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Abstract

The direct sum of two term rewriting systems is the union of
systems having disjoint sets of function symbols. It is shown that if
two term rewriting systems both have the Church-Rosser propefty
respectively then the direct sum of these systems also has this -
property.

1. Introduction

We consider the property of the direét sum system R)}®R; obtained
_from two term rewriting systems R} and Ry [3]. The first study on the
direct sum system was conducted by Klop 'in {3] in order to consider
the Church-Rosser property  for combinatory reduction systems having
nonlinear rewriting rules. He showed that if Ry is a regular, i.e.,
linear and non-ambiguous, system and Ry has only a nonlinear rewriting
rule D(x,x)>x, then the direct sum Rj}®Ry has the Church-Rosser
property. He also showed in the same manner that if Ry is a nonlinear.
system, i.e.,
if(T,x,y)>x,
if(F,x,y)>Y,
if(z,x,x)px,
then the direct sum Rj®Ry also has the Church-Rosser property. This
result gave a positive answer for the open problem suggested by
O'Donnell [4]. v
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Klop's work was done on combinatory reduction systems.
considering his work from the viewpoint of term rewriting systems [2],
R] and R2 are limited by the following structures: Ry is a
nonoverlapping 1linear system, and Ry is a nonlinear system having
_specific rules such as D(x,x)>x. From Klop's work, we consider the
conjecture that this limitation can be removed from Ry, Ry in the
framework of term rewriting systems, i.e., the direct sum of R; and
Rz, independent of their structures such as linearity and ambiguity,
always preserves their Church-Rosser property. In this paper we shall
prove this conjecture: ' '

For any two term rewriting systems Ry and R2,
Ry and R2 have the Church-Rosser property
iff Ry®Ry has this property.

2. Notations and Definitions

We explain notions of reduction systems and term rewriting.
systems, and give definitions for the following sections. We start
from abstract reduction systems,

2.1, Reduction Systems

A reduction system is a structure R=<A,— > consisting of some
object set A and some binary relation =» on A, called a reduction
relation. The identity of elements of A (or the syntactical equality)
is denoted by =. %, is the transitive reflexive closure of —9,159 is
the reflexive closure of — and = 1is the equivalence relation
generated by - (i.e., the transitive reflexive symmetric closure of
~») . If xeA is minimal with respect to —», i.e., =~7yeA[x—y], then we
say that x is a normal form,'and let NF., or NF be the set of normal
forms. If xf%y and yeNF then we say x has a normal form y and y is a
normal form of x.

Definition. R=<A,—> is strongly normalizing (denoted by SN(R) or
SN(—)) iff every reduction in R terminates, i.e., there is no
infinite sequence Xp-—»x]—x%2—....
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Definition. R=<A,—> has the Church-Rosser property, or
Church-Rosser, (denoted by CR(R)) iff
Vx,y,zeA[x55yaxTz = T wen, ySwazv] .

We express this property with the diagram in Figure 1. In this
sort of diagram, dashed arrows denote (existential) reductions
depending on the (universal) reductions shown by full arrows.
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The following properties are well known in [1][2].

Properties. Let CR(R), then,
(1) the normal form of any element, if it exists, is unique,
(2) "x,yeA[x=y => Tweh,xIoupySow].

2.2. Term Rewriting Systems

Next, we will explaih term rewriting systems that are reduction
systems having a terms set as a object set A.

Let V be a set of variable symbols denoted by x,y,2,..., and F a
set of function symbols denoted by f,g,h,..., where FnVv=@. An arity
function P is a mapping from F to natural number N, and if Q(f)=n then
f is called an n-ary function symbol. In particular, a O-ary function
symbol is called a constant.

The set T(F) of terms on a function symbol set F is inductively
defined as follows: '

(1) xeT(F) if xev,



(2) feT(F) if fe¢F and P(f)=0,
(3) £(M1,...Mpn)eT(F) if feF, P(£f)=n>0, and
M1,.../MpeT(F).
We use T for T(F) when F is clear in the context.

A substitutionf is a mapping from a term set T to T such that;

(1) O(f)=f if f¢F and P(£f)=0,

(2) H(EM1,...,Mp))E f(Q(Ml),...,G(Mn))

if £(M3,...,Mp)€T.
Thus, for term M, §(M) is determined by its values on the variable
symbols occurring 'in M. Following common usage, we write this as M@
instead of &(M).

Consider an extra constant [] called a hole and the set T(Fu{[O}).
Then CeT(FU{[d}) 4is called the context on F. We use the notation
Cl[ seeer ] for the context containing n holes (n>0), °~ and if
Ny,eee/Np¢ T(F) - then ~ C[Nj,...,Np] denote the result of placing
Ni,+s+e/Nqg in the holes of C[ ,..., ] from left to right. In
particular, C[ ] denotes a context containing precisely one -hole.

N is called a subterm of M if M=C[N]. Let N be a subterm
occurrence of M, then, we write NCM, and if N#M then write NzM. If Ny
and Ny are subterm occurrences of M having no common symbol
occurrences (i.e., M=C[N1,N3]), then Nj,N; are called disjoint
(denoted by NjLNj). : .

" A rewriting rule on T is a binary relation P> on T,  written as
Mi>My for <Mj,M>¢d>, such that if M;PM; then any variable in My also
occurs in Mj. A -»redex, or redex, is a term Mjf where Mi;>My, and in
this case Myf is called a —>contractum, or contractum, of Mj;f. The
rewriting rulep on T defines a reduction relation —> on T as follows:

M—N iff M=C[M;0], N=C[M ] and Mi>Mp

for some Mj, My, C[ 1, and{.

When we want to specify the redex occurrence A=M1f of M in this

reduction, write M—fLéN.

Definition. A term rewriting system R on T is a reduction system
R=<T,—> such that the reduction relation— is deflned by a rewriting
rule on T. If R has M)”Mr, then we write M]>MeR.

If every variable in term M occurs’only once, then M is "called
linear. We say that R is linear 1ffV’M>NeR, M is linear. R is called
nonlinear if R is not linear.

Note that in this paper we have no limitation of R, thus, R may



[
have nonlinear and ambiguous (i.e., overlapping) rewriting rules
[(21([3].

2.3. Direct Sum Systems

Let F1,Fy be disjoint sets of function symbols (i.e., F1"F2=9¢),
then term rewriting systems Rj; on T(Fj) and Ry on T(F3) are called
disjoint. Consider disjoint systems Rj, Ry having rewriting rules I3,
>y, respectively, then the direct sum system R)®R2 is the term
rewriting system on T(FjUF3) having the rewriting rule PjUPp. If Ry,
Ry are term rewriting systems not satisfying the disjoint requirement
for function symbols, then we take isomorphic copies R}, R} by
replacing each function symbol f of Fj by fi (i=1,2), and use Ri@Ré
instead of R)®R3. For this reason, considering the direct sum Rj®R3,
we may assume that Rj, Ry are always disjoint, i.e., F1nF3=¢.

In this paper we use the following notations: R1=<T(F1) ,—>>,
R2=<T(F2),29> and R1®R2=<T(FjUF2),—>> where F1NnF2=¢, CR(Rj) (i=1,2).
Note that in the following sections the notation — represents the
reduction relation on R}®R3,.

Definition. A root is a mapping from T(FjUF3) to FjUFaUV as
follows: For M¢T(FjUF3p),
root(M)={f“'?f MEF(Ml,...,Mn), .

M...if M is a constant or a variable,

Definition. Let M=C[B1,...,Bpl€T(FIUF)). Then write
M=C[Bj,...,Bhl if C[ ,..., ] is a context on Fy and Yi,root(Bj)€Fy
(a,bé{1,2} and a%b). Then the set Part(M) of the parted terms of
MeT (F1UF9) is inductively defined as follows:

" (1) Part(M)={M} if MeT(F) (a=l1l or 2),
(2) Part(M)=EJPart(Bi)u {M} if M=C[B1,...,Bpl (n>0).

Definition. For a term MéT(FjUF32), the rank r(M) of 1layers of
contexts on F; and F2 in M is inductively defined as follows:

(1) r(M)=1 if MeT(Fy) (a=l or 2),

(2) r(M)=m?x{r(Bi)}+1 if M=C{Bi,...,Bnl (n>0).

Lemma 2.1. If M—N then r{(M)>r(N).

Proof. It is easily obtained from the definitions of the direct
sum R@Rz. [



3. Preserved Systems

A term MéT(FJUF2) has a layer structure of contexts on F] and Fj,
and this structure is modified through a reduction process in a direct
sum system R)®R2 on T(FjUF2). If a reduction M—N results in ' the
disappearance of some layer between two layers in the term M, then, by
putting together two layers, the new layer structure appears in the
term N. If no middle layer disappears as a result of any reduction,
then we say that the layer structure is preserved in the direct sum
system, In this section we will show that if two term rewriting
systems have Church-Rosser, then their direct sum having the preserved
layer structure also - has Church-Rosser. Using this result, we will
prove our conjecture in section 4.

The set of terms reduced from a term M by a reduction relation —
is denoted by G, (M)={N : MN},

Definition. A term M is root preserved (denoted by r-Pre(M)) iff
root (M) €F, =$>VNeGﬁ(M),root(N)eFa, where ae{l,2}.

Definition. A term M=C[Bj,...,Bp] (n>0) is preserved iff M
satisfies two conditions;

(1) r-Pre(M),

(2) "i,Bj is preserved.

We write Pre(M) when M 1is preserved. Note that, by the
definition, if Pre(M), then VNEG_(M),Pre(N).

A -

Let M—N and M=C[B3,...,Bp]. If the redex occurrence A occurs in
some Bj, then we write M;#N, otherwise M27N. :ﬁ and 57 are called an
inner and an outer reduction respectively.

Lemma 3.1, Let Pre(M) and M=C[By,...,Bpl. Then,

(1) M=—»N => N=C|C3j,...,Chl where ¥i,Bj>>Cj,

(2) M>N =% N=C'[Bjj,...,Bigl (1<ij<n)
where C[ ,..., ] and C'[ ,...,.] are contexts on the
same set Fy (a=1 or 2).

Proof. It is immediately proved from Pre(M) and the definition of

-, —>,
=,z O

We consider the sequences of terms; X =<Aj1,...,An>, B =<Bjl,.««sBp>
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where Aj,Bj€T. Then, we write X<B iff Vi,j[AiEAj =» Bi=Bj]. We
define 258 by Yi,A;%5Bj.
We extend the above notations to terms. Let M=C[Aj,...,Apn]l,
NZC[B1,...,Bnl, X=<Al,...,Ap>,B=<Bl,...,Bp>. Then write MxX N ifqxg .

Lemma 3.2. Let Pre(M),Mo<N. If Ms>M', thenHN',N-;N'AM'oc N'.

Proof. Let M=ClAy,...,Anl,N=C[B1,...,Bpl. Then the left side of
the rewriting rule used in M—(}»M' occurs in context C[ ,..., ]J. Since
M><N we can apply this rule to N in the same way, and get N-SN'. By
Lemma- 3.1(2), it is clear that M'xN'. [

Lemma 3.3. Let Pre(M), M-a;-)P, Mf-)N, McocN, Then there is a term Q
satisfying the diagram in Figure 2, i.e., "M,N,P T[MféNAM;»PAMocN =
QET, N2QAPI5QAP< Q] «
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0
Figure 2

Proof. By Lemma 3.2 we gét a term Q such that PxQ and N?Q.
Using ME;)P, M-:f)N and Lemma 3.1(1), (2), we obtain P(L)Q. B

Lemma 3.4. Let Pre(M), M—’,k-)N, M;*-»P, Mo<N. Then one get a term Q
14

satisfying Figure 3.
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Proof. Using lemma 3.3, the diagram in Figure 4 can be made. [

M —> > —> P
I I i I
RO T T B
I i I I
] I I I
I | I 1
I I !
* i * li * 'i * li * :i
I | I ]
I I I I
I I N I
I I ! I
| ! I ]
S S A A
(o] o [s] o
Figure 4

We define the local Church-Rosser property at a term M.
Definition. Let R=<T,->> be a reduction system and let M¢T. Then
M is Church-Rosser for —> (denoted by CR,(M) or CR(M)) iff
Y N,PET [MESNAMISP => 70¢T,N-5QAP>Q]. Note that ” MeT,CR(M) iff CR(R).

We define M!N by *Q€T,M—>QAN-5Q.



Lemma 3.5. Let® =<A1,...,Ap> and ”i,CR(A{).
Then” 8 =<B]l,...,Bn> [6¥5g\i,j[AjiA§ => Bi=B5l].

Proof. Using CR(Ak), it can be shown that AjJAgxAAKVA§ = AjlAj.
Hence | 1is an equivalence relation and partitions {Aj,...,A,} in the

equivalence class C31,...,Cp. Using the Church-Rosser for each Aj, we

can take a term Bp for each equivalence class Cp={Ap1,...,qu} as the
diagram in Figure 5., Take Bplz,...,EquEBp . a

Bp

Figure 5

Lemma 3.6. Let X=<Aj,...,Ap>Z>B=<B],...,Bp> and Yi,CR(Aj). Then
AjéAy iff Bj¥Bj.
Proof. By the Church-Rosser for each Aj, it is obvious. []

Lemma 3.7. Let X=<Aj,...,An>, "i,CR(A{), andX 5B, x Z>7. Then we
can get § satisfying Figure 6, where 8§ and 7« .
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Proof. LetB =<B1,...,Bp>, £=<C1,+..,Cn>. By Vi,CR(Aj), we have a
term 5/=<Di,...,Dr’1> such thatp X, $’'and7 . Using Lemma 3.5 for §°,
we get d =<D1,...,Dp> such that's 55 and D;-)D'j => Dj=Dj. Then, by
Lemma 3.6, AjvAj <> Dj¢Dj, hence AjlAj =» Dj=Dj . Next we showSo<S§.
If Bj=B4, then AjVAj, and, thus Dj=Dj, hence Bx& . Similarly we can
prove 7<§. [0

Lemma 3.8. Let M=C[Aj1,...sAnl, Pre(M), Vi,CR(Ai). Then we have
the diagram in Fiqure 7, where Ne<Q, P°<Q.
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Proof. Since Pre(M), we get N=C[B},...,Bpl, P=C[C3,...,Cph], where
=<AY ,0ue B> B=CB1,evesBn>, X=<AlseeerBn>37=<Cls00esCp>. Using
Lemma 3.7, we can get §=<Dj,...,Dp> such that 8 5s, 7F5Hs8, B<S and
y=<&. Therefore take Q=C[D1,...,Dp]. 0O

Lemma 3.9. If Pre(M), then Cg?(M), i.e., M is Church-Rosser for
Fi 8).
ey (Figure 8)
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Figure 8

Proof. Let root(M)¢F; (a=l1 or 2). Then, since Pre(M), the
outermost part of any term is always a context on Fy, Thus 57 is
determined by only Rz, Hence Church-Rosser for = is obvious by
CR{R3). O

Theorem 3.1. If Pre(M), then CR(M).
Proof. By induction on the rank r(M) of layers in M. The case
r(M)=1 is trivial since M€T(F3) and CR(R;) (a=1 or 2), therefore,

suppose M=C[A],...,Apnll, r(M)=n>l.

Claim: We obtain the diagram in Figure 9.
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Proof of the «claim. By the induction hypothesis, we obtain
Vi,CR(Ai). Using Lemmas 3.8, 3.4 and 3.9 respectively for (1), (2)
and (3), we can get the diagram in Figure 10, where Mx Q" and MxQ;
hence, we have the claim. -
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Now we will show CR(M)., Note that any reduction M=>M" takes the
form of Mf»(-;»ulf»r;anzf»g%...feém’. Let MZ>N, M5p, By splitting =
into f-)é—? and using the claim, one can draw the diagram in Figure 11.
Hence CR(M). (O
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Figure 11

A : . .
Let M-»N where A is a redex occurrence. Then write M;?N if A
occurs in a preserved subterm of M, otherwise write M;;N.

Theorem 3.2. Let M=C[A1,...,Apnl, Yi,Pre(Aj). Then CR(M).

Proof. If Pre(M), immediate by Theorem 3.1. Hence, suppose
—Pre(M). Then one can prove the diagrams (1), (2) and (3) in
Figure 12, where Mo<N in (1) and N«Q,Pe<Q in (2), in the same way as
for Lemmas 3.4, 3.8 and 3.9, respectively, by replacing pad g with
Sl ;g. Using an analogy to the proof in Theorem 3.1, first, one can
obtain the diagram in Figure 13 from the diagrams (1), (2), (3) in
Figure 12, and second, splitting % into iéiﬁ, one can show CR(M). [
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Note: Though 7" Pre(M), the above proof is similar to the proof in
Theorem 3.1 in which we supposed Pre(M). This analogy come from the
fact that in Theorem 3.2 a non-preserved context in a term M only
occurs at the outermost part of layer structure. However, if some
non-preserved context occurs in the middle part, then one cannot prove
CR(M) by the analogous method to Theorem 3.1. In the next section we
shall consider this case.

4. The Church-Rosser property for the Direct Sum

In this section we will show that if CR(Ry;), CR(R2), then
CR(R3®R3) . This 1is done by proving CR(M) for any term M by using
parallel delete reduction which deletes the layers of the
non-preserved contexts occurring in M. First we shall introduce the
following delete reduction. ) :

Let a term M€T(FjUF3) not be preserved. Then there is a term
NE€Part (M): N=CI[Bj,...,Bpl, ~—Pre(N), Yi,Pre(Bi). Since N is not
preserved, one has N: NZ»N, root(N)EF,, root (N)4F, (a=l or 2).. Then
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the delete reduction Z» is defined by replacing N occurring in M by N’
as follows:

M—>M’ &> M=C[N] M=C[N], where N and N’are the above terms.
Then we say N is >redex. From this definition, PCS. Let Nj, N
be two different aﬁredex occurrences in M, then it is trivial from the
definition that Nj, N2 are disjoint, i.e., NjlLN2. Note that MEeNF_,
iff Pre(M). *

Definition. We define the depth dm(N) of zéredex occurrence N in
M as follows:

(1) dy(N)=1 if M=N,

(2) du(N)=dpj(N)+1 if M=C[Bj,...,Bpl, NCBj.

Definition. The maximum depth d(M) of Zﬁredex occurrences in M is
defined by the following:

(1) d(M)=0 if Pre (M),

(2) d(M)=max{dM(N) : N is z7redex occurrence in M} if - Pre(M).
Note that if M—>N, then d(M)>d(N).

Let N1,...,Np be all of the a?redex occurrences in M having the
depth d(M). Note that NjlNj (i#j). Then the parallel delete
reduction =2 is defined by replacing each Z?redex occurrence Nj by N{
such that Nj->Nj at one step, or,
M—3N & M=C[N1,...,Npl, N=C[Ni,...,Npnl.

We say that the above Nj,...,Np are ;9redex occurrences. ' It is clear
‘that N€Q’=N€? . By the definition of parallel delete reduction, one
can easily prove that if Mzzu then d(M)>d(M). Hence, every parallel

delete reduction terminates, i.e., SN(;?).

_ M

Lemma 4.1. Let M=CDA1,...,Ana—+ciAil,...,Aip] where 1<ip<n, and
let <Al eeerAp>o<<B]sae.¢Bpd. Then one has a reduction
— N,
N:C[Bl,. .o 'Bn]—-)C[Bil’ e e e 'Bip] .

Proof. The left side of the rewriting rule used in the reduction
M . . c .
L% occurs in context C[ ,..., ], hence, one can apply this rewriting
rule to N in the same way as for Lemma 3.2. (]

Lemma 4.2. Let d(M)>1, MEC[Ml,...,Mm]ﬁacIMil,,.,,Mip] (1<ij<m),
where M;,...,Mp are all of the ;Zredex occurrences in M. Let
M1, eee Mp>oC<MY,une Mp>. Then one has a reduction
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- ’ ’ M’ A
MZC[Ml,...,Mm]—>C[Mj_1;-..,M/ip].

Proof. Let MEEIAl,...,Anﬂ, then Vi,Ej,MiCLAj, and, thus, by
replacing each Mj in Aj with Mi, to make A&, one can get
M=C[A1,...,A;]. Hence, if one show that <Al,...,Ap>oc<Al,... ;An>,
then, by using Lemma 4.1, the above Lemma holds. In order to show
this, we will prove that if Aj=A5, then A&EA}. Let Aj=A4y. If Aj has
no ;;redex occurrence in M, then ,by Aj=Aj, it is trivial. Thus,
assume Aj to have k (k>0) ;Zredex occurrences Mr4l,...,Mp4k in M.
Then one can take Aj=Ci[Mr4lseeerMpekl, A4=Cji[Ms+lreesrMgek]y
My 4+i=Mgsd (1<i<k) , therefore AG=Ci[Mr4lseeerMrtkl,
Kjaci[Mé+1:...,M§+k]. By using <Ml,...,Mp>%<Mi,...,Mp>, one obtains
Mr+i=Mi+T (1<i<k). Therefore A}EA&. i

Lewma 4.3. Let d(M)>1, M=CIM1,...,Mn]=>CtMi),... Mi] (1<ij<m),
where Mj,...,Mp are all of the ;Zredex occurrences in M. Let
<M1,...,Mm>13<Mi,...,Mﬁ>. Then one can obtain a  term sequence
<MY, e Mp> . such that MY yeoe  Mp>EKMT, o oe Mp> and
MECIN, ... Mul S>CTMyy L.l ME ]

Proof. In order to prove the Lemma by using Lemma 4.2, we only
need to show a <M{,...,Mp> such that <Mj,...,Mp>°<<Mj,...,Mp>. Since
My,...,Mp are all of the ;Zredex occurrences,” we git Vi,CR(Mi) by
Theorem 3.2. Therefore we obtain this <Mj,...,Mp> by Lemma 3.7,

taking X =<M1'o~¢le>l B =T=<M]:,...,M{n> and 5=<M]I_/'oc-'M];>. D

Lemma 4.4. Let M->N, M;zP, d(M)=d(N). Then one has the diagram
in Figure 14. Note that d(M)>d(s).



|
1
1
I
pd Y Q
|
l
!
1
\J

Figure 14

Proof. Let Mé»N. The possible relative positions of the redex
occurrence A and all of the ;?redex occurrences in M, say Mj,...,Mp,
are given in the following cases.

Case 1. Vi,ALMj,

Then M2C[Mj,...,Mr,A,Mr4+l,...,Mnl, N=C[M1,...,Mr,B,Mr+l,«.+,Mml,
P=C[P1,...,Pr,A,Pr+l,..++Pm]l, where AZ5B and Vi,MiiéPi. Since all of
the ﬁ?redex occurrences in N are also Mp,...,Mp, we can take
QZC[P1,..e/PrsB,Pr4lsee+sPpl. Let SZQ, then PE>S and 0¥s.

Case 2. 7 r,ACM,.

Then

M=C[M) 00 Mpal My, Mr4lsaee,Mpl, N=C[Mjseee M=l /Ne,Mr4l,eee,Mpl,
P=C[Pl,...,Pr=1,Pr,Pr4l,se++:Pnl, where My Ny and Vi,MiféPi. Since
eaqh M; (i#r) is also —z redex occurrences in N, by u51ng —Z for N,
one gets Q=C[Py1,...,Pr-1,Qr/Pr+ls+++,Ppl, where Nr-eor, whether Ny is
-a ;zredex occurrence or not in N. By Theorem 3.2, CR(Mr): therefore
there is a term Sy such that Prf#sr,Qri;Sr. Therefore take
S=C{PlseeerPr-1+Sr¢+Pr+lsee,Ppl.

Case 3. ¥ j,MygA.

Let Mr,...,Mx (r<k) be all of the -Zredex occurrences in M
occurring in A. Then they are also —?tedex occurrences in A. Let
A~D[Mr,...,Mk]-éb[Mll,...,Mlp] (r<ij<k).

Then M=C[M1,.00,Mr=1,DiMrseeerMk] ;Mk41seeerMpl,
NEC[MII---IMI~11D1M111---rMip]er+lr-'-rMm]'
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P=C[P1,e.«,Pr-1+D[Prseos Pkl /Pk+1re+-sPpl, where Vi, Mj=>P;. Since
MlyeeerMp-1,Mk+1/s+..,Mpy are also ;zredex occurrences in N, whether

Mil,...,Mip are /;Zredex occurrences or not in N, oge can get
QEC[Pl,...,Pr_l,D[Qil,...,Qip],Pk+1,...,Pm], where erMiji*Qij- Now ,
by using Lemma 4.3, one can show for the subterm D[P;,,..,Pk] in P
that there is a sequence <PryeeesPk> ~ such that
<Pr,... P>3<P/, ..., Pk>, and D[P;,...,Pﬁ]—»DTPil,...,bel. Take
PéC[Pl,...,Pr_l,DTPil,...,P{p],Pk+1,...,Pm], then one can haYe 3284
Since erCR(Mij), for each j there is Siy such that Piji;sijr
Qijf»sij. Therefore take SEC[Pl,...,Pr_l,nisil,...,sip1,pk+1,...,pm].
O

Lemma 4.5. Let M—N, M;»P, d(M)>d(N), then one has the diagram in
Figure 15. Note that d(M)>d(S).

M N

!

*

pd

R
*
e e e e - ——

|
|
l
l
|
l
1
i
I
¥

Figure 15
Proof. One can get a term S in the same way as for case 2 and
case 3 in the proof of Lemma 4.4. [

Theorem 4.1. R)®Ry has the Church-Rosser property, 1i.e., the
diagram in Figure 16.



13u

M P

>|

[

|

]

I

* * |

]

]

|

|

|

*

Y \

N ~-T"TT T > Q
Figure 16

Proof. We will prove CR(M) by induction on the d(M). The case
d(M)=0 is trivial from Theorem 3.1. Assume CR(M) for d(M)<n (n>0).
Then we will show the following claim.

Claim. One has the diagram in Figure 17 for the case d(M)<n.

*

M N

—>

!

1

1

|

|

pd *

|

1

!

I

*

Y ¥

P TTTTTm oo > Q
Figure 17

Proof of the claim. Let MgﬁgN, where Qﬂe denotes a reduction of m

(m>0) steps. Then we prove the claim by induction on m. The case m=0
is trivial. Assume the claim for m-1 (m>0). We will show the diagram

for m. Let M—AN,
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Case 1., d(M)=d(A). We can obtain the diagram in Figure 18,
proving diagram(l) by wusing Lemma 4.4, diagram(2) by using the
induction hypothesis for the <claim, ‘and diagram(3) by wusing the
induction hypothesis for the theorem, i.e., CR(B), since d(M)>d(B).
A (m-1)

M N
> >

pd (1) B

e b e ———
1
i
I
i
1
I
A S

Figure 18

Case 2. d(M)>d(A). We can obtain the diagram in Figure 19,
proving diagram(l) by using Lemma 4.5, and diagram(2) by using the
induction hypothesis for the theorem, i.e., CR(A).
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lonet
i

A (m-1)

M N
—>- »I
| i
l |
1 |
l 1
[ (
i l
1 |
pd (1) * | (2) *
i H
1 I
i 1
1 !
I ]
%* I * I
; —————— J —————— *

Y
o

Figure 19

Now we will prove CR(M) for d(M)=n. The diagram in Figure 20 can
be obtain, where diagram(l) and diagram(2) are shown by the claim and
the induction hypothesis, i.e., CR(A), respectively. [

M P
\ >
\ !
N d i
P SO
\ |
S I
\\ A * !
* N ___ iby
] ]
! |
(1) | !
* 1 2 =* |
i !
| 1
¢ * I . I
\ ¥
N T > Q
Figure 20

Corollary 4.1. CR(R1)A CR(R2) <> CR(R1®R2).



Proof. <= is trivial, and =» is proved by Theorem 4.1. []
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