers
with a null string A . We shall call the members of N=i= "occurrences" and
denote them u, v and w, possibly with subscripts.

Definition 3 Given a > -term t in T(Z ,X) we define its set of
occurrences Ocr(t) C N* and a "subterm" t/u c;f t at the occurrence ué€
Ocr(t) as follows:

(1) Ift is a variable or a constant, then
Ocr(t) ={A]; t/A =t.
(2) If t is of the form 0\(’(1, cee tn) for some function symbol A : Sy
e s Sn -=> s)then |
Ocr(t) ={)\} U {iu | 1<i<m, uéOcr(ti) )’;
t/)\‘: t and t/iu = ti/ u. (+)

We say u is an occurrence of the subterm t/u in t.

Definition 4 For terms t, t' and u€ Ocr(t), we define t [u <—-lt'J as
the ferm t, in which the subterm t/u at the occurrence u is replaced by
t. ()

Definitiqn 5 A "substitution" is a mapping 8 : X --> T(Z,,X) such that

8(x) = x almost everywhewre, that is the domain of. 8 defined by Dom(8) =
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X . (x) # x} is finite. Here we impose that all variables of sort s are
mapped into terms of sort s by 8. ()
The substitution 6 is extended into terms by
9(0‘(t1, cee tn)) = 0‘(9(t1), cee s 9(tn))

where (A: s s -->s is a function symbol and ti are terms of

10 "t n

sorts Si .

Definition 6 we define the quasi-ordering <J (the reflexive and

transitive relation) on terms by

t d t' if and only if t' = 6(t) for some substitution 6

for all terms t, t'in T(GJ,X). (+)

2.2 Term Rewriting Systems
Definition 7 A "term rewriting system" on a signature 3, is a finite set
R of "rewriting rules" of the form 1 --> r such that Var(l) D Var(r)’,
where 1 and r are $ -terms of the same sorts. )
R may be "applicable" to a term t /if and only if there is an occurrence

(1)

u € Ocr(t), called a "redex occurrence" of R in t, such that 1 < t/u
for some rewriting rule 1 -->r in R. In this case, we say that the rule
1 --> r is applied to the term t to obtain the term t [u <-- O(r)j , where
6 is the unique substitution such that t/u = 6(1). The choice of w/hich

rules to apply is made non deterministic. We write t :>R t' to indicate

that the term t' is obtained from the term t by a single application of some

1 *
prj\/

*
rule in R. Let :>R denote the reflexive, transitive closure of :>R" If t

t' holds we say t' is "derivable" from t in R. R may be omitted from

|

7R
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and =>R when it is clear from the context. The derivation relation is
characterized in the proof system in the following way.

Proposition 1 Let R be a term rewriting system on 3, and t, t° be any

*
5 ,-terms. Then t =>t' holds if and only if an ordered pair of terms t > t'

is provable in the proof system with the following inference rules.

(1) 1-->r R
1 2>r
(2)
t >t
(3) | t>t, t' >t
t >t |
(4) >t Ao, A
Oty ooe s t) 2 AL, e, tn")
(5) t>t, 6:X->T(5, X)
t6 > 1'0

proof. Both directions can be easily verified by induction, so we omit
the proof. (+)

remark The notation t > t' of ordered pairs comes from the fact that
ordered pairs provable' in the proof ’/system are characterized by the partial

ordering relation on terms. See (10,11).

3. Equational Programs

In this chapter, we formulate an equational program in the framework of

a term \rewriting system(8’14) .



Let 3, be a (finite) S-sorted signature. The signature 2, is partitioned
as Z = Z,C U Z,d. We call function symbols in ZJC constructors, and
members in Z,d defined function symbols. We assume that there is at least
one constructor .for each sort s in S.

Definition 8 An "equational program" on the signature 37, is a term
rewriting system R in which each rewfiting‘ rule is of the form

F(Ey, ... , B ) ——>E

1 n+l’

- where F is a defined function symbol and Ei are 3 rterms. (+)

Constructors create daté types. Defined function symbols define some
manipulations over the constructed data types; the meaning of them are
described by rewriting rules. For notational convenience, constructors are
denoted by lower case letters, and defined function symbols by capital
letters such as F, G, H and so on. Similarly we use symbols E, 1?.i to
denote Z—terms and t, ti to denote Zc-terms, called "constructor terms"{,
constructed only by constructors. Of éourse, both kinds of terms contain
variables as constituents.

A certain restriction can be made on the nature of the rewriting rules
to give more restricted class of equational programs.

Definition 9 ‘An equational program R is "recursive" if every rule in R
is of the form

F(tl, cee tn) -—>E,
where ti are constructor terms. (+)
Recursive equational program can be viewed as general_ization of non

2)

deterministic recursive program schemes
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“Let R be an equational program. A "computation (sequence)" of an

input term (expression) E  is a possibly infinite derivation sequence

0
Ey P E P

"The computation of the input E_  "successfully terminates™ if En is a

0
constructor term t for some n > 0, hence we can not rewrite En any more
by definition of equational programs. In this case, En = t is a "result" of
this computation. Otherwise the computation "fails", that is it termiﬁates at
the term E which contains some defined function symbols or never
terminates.
Example 1 An equational program R reversing lists

constructors : |

nil : A --> list;

cons : item, list --> list;
defined function symbols :

APPEND : list, list --> list;

REV : list --> list
rewriting rules :

APPEND (nil, x) --> x

APPEND (cons(i,x), y) --> cons(i, APPEND(X,y))

REV(nil) --> nil

REV(cons(i,x)) --> APPEND(REV(x), cons(i,nil))

REV(REV(x)) --> x

APPEND(APPEND(x,y), z) --> APPEND(x, APPEND(y,2z))

REV(APPEND(x,y)) --> APPEND(REV(y), REV(x))

()
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What we have defined above is the most general strategy of executing
programs. A more restricted strategy is treated here to be simulated by
logic programs.

Definition 10 Let R an equational program. A J_,-term E' is derivable

:>E'

from a2, -term E in a "primitive execution strategy" denoted by E )
if there exist a rule 1 -->r, an occurrence u Ocr(E) and substitution 6
X -=> T(Z.C, X) with the range the set of only constructor terms such
that E/u = 8(1) and E[u<--l 8(r)] = E'. ()

A computation from E  in a primitive execution strategy and result for

0
it are defined similarly to the case of general étrategy.
Corollary 1 Let R be an equational program and E, E' be 2 terms.
. ,
E (p):>R E' holds if and only if E > E' is provable by applying the

inference rules (1), (2), (3), (4) mentioned in Proposition 1 and

(5" EZE, 6:X->TC", X)
E8 _E'6
(+)
4. Logic Programs.
. (1,5,12)
In the last few years a programming language Prolog based on

the Horn clauses(7) in the first order logic has been increasingly used,
due to the possibility of suitably using it as a specification language and
as a practical, efficient programming language.

In order to facilitate transformation from equational programs into logic

programs, we extend Prolog into a logic programming language to have

more than one atoms in their left-hand sides of Horn clauses. Also we
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introduce inferred variables which will ~be distinguished: from -fixed
variables. As an example, the left distributive law of the multiplication
MULT for the addition ADD can be expressed as
MULT(x,yl‘;*u), MULT(x,yz,*v), ADD(*u,*v,z)
:- MULT(x,*w,z2), ADD(yl,‘yz,*w).
This corresponds to the usual distributive law of the multiplication "."
over the addition "+" written by the equation
Xwy, ¥ Xy, =x.0; *oyy)

This formula has more than one atoms at t_he‘left—hand side and variables
appearing in it are partitioned into two kindSiof variables. One is a fixed
variable such as x or z, bounded by universal qﬁantifier V from outside,
the other is an \inferred variable such as *u or *v, bounded by existential
quantifier = from inside. The above formula .can be expressed by the
usual form such as

Vx, Vyl,b/yz, V'Z‘: |

Su,3dv: MULT(x,yl,u), MULT(x,yz,v), ADD(u,v,z)

<-- 3w : MULT(x,w,z), ADD(y;,y,,W)

29
This formula asserts a ‘single concept, hence can not be modified into

(L

more than one definite clauses without loosing the flavor it has. This
kind of property can be used to simpiify subgoals and speed up its"
computation. The application o'f the above property is allowed only
subgoals in which there are some atoms identitied with its whole left hand

side of the rule by two kinds of substitution, and results in a parallel

rewriting of atoms. In this way, we have modified the way subgoals are

10



computed according to the above extension, so that properties will be
applied to get an intelligent, efficient computation.

Definition 11 A (S-sorted) "similarity type" is a pair 4 = (Z,c, /1,

where ﬁ is a S-sorted signature and /7 is a disjoint union of sets /7W of
+
predicate symbols P, written by P : w, for w€ S . (+)

Definition 12 Let d = (3, /7) be a S-sorted similarity type.

(1) An "atomic formula" (or "atom", in short) is P(-tl, . tn), where

P :s v S is a predicate symbol and ti are terms of sorts S;+

1’
(2) A "cluster formula" (or "cluster") is‘a finite set of atomic formulas.
(+)

For a cluster M, Var(M) denotes a set of all ;rariables appearing in M.
There are two kinds of wvariables, that is "fixed wvariable" and "inferred
variables", which correspond the variables bounded by universal quantifier
V and by existential quantifier =, respectively. We assume that the set

Var(M) is partitioned into two sets, that is a set FIX(M) of fixed variables

and a set INF(M) of inferred variables.

For simplicity convention, we will write a cluster Cl’ oo Ck rather
than {Cl’ e Ck)] . For this reason, the order of atoms in the cluster
is not so crucial. If i oeee s X and yl; cee 5y, are fixed variables
and inferred variables of the cluster M = Cl’ BN Ck’ we can read it as

for all Xys wee s X there exist Vi wee 0 Yy such that

C1 and . . . and Ck'

Definition 13 Let d be a similarity type. A "cluster sequent" on d is

an ordered pair of clusters of the form M :- N which satisfy the following

two conditions:

11



(a) All fixed variables appearing in the right hand side also appear in
‘ the left hand side, i.e., FIX(M) D FIX(N);
‘ (b) ‘there is no common variable among FIX(N), INF(M) and INF(N).
The cluster ‘M is called a "conclusion" of the cluster sequent; the

cluster N is called a "premise" of the sequent. (+)

For a clu_sterj r = Al’ oo s Am - Bl" e Bn’ let FIX(Al, et iy Am)
= {xl, ..’.,,‘xk;_, INF(A], ... , A ) = {yl,‘ eee yp; , and INF(B,,
, Bn) = {Zl’ cee zq;. ‘The cluster sequent r = Al’ oo Am -
By, --- » B_ can Dbe interpreted as for all x, s e X, ‘.
if there exist Zl’ N zq such that B1 an’»d ... and Bn’ we can- assert
the existence of yl, cee yp such that A1 and and Am.

Definition 14 A "definite sequent" is a cluster sequent of the form A
T Bl’ e Bn such that INF(A) = 0. +)
Definite sequents correspond to definite clauses. The alternative
formulation derives from the fact a universally qgantified.implication
(Vx) : A<~ B, ... , B

is logically equivalent to

A-Ex) : B, ..., B

1’ : n

when x does not occur in A.

Definition 15 A "logic program" on a similarity type d is a finite set £

of cluster sequents. If £ consists only of definite sequents, £ is said to be

a "Horn program". (+)

A "goal" for a logic program is a cluster. Goals describe some problems

which will be solved by the execution of programs. In the procedure

interpretation a logic program is a goal reduction (replacement) system

12
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likewise a problem reduction system . A computation (or an execution)
of programs is initiated by giving an input goal. The computation proceeds
by apply some cluster sequents to derive successive new subgoals. In each
computation step some subcluster is selected from the subgoal and matched
with the left hand side of some cluster sequent by finding two kinds of
appropriate substitutions. The subcluster is then replaced by the right
hand side of the cluster sequent. The program successfully terminates for
the input goal if the emvptyv goal (terminal goal) is derived.

In the following, we will formalize a way goals are computed according
to the extention mentioned before.

Definition 16 Let £ be a logic program. A cluster sequent r = A

1’
. — 3 3 7" s 1] = -
. Am : Bl’ EERE Bn in £ is "applicable" to a goal M Cl’ cee Ck iff
there exist two substitution 6, ’7 with conditions
Dom(8) C FlX(Al, i Am), Dom(’/) C INF(Cl, e Ck)’

called "matching substitution" and "inferring substitution", respectively

such that

,(Cl’ oo Cm)7 = (Al’ cee Am)G

for some subcluster Cl’ e Cm of C ... ., C ,C

1! m m+1’ b C . (+)

k
If r in £ is applicable as above, we say the sequent r is applied to
obtain a new goal
N = (B » B8, (C_ys vt s Ck)7.

Inferred variables of N are defined by

1’

={ x : ! '
INFON) = | x € INFO) : x §Dom(%) ] U INF(B,, ... , B))
U {x&Var(Ay, ..., A ) x & Dom(8)

All others variables appearing in N are fixed variables.

13
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Example 2 Let us consider a logic program consisting of a single

cluster sequent
A(x,z, f(x,*v)) == A(g(z), *w,Xx).
In order to distinguish inferred wvariables with fixed variables we use' a
symbol "." in such a way *x stands for that x is an inferred variable.
Given a goal
A(h(x,*u), *u, *y), B(*y, x)
£ is applicable to it, and we obtain a new goal
A(g(*z), *w, h(x,*z)), B(f(h(x,*z), *w), x)

as a result of application.

| T T
A(h(x,*u), *u, *y), B(*y, x)

[l

A(Xy zZ, f(Xs*V)) e A(g(z), *W’j)O

A(g(*z), *w, h(x,*z)), B(f(h(x,*z), *w), x)

Fig.1 An application of a cluster sequent
)
For goals M, N M :>£ N indicgtes that N is obtained from M by a
single application of some sequent in £. We may write M =>,7£ N to
clarity the used inferring substitution? . z>£ denotes reflexive, transitive

*
closure of =>£. If M =>Z7 N holds, we say M is "reducible" to N, where’? is

a composition of used inferring substitutions.

'

14



Proposition 2 Let £ be a logic program and M, N be goals. For any

substitution Z, with the domain contained by INF(M), we have M& ‘=>£ 7 N
implies M =>£Z)7 N. (+)

Corollary 2 In the same condition as Proposition 2 it follows that

[

MZ ;7£,7 N implies M Z>£47 N, where —>£ is a transitive closure of
D @)

Conversely, we can easily verify the following Proposition by induction
on the length of reductions.

Proposition 3 Let £ be a logic: program. 1\’17 —>£ N follows from the

condition M —>£,7 N for all goals M, N. (+’)‘
Let £ be a logic program. A "computation" from a goal is a reduction
sequence |
M=Mg D 71 M D 72
A computation "successfully terminates" if Mn is an empty goal, denoted by
e, for some n > 0, where an empty goal is an empty cluster. In this case,
a composition "7 = 971 7n is an "answer substitution" and M7 is a

"result" for the computation.

5. A Transformation Algorithm.

At first, we show a method for transforming a given}  -term E into a
cluster C(E) and an output term O(E) associated with E.

Let 3 , = Z,c U f_? be a S-sorted signature for equational programs. A
S-sorted similarity type d = (Z,C, /) for logic programs is specified in
terms of 3 in the following way:

(a) A set Z‘_,: of function symbols is identical to constructors in 3 ;;

15
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(b) A set /-7 of predicate symbols is'defined by

' [7 = {FP : Si’ cee 5SS } Foisgy oennhsy ——>s €29 )? .

Algorithm A

We associate a cluster C(E) and an output term O(E) with a > -term E
by structural induction on E. For a cluster C(E) fixed variables are ones
which belong to Var(E) and bnewly introduced variables are inferred
variables.
(1) If E is a variable x¢é¢X or constant a : A --> s GZJC, define

C(E) =e; O(B) =L,
where e is a empty cluster.
(2) Suppose E is of the form
E=0NE;, ... , E),
where (A : Sp» se o S, --> s€ 2, is‘ é function symbol. (By induction
hypothesis, it is assumed that cluéters C(Ei) and output terms O(E’i) are
constructed in such a way that mnewly introduced variables are
standardized apart one another.)
(a) in case (\ is a constructor f, define
C(E) = C(El),'.;. , C(En) ;
O(E) = f(O(El), cee s O(En)).
(b) in case (A is a defined function symbol F, define
C(E) = C(El)’ cee C(Eh), FP(O(El), RN O(En)’ *y).
O(E) = *y.

where FP is the predicate symbol corresponding to F and *y is the new
variable which never appears in C(E,) for all 1< i <n. (+)

Example 3 Let us consider a 3 ,-term

16



E = f(F(G(x), g(a)), H('G(X))),
where f, g, a are constructors (a is a constant) and ¥, G, H are defined
symbols with arbitrary types. By applying Algorithm A to this > ,-term we

obtain a cluster C(E) and an output term below:

* * E 3 * E3 *
C(E) GP(X, y3), FP( y3,g(a), yl), GP(X, y4), HP( Yy y2)

1!

O(E) = £(*y,, *,).

Fig.2 A tree representing a } -term E.

By wusing Algorithm A a transformation algorithm from equational
programs into 1ogic programs is described in the following way:

Algorithm B

Let R be a given equational program. We translate each rewriting rule

F(E , En) --> E' in R into a cluster sequent to construct a

1 s
corresponding logic program.

(i) Constitute clusters and output terms of both sides of rule by using

Algorithm A. During execution of algorithm newly defined variables are

17



73

~standardized apart in both sides. (Let note that the output term of
left hand side must be the variable.)
(i1) The transformed cluster sequent is defined by
C(El), oo s C(En), FP(O(El)’ cee s O(En), O(E")) :- C(E").
Fixed variables are specified by
Var(F(El, cee En)) U Var(O(E"))
and all others are inferred variables. +)
Example 4 If we apply Algorithm B £o the equaﬁonal program in
Example 1, we obtain the following translated 10gic program.
APPEND(nil, X, X) :- e
APPEND (cons(i,x), y, cons(i,z)) :- AfPEriD(x,y,z)
APPEND(x,y,*u), APPEND(*u,z,w)
:- APPEND(y,z,*Vv), APP‘END(x,*v,w)
REV(nil, nil) :- e
REV(cons(i,x), z) :- REV(x, *y), APPEND(*y,‘cons(i,nil),z)
REV(x,*y), REV(*y,x) :- e
APPEND(x,y,*w), REV(*w,z)

- REV(y,*v), REV(x,*u), APPEND(*v,*u,z) )

Proposition 4 Let R be an equational program and £ be a transformed
logic program. If R is recursive’, £ is the Hoi'n program. (+)

To investigate relationship between equational programs and translated
logic programs, we shall consider clusters and output tefms associated with
Z—terms by Algorithm A. In Algorithm A we construct a cluster C(E) and
output term- O(E) for Z—term E. Similar to clusters, we partitioned a set

Var(O(E)) of variables into two kinds of variables, that is fixed variables

18
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and inferred variables. Here fixed variables are ones which belong to
Var(E).

Definition 17 For constructor terms t, t' with variables partitioned into

fixed and inferred variables t is a "variant" of t' if t differs from t' at
most in the names of its inferred variables. )

A wvariant of a cluster is defined similar to the wvariant of the
constructor term.

Theorem 1 Let R be an equational program and £ dendte a transformed

E' (in the

. . *
logic program from R. For any 3, -terms E, E' if E (p):>R

equational program R), then there exist som'e-_ variants M' and t' of C(E")
and O(E'), respectively, such that C(E) z>£7 M' (in the logic program £)
and 0(E)7 = t' for some inferring substitution'? .

proof. By Corollary 1 the proof consists of examining‘ each of rules Of,
inference. As for rules of inference (1), (2) and (3) the assertion of
theorem is obviously clear from the transformation algorithm. So we discuss
only inference rules (4), (5'").

for the inference rule (4) :

Suppose that the given terms are of the form

E =0\(E1, cee En)
E' =0\(E1‘, oo 5 B
for some function symbol /N By structural induction we assume that
: *
C(E) =>;7i M, 0(I~:i)7i =t
for some variants Mi" ti‘ of C(Ei‘), O(Ei'), and for some inferring

substitutions ’7 ; for all 1< i< n.

19
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Without loss of generality we can impose conditions on clusters and
output terms in such a way that.
INF(Mi) N INF(Mj) =0 ;
INF(ti) N INF(tj) =0
and
F(N 'y = .
_INF(Mi) N INF(Mj) 0 ;
,INF(ti) N INF(tj') =9
for all i # j, where 1‘.’1i = C(Ei)’ and 'ci = O(Ei)' There are two possibilities
for ¢\ as the function symbol.
(a) If ¢\is a constructor f, then the as'sbciated clusters C(E), C(E")
and output terms O(E), O(E') must be of the form
C(E) = C(El), RN C(En);
LA ' 1
C(E") C(El)’ ce ’C(En)’
and
O(E) = £(O(E)), ... , O(E ));
O(E") = £(O(E;"), ... , O(E_"),
respectively.
Let define an inferring substitution 97 as a composition
| 7 = 7 TR ’7 n
By assumption described above we have
C(E) = C(El), cee s C(En)

-t> 71 M,', C(E,) C(E.)
£ ’ 2,..., n

.\ |
= K. 1 \ (]
>£’7n M, M M

and

20
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i

O(E) = £(O(E)), ... O(Eh))771 77n’

f(O(El)771, O(EZ)’ e O(En)) 772 711

f(t,', O(EZ)’ cse O‘(En))72 711

1 1
f(t1 s eee s tn)
which are variants of C(E') and O(E'), respectively.
(b) If O\ is a defined function symbol F, thenr associated clusters and
output terms are of the form
= 3 ’ *
C(E) = C(E})), ..., C(E), Fp(O(El), e OCE ), *y)
A ' 1 [ 'v' ) 1 Kpl
C(E") C(El), ’C(En)’Fp(O(El_)’ ,O(En), vH
and -
O(E) = *y, O(E") = *y'
where Fp is a predicate symbol corresponding to the defined function
symbol F and *y, *y' are new inferred variables. Similar to case (a), we
can easily verify that
*
c@®) 2,7 M amd OB =t
£ _
for some variants M', t' of C(E'), O(E'), respectively, and for some

inferring substitution 7, so we omit proof of them.

for inference rule (5') :

Finally for given3 ,-terms E, E' suppose that

CE) 2% /1 M . ... =% N, =>;7k M,

and
OBY7y -7y = ¥
for some variants M', t' of C(E'), O(E'), respectively. Let 8 : X -

T(Z,C,X) be any substitution with the range the set of constructor terms.

3
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Define inferring substitutions éi = 7 iG, 1<'i < n, which map inferred
variables *y € Dom(7i) to terms (*y)’? i9. It is obviously clear by

assumption that

C(E0) =, 51 =

OE® S, ... 5, = E'.

=, 5k we

Hence the proof is complete. (+)
*
Corollary 3 Let E be a-j -term and t a constructor term. If E (P)=>R t
EY
in the equational program R, then C(E) =>£7 e and O(E)?=t in the

corresponding logic program £ for some vinferring substitution '7 (+)

Without loss of generality we can assur'n-_'e that input terms in equational

programs are of the form F(tl, vee tn) R whére ti are constructor terms.
, . |
Corollary 4 1If F(tl, cen tn) =>R t in an equational program R, then

FP(tl, cee s tn’ t) §>£ e in the corresponding logic program for‘allv
Z—term E and for all constructor terms t.

proof. By Proposition: 3 and Corollary 3. (+)

'1;hese results indicate that in a primitive execution strategy any
equational program is transfofmed into a equal or more powerful logic
program. On the other hand, for a recursive equational program, we can
construct a logic program with the equivalent computation power.

Let W dénote a set of all atoms (containing wvariables) on a similarity
type d. With.a Horn program £ we associate a mapping Tiover the power
set 2W of W.

Definition 18 Given a Horn' program £, a mapping T£ over 2W

associated with £ is defined as follows :

For any subset VC W and for any definite sequent in £
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B » B_,

0 e Bl’ cen a
if there exists a substitution 8 such that BiQGV for all i, 1 < i< n, then

we have BOOG TS(V)' (+)

By definition T, is the continuous mapping over 2W with partial order

£
set-theoretic inclusion among subsets on W. So TS: has a unique fixed point

(5)

1fp(€) like as the result by Emden and Kowalski . In fact, \lfp(£) turns

out to be lfp(£) = Uk >'0 Tsk(ﬂ), where § is the empty subset of W.

Theorem 2 Let £ be a Horn program and M a goal. If there is a
successfully terminating computation from M with an answer substitution
7, then A% € 1fp(£) for every atomic clustex"'_A in M.

proof. Let M =>£ 771 My =7£ =>£?k M, be a successful

computation from M with an answer substitution’? . Note that MO = M, Mk’

= e and ‘7 = ’71 ces 7k' We show by induction on i > 1 that

i
A1 7 €T @

for any atomic cluster A in M

k-i’
If i = 1, then Mk—l consists of a single atomic cluster, say A. By
assumption it follows that
A7x-1 7 B®

for some definite sequent B, :- in £ and for some matching substitution 6.

0

Hence A"]k_lé T (#) by definition of T.. This is the induction basis.

¢
Let i > 1. Suppose that A?k—iﬂ 7 ke T;(O) for any atomic cluster

A in M Let

K-i°
M. ;= C , Gy , C_
N (T Cj—1)7k—i’
By, ..., BO, (Cipps oor s €70
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o

for some definite sequent B :- B

0 10 e o Bn in £ and for some matching

substitution 0, where

Ci7x-1 = Bo®

holds. Let A be any atomic cluster in Mk—i—l'

So by induction hypothesis we have
1
(

If A # C]., then A’7k_i is in Mk—i'

i i+
A ilx-ir1 - 7 x€Tg O C T

is monotonic. -

®)

sin(;e T c

On the other hand A = C'j‘ By induction hypothesis we have

i
qu/”/”k_i+1 7 2 €T (B
for all 1< g < n. So that '

o o i+1
A i7x-iv1 7 k= Bo®7k-i7k-iv1 - Tx€Tg O

by definition of Tg. (+)
Theorem 3 Let R be a recursive equational program and £ be a

translated Horn program from E. Then

%

Flty, os sy 1) ('p)=>R toe1

for all atoms Fp(tl, e 'tn+1') in 1fp(£).

proof. We show by induction on i >1 that

*
F(tl, cee tn) (p)':>R tn+1

. i
for all FP(tl’ )€-T£,(0).

? tn+1

Ifi=1, then

FP(tl’ cee tn+1) = FP(ql’- oo s qnﬂ)G

for some definite sequent FP(ql’ iy Q ) :- and for some substitution

n+l
8. This sequent corresponds to the term rewriting rule
F(ql, cee qn) -2 U 41

by the transformation algorithm. So we have
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-~
M)

F(ty, .. , t ) =F(q®, ..., q8)

=t

(P) "R 'n+l
by applying the rule F(ql, cee qn) - A 4q with the substitution 6.

This is the induction basis.

Let i > 1. Suppose that

%

F(tl, ,tn) (p)=>R t a1

i
)GT£ (0). Let FP(tl, A T ¢

n n+1) be

for all atoms Fp(tl, e tn’ tn+1

i+1

any atom in T£

(@). By definition of T£ there is a definite sequent B0 -

B., ... , B 1in £ such that
1 m

Fpltys «vv st ) = B8,

P 0

BO €T, (9, 1<i<n

, t
n’ n+l

for some substitution 6. Let F(ql, e qn) --> E be a rewriting rule

from which definite sequent BO t- Bl’

rule F(ql, vee qn) --> E with the substitution 8 to the }_, -term F(tl’

, Bm is obtained. By applying

s tn), we can derive a2 ,-term E6 as a result. To prove Theorem if
suffices to show that for any subterm G(El’ oo Ek) of E6, where G‘ is

the defined function symbol, if GP(pl’ e ) 1is the

P> Py
corresponding atom which belongs to (Bl’ cee Bm)G, then

*

GEp -5 B 9y R Prn

follows from
ES
E, = ., 1< § <Kk,
i TR Py 1SIS
This can be easily verified by using induction hypothesis. So we omit
details. ()

We obtain the following theorem for recursive equational programs from

Corollary 4, Theorem 2, and Theorem 3.
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Theorem 4 Let R be a recursive equational program and £ an
translated Horn program from R. For any Z,—ferm F(tl’ tn) and for
any constructor term t the next two conditions are equivalent.

(1) There is a successful computation of the input term. F(tl, tn)

with the result t in the equational program R :

*

F(t, ..., t) =>R t.

n (P)

(2) There is a successful computation of the goal FP(tl’ e s tn’ t) in

o~

the logic program £ :

FP(tl, ce e oy tn9 t)

C%
WY
[¢]

)
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