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Abstract

This paper presents a new method of constructing models of
A-calculus. Our method is based wupon the connection between
cartesian closed -categories and models of A-calculus.. We shall
show four kinds of the models that can be constructed wusing +the
method:

(1) a JA-algebra bdbut not a l—model; which satisfies the

N-rule;

(2) a 1-algebra but not a A-model, which does not satisfy

the Y-rule;

(3) an extensional A -model;

(4) a 2-model but not extensional.



Introduction

As for the type free )A-calculus, three kinds of the models are
known up to the present: (1) Term models, (2) Dy, (3) Py, ana
their variations: see Scott (1972, 1976), Plotkin (1978) and
Barendregt  (1981). This paper 'presents a .general method 6f
constructing models of 2a-calculus..

Many authors pointed out the connection between cartesian
closed categories and models of 2A-calculus in Lambek (1974,
1980), D.Scott (1980), Koymans (1982), Lambek and P.J.Scott
(1982), Adach (198%), Barendregt (1982) and Yokouchi (1983). Let
C be a cartesian closed category. Furthermore suppose that C has
an object u and a pair of arrows @ : u—->u" and P uu~——9u such
that ¢<¥ = id y. Then we can naturally construct a model (c) of
A-calculus, precisely speaking A-algebra Barendregt (1981), from
C with (u, 9, ¥). Conversely for every 1-algebra W there exists
a cartesian closed category C with (u, ?,1r5 such that
M = MW(c). Our method of constructing models of A-calculus is
based upon these results.

First we examine cartesian closed categories with a
paftially order relation on the set of arrows as an additional
structure. We <call this kind of cartesian closed categories an

order-enriched cartesian closed category. TFor example, the

category PO’ whose objects are all partially ordered séts, and
whose arrows are all monotone functiéns among themv is an
order-enriched cartesian  closed category. In Wand (1979) a
similar chcept appears. But it does not discuss cartesian

closedness.

We shall introduce a new notion called a retraction map
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category, whose arrows are retracts in Scott (1972) with certain
properties in an order-enriched cartesian closed category. Let C
and R be an order-enriched cartesian closed category and‘ its
retraction map category, respectively. Then R defines a preorder
< on the set of all objects of C. Moreover when a { b, R defines
an embedding of a into b using a retract from a to b.

Next we shall show that another cartesian closed category B
called an E-category can be haturally constructed from C With R.
Furthermore if R satisfies certain properties, then E has an
object U and a pair of arrows § : U———>UU and ¥ : UU——~>U such
that % = idyy. From E with (U, &, B) a 1-algebra can be
constructed.

The above are outlines of our method. We shall show - four
examples of the models that can be constructed using the method.

(1) WKT : a A-algebra but not a A-model, which satisfies the
1-rule Ax.Mx = M; ‘

(2) Wt; : a Q-algebra but not a A-model, which does not satisfy
the N-rule; )

(3) wey

(4) WK; : a A-model not extensional.

an extensional A-model;

The definitions of 2A-algebras, 7-models (weakly extensional
A-algebras) and extensional )-models appear in Barendregt (1981).
Also see Hindley and Longo (1980) and Meyer (1982). It is known
that the closed term model 1is a X—algebra but nbt a A-model,
which follows from the fact by Plotkin (1974): the A-calculus is

w-incomplete. While, +the above WK? and ?w; are constructed

independently of the fact.
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I. The Framework of the Theory
1.’Order—enriched cartesian closed categories

Definition. (Cartesian closed category)

A category C is called a cartesian closed category if C

satisfies the following conditions:

(1) C has an object 1 called terminal and an arrow ! : a——1.

Moreover, for each object a, C has only !a as an arrow from a

to 1.

(2) For every pair of objects a and b, C has an object axbD

called product and two arrows x?’b ¢ axb—a and
Rg’b : axb——b. Moreover for every pair of arrows f : c—>a

and g : c——>b, C has an arfow <f, g : c——>axb such that

Ia,b a,b a,b a,b
1

KT, g> = 1, T, oKf, g> = g and <n1 oh, X, oh> = h for

any h : ¢c——>axb.

(3) For every pair of objects a and b, C has an object b® called

. a
exponential and an arrow eva’b : b"xa——>b. Moreover for

every arrow f : cxa——>b, C has an arrow f° : c—>b? such
that ev®'Pocf"e xS, Kg’a> = f

1
a,b c,a C,a
! °<h°7¢‘.1’ R 7¢:2’ »% =h
for any h : c—>b%.

and (ev

In +this paper, whenever a cartesian closed category is
mentioned, its structure (i.e. 1, ‘! vy (5)x(=), E$—)’(—),
Eé’)’(—), {=,=>, (—)(_), ev(—)’(—), (=)") is détermined. We
represent <f°‘k?’b, g"ng’b> as fxXxg, where f : a——>a' and

g : b——b'.
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Definition. (Order enriched cartesian closed category)

An order enriched cartesian closed category is a‘caftesian
closed category C with additional structures (C(a, b), <) for
each pair of objects a and b - in c, where
C(a, b) = { £ | £ : a—>b in C } and < is a partially order
relation on C(a, b). Purthermore (C(a, b), <) must satisfy the
following conditions.

(1) If £ < £' and g < g', then gof < g'of’.
(2) If £ < £' and g < g', then <f, g> < <f', g'.

(3) If £ < £', then £° < (£')".

We shall give an example of order-enriced cartesian closed

category in Section 9.

Remark.
(1) (he(gxid))" = heg,
where £ : a——>a' and g : b——>b"';
(2) <£, geh = <foh, goh>;

(3) (£xg) o (£'xg') = (£fo£') % (geg').

2. Retraction map categories

Definition. (Retraction pair)

Let C be an order-enriched cartesian closed category and let
i: a—>»b and j : b——>a be two arrows of C. When jeoi = _ida and

iej < idy, then (i, j) is called a retraction pair from a to b.

Notation.
Let (ia, ja) : a—->a' and (ib, jb) : b—D! be  two

retraction pair. Then we define a pair of arrows

- 4 -
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' ! ’
il3gs 1p) ¢+ D*——b'® and jli, 331 : v'* —p% by

i3, 1,] = (ipeev® Pe(idaxi )",

. ' D! . . ~
(JboeVa ’ °(1db,a|X‘1a)) .

I

ilig, i)

The following figures explain the intuitive meaning of

i= i[jan ib] and j = j[iaa jb}'

ib°f°ja
atl—>D!

a
jal i Iib ia] J ljb
a a

—>D
T

Lemma 1.

. ) . . . ) . ,
Let (la’ Ja) : a—>a', (1b, Jb) : b——>b"' and

(ic, jC) : c—>c' be three retraction pairs.

(1) The following are both retraction pairs:
(ia)( iy, jaij) : aXxb—ya'xb',
]

(i[jas ib]’ j[iav jb]) . ba———ﬁb'a .

. b . .
Ja® t? ’ °(1ax‘1b)’

Coooat,b'

1 1 ‘
(3) ev® P = jioev® Pl (i, iylxi,).

(4) 30i,, 3p)e(£1)%0i, = (dpetreolizxiy))",

where f' ; ¢c'xa'—>0b!'.

Proof. We can easily calculate as follows.

(1) (janb)o(iaXib) = (jaoia)X(jb°ib) =:idaXIdb = ldaxb?

-5 -
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(1)) e (Jgxdy) = (e dp)x(yedy) & 14, xidy, = ddy 0 p0s

iigs dpleilig, iy]
= (Jyeev? "o (ia, ar x 1 )e(il5,, i ]x1d )"
= (3peev® P Ple(il1,, Jylxid,,)e(1dpa xi,))"
= (Jyoipeev® Po(id o x 3 )o(id ax1,))"

= (eva'bo(idbaxma))“ = idyq,

ilig, 1pleiliy, 3y
= (1oev® Pe(igax 3,)o(3li,, dp)x18,,))"
= (1,7ev® Pe(3li, G ]x1a)e(1d, ,ar % 3,))"
- (ibojboeva"b'o(idb,a'xia)o(idb.a-xja))“
= (ibojboeva"b'°(idb,a| X(i,03.)))°

1 1 .
< (ev® Plo(ia, a1 x 1d,,))" = idy,a1-

(2) Clear.

(3) Jyeev® *Plo(ild,, ip1x1,)

N

f !
= Jyeev® PP e (i[5, iplxid ,)e(idaX 1)

= Jp° ibf’eva’b°(idbax Jgle(id aX i)

= ev®rPe(id o Xid ) = evdr P,
(4) 3l1,, dple(£)ed, |
= (Gpeev® 7P lo(iay ar x1,) e (((£1)"01) X 1d,))"
. a',b', VA s ol i . A
= (jyoev ((£1)"x1d,,)o(i x1,))

= (Jpefre(igxiy))".

Definition. (Retraction map category)

Let C be an order-enriched cartesian closed ca%egory.

call the following category R a retraction map category of C.

(a) The objects of R are just the same as of C.

(b) Bach arrow of R is a retraction pair of C.

-6 -
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(e¢) For each pair of arrows (i, j) : a—>b " and
(i', 3') : b—>c, the  composite  (i', j')e(i, j). is
(itedi, joj') : a———>c..

(d) For each object a, the identity arrow is
(ia,, id)) : a—-sa.

Furthermore R must satisfy the fbllowing'conditions:
(1) For each pair objects a and b, R has at most one arrow from

a to b;

) : a—>a' and (ib, jb) : b——>b', then R

(2) If R has (1a, ig

has (iaxib, janb) : aXb—pa'xb!'

|
and  (ilj,, iy1, 3li,, 3,1) : pP——p'? .

Notation.
Let C be an order enriched cartesian closed category and let
R be a retractidn map category of C.
(1) We write a < b in Ror a < b (i, j) in R, when R has an
arrow (i, j) : a—>b.
(2) For each pair of arrows f : a— »b and g : a'—>b' in G,
we write £S5 g in R, whena ¢ a' (i, j ) inR, b < b
(ib, jb) in R and £ < jyegel,. ‘ |

We sometimes omit 'in R', when no confusion arises.

Note that the above relations { and K< are reflexive and
transitive (i.e. preorders), and note that

£ < jpogei, iff i efej < g.

3. E—Categofies

Let C be an order enriched cartesian closed category and let

-7 -
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R be a retraction map category of C. We will construct a new

cartesian closed category E called an ¢-category of C with

respect to R.

(Object) The objects of R are nonempty subsets A of the set of
all the objects in C that satisfy the condition: for every pair

of objects a and b in A, there exists some object ¢ in A such

that a < cand b { ¢c in R.

(Pre-arrow) Let A and B be two objects of E. We call a nonempty
subset P of { £ | f : a—>b, a €A and b € B }| a re—ggzgg’from
A o B, if F satisfies the following conditions:
(1) For every pair of f, g F, F contaihs h such that fE h
and g € h; |
(2) If f:a—>b €F, a' € A and a € a' in R, then there exist
b'€ B and g : a'—Db' € F such that b ¢ b' in R and
£ 5 g | |
(3) If £ : a—>Db €F, b' € B and b { b' in R, then there exist

a'e€ Aand h : a'—>Db"' € F such that a < a' in R and

f £ h.

Notation.

Let F and G be two pre-arrows from A to B in E. We define
(1) F<G iff (VfePF)(3g€ea)( f=g),

(2) P~G iff F < G and G < F.

(Arrow) The arrows of E are equivalence classes of pre-arrows
with respect to ~. For each pre-arrow P, we represent the

equivalence class containing F as [F].



Notation.

Let P : A—>B be a pre-arrow and let a € A and b € B. Then

we define
(1) M(a, b) = { £f | £f : a—>b and £ € F },
(2 ™ = { { g | g : a—>b and (a:féfﬁ( gEf ) |

| a €A and b € B }.

Remark.

(1) Let F be a pre-arrow. Then F* is also a pre-arrow and

F* ~ P,

(2) Let F, G : A—>B be a pair of pre-arrows. Then F ¢ G iff
F* C g%, '

(Composition) Let F : A——>B and G : B——>C be two pre-arrows of

E. We define
G o7 ={gt| (1aea)(3ben)(dcEC)
( feF(a, b) and geG(b, c) ) |},
-ﬁhich is a pre-arrow from A to C. We difine the composite arrow
[G]e[F] : A——>C of [F] and [G] in E as [G] o [F] = [GeF]. This

definition of composition is guaranteed to be well-defined by the

following lemma.

Lemma 2.

Let F1, F2 : A—>B and G1, G2 : B——>C be pre-arrows of E.
If P, { P, and G, ¢ G,, then & By < Gy F2
Proof. Suppose that F, ( F, and G, < G,. Let f,: a,—>b, €F

15 1 1
and 8y b1——-—>c1 (S G1. Then there exist f2 : a2———>b2 € F2 and -
g, : by—>c, € G, such that £, 5 f, and g 5 g,- By the

definition of objects of B, there exists b & B such that b2 <{b

- 9 -
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and bé < b, and by the definition of pre-arrows, there exist

f : a—>D 6F2 and g : b——>c € G, such that f25 f and g £ 8.

Hence g1of1 E gof and G1cF1 < GyoFye | o

(Idefntity) For each object A of E, the identity arrow id
is [{ id | a €A }].

A of B

We can easily prove that the above E is really a category.

4. Cartesian closedness of €-categories

We shall show that the f-category E defined in the previous

section is a cartesian closed category.

(Terminal) We define
(1) 1 = { 1 (terminal of C) },
| 1
(2) 1, =11, la€nr]
for each object A of E. Then 1 is a terminal object of E and

y = [!A] : A——>1 is a unique arrow from A to 1.

(Product) We define
(1) AXxB=1{ axb | a €A and b €B },
(2) T{f’B = {7%° | a€ranabeB},
(3) TP ={ 73" | aenandb eB |,
(4) <P, G> = { <f, & | (Ra€eAr)(IbEB)(IceC)

( feF(c, a) and g€G(c, b) ) |},
where A and B are objects of E, F : C——>A and G : C——>B are
pre-arrows of E. )

From Lemma 1 (1), A B is an object of E. By Lemma 1 (2) it

is shown that if?’B and 3fg’B are pre-arrows of E. So

- 10 -
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PR [ﬁ‘f'B] : A B——A and  Tp'D = [ig’B] : AXB—>B are
arrows of E. Clearly <F, G> 1is a pre-arrow. We define
<[F], [&¢]> = [KF, G>] : C——éAXB for each pair of arrows
[F] : C—>A and [G] : C—>A, which 1is guaranteed to be

| well-defined by the following lemma.

Lemma 3.

Let F1, F2 : C——>A and G1, G2 : C—>B be pre-arrows. If
F1 < F2 and G1 < G2, then <F1, G1> < <F2, G2>.
Proof. Suppose that F, < F, and G

1 > 1 SGZ' Let f1 : c—>a, € F1
and 8y c1~——->b1 € G1. Then, there exist f2 i Cho—>a, € F2 and
8 céﬁbz EG2 such that f1 = f2 and 8 ISH-O0 Moreover there

exist c € C, £ : c—>a € F2 and g : c——>b € G2 such that

czgc, cégc, f25f and 82‘558- So <f1, g1>5<f, g>, and

Py, GO € <Py, Gy | | o

Next we shall show that AX B, n‘}'B, né'B and <[F], [c¢]>

satisfy the axioms for products.

(a) For every pair of pre-arrows F : C—>A and G : C—>B,
TT‘:\“’B°<F, a>

a,b

=[7t1 okf, g | a €EA, b €B

and (3c€c)( f€PF(c, a) and g€G(c, b) ) }
~ P.
H A,B _
ence T, ok[F], [G]> = [F].
(b) Similarly né’Bu[F], [c]> = [a].
(¢c) Por every pre-arrow H : C—>A X B,
<F$’B°H, -ﬁg’BﬂD |
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1 1
= | <n?’b°h{ 5 'Plopt>s | a €A, a' €A, b €B, b' € B,

and (3 c €C)( h€H(c, a b) and h' € H(c, a' b') ) }
2'H

- —_ ' ' '
So H << H?*Boﬂ, Trg’BoH>. Conversely if <n?'b°h, xg Plapts e

<ﬁf?’B°H, Tfé’B°H>, then there exists h¥ : c*—sa*xb* € H such
that h & h* and h' £ h*, and

<K 0 on¥, x oh*> = h¥*.

* * * *
8,0,y xg opt> £ < 2P a®,b

]
Y ; 1 2
o <TiPon, WHPew> ¢ H. Hence <Wi+Pe[n], WHPe[n]> = [H].

(Exponentiation) We define

(1) B* = {v®* | a €A and b €B },
(2) B - { ev® P | a €A and b € B },
(3) P* = { £° | T €F },

where A and B are objects of E, and F : CXA—>B is a pre-arrow

of E.

FProm Lemma 1 (1), B} is an object of E. From Lemma 1 (3) it

is shown +that evA’B

evhr B

is a pre-arrow from BAx.A to B. So

A

= [5VA’B] is an arrow from B” XA to B. From the definition

of order-enriched cartesian closed categories, it is clear that

P is a pre-arrow from C to B:. We define [F]" = [P"] : c—sph

.

for each pre-arrow F : CXA——>B, which is guaranteed to be

.well-defined by the following lemna.

Lemma 4.

Let F1; F2 : CXA—>B be a pair of pre-arrows of E. If
F, ¢ F,, then (F,)" < (F,)". .
Proof. Suppose that F1 < F2. If k : cxa—>D EﬁF1, then there
exists k' : c¢'xa'—>b!' € F2 such that k £ k'. Namely

k < jbek'o(icxia), where a < a' (ia, ja), b < b (ib, jb) and

- 12 =
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c e (i

o’ jc). So k" < (jbok'O(iCxia))“. From Lemma 1 (4)
ilig, dple(k)®ei, = (jpek'e(ixi ))". Hence k* E (k') and

(P)" ¢ (F,)". 0

Finally we shall show that BA, evt' B ana [F]® satisfy the

axioms for exponentiation.

(a) Por every F : C XA——B,
st Pocpr o fi$0A, WA

{ eva,b

o<thenf®, w0 |

a €A, bE€B, cc€C and £ € F(cxa, b) }
= F.

A
(b) For every G : C——B",

(67 Bocgo WA, T oA

{ (eva’b°<g°kf’a, LSRN

2
a €EA, b €B, ¢ €C and g € G(c, b?) }
= G.

Moreover we define a partially order relation < on the set

of all the arrows in E by
(r] < [6] iff F < G,
for each pair of arrows [F] : A—>B and [G] : A—>B. Then from

Lemma 2, Lemma 3 and Lemma 4, E with this order relation

satisfies the conditions for order-enriched cartesian closed

categories.

From +the above discussions we can conclude the following

theoren.

- 13 -



Theorem 1.

The ¢g-category of an order enriched cartesian closed
category C with respect to a retraction map category R of C is an

order-enriched cartesian closed category.

5. Phenomena of type freedom in g-categories

Let C, R and E be an order enriched cartesian closed
category, a retraction map category of C and the é-category of C
with respect to R; respectively. We define a relation < on the
set of all the objects of E by

A< B iff (Va€A)(3b€B)( a b in R).
When A ¢ B, we define a pair of arrows [IA,B] : A—>B and
[JA’B] : B——>A in E by |
{ 1] (32€A)(3b€EB)( a <b (i, j) inR ) },

b (ia j) in R ) }'

=

o
I

AN

c,
|

{31 (3a€r)(3peB)( a

N

~

Proposition 1.

Let A S B.
(1) [JA,B]Q[IA,B] = idA;
(2) [IA,B]O[JA,B] < idB;

(3) Moreover if B < A, then

[Ty, 5] = [95 4] &nd [3, 5] = [T5 ,].

Proof. (1) Because id, € 4J

A,BOIA,B for every a€Al, idA <

[JA,B]O[IA,B]' Conversely, if i : a—>Db € IArB and

j' : b—>a' €J, 5, then there is a¥ A such that a ¢ a* and
,

a' < a*. By the assumption A < B, there exists b' € B such that

a* ¢ b', and there exists b* € B such that a* ¢ b' < b* and

~

- 14 -



143

b < b¥. Let a  a* (ia, ja), a' < a¥ (ia, ja), a¥ < b* (i¥, j¥)

and b < b* (ib, jb) in R.‘Then, jlei E ida*, since jaOida*°i =

a
jaoj*oi*oia = j'ejyeiyeil = j'ei. Hence [JA,B]°[IA,B] < id,.

(2) Clear.

(3) If i : a———eb € IA,B’ then a < b. Since B { A, there exists
c €A such that b<ec. If b<ec (i', j') in R, then
j' : e—>b e'JB,A' Because j! (i' i) = i, i £ j'. Hence
IA,B < JB,A' Conversely we can Similarly prove thatv JB,A < IA,B'
So [IA’B] = [JB’A]. It is similar that [JA’B] = [IB”A]. ' O

The following are well-known facts.

Fact 1.

Let C be a cartesian closed category and let 9 : u—->u" and

VY : u'—>su be a pair of arrows of C such that PoY = iduu. Let M
be +the generated A-algebra from C with (u, ?, ¥). Then the
following are equivalent:

(1) M satisfies the N-rule Ax.Mx = M, WherexM is a term and x

is a variable that does not freely occur in M}

(2) Y9 = ia,.

In general for every A-model ¢ the following are equivalent:

(1) e is extensional;

- 15 -
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(2) Me satisfies the Y -rule.

U o , -
If U° < U, then [JUU’U]O[IUU’U] = idyy by Proposition 1.

Thus we can naturally construct a 2A-algebra We¢ from E  with
U

(u, [JUU,U]’ [IUU,U])' Moreover if U U, then [IUU,U]°[JUU,U] =

[JU,UU]o[IU,UU] = id; by Proposition 1. So from Fact 1, W

satisfies the )-rule.

6. €*¥-categories

Let E be an ¢-category of an order-enriched cartesian closed
category C. Let F : {a}—>{b} be a pre—afrow in E, where a and b
are two objeéts of C. Moreover assume that C has the least upper
bound g : a—>b of F. Let G = {g} : {a}——={b}. Then we hope to
identify [F] with [G] in E. But this is not generally " possible.

We intend to modify the definition of é-categories.

Definition. (Directed set)

Let (X, S) is a partially ordered set. In general we say
that a nonempty subset Y of X is directed, when for every pair of

x and y in Y there exists z €Y such that x { z and y £ z.

Definition. (Complete order-enriched cartesian closed category)

Let C be an order—-enriched cartesian closed category. We say

-that C is complete, when C satisfies the following conditions.
(1) Let a and b be two objects of C. If F is a directed set of
arrows from a to b, then there exists an arrow £~ from a to

b which 1is +the 1least upper bound of F. We represent the
least upper bound f~ as LUIF.

- 16 -
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'(2) Let a, b and c be three objects of C. If P and G are
directed sets of arrows from a to b and from b to c
respectively, then LIGeUP = LI{ gof | £ €F and g €G }.

Note that { gof | f €EF and g € G } is directed.

We shall modify +the definition of §g-categories. From a
complete order-enriched cartesian closed category C, we shall
construct a cartesian closed category E¥ called an €*-category.

The definition of objects, pre-arrows, composition and
identity arrows in E¥ are just the same as in é-categories. We

only modify the definition of arrows.

Notation.

Let F : A——>B be a pre-arrow of E¥, let a € A and b €& B,

and let h : a—>b. When f é h for every f € F(a, b), we write
F(a, b) < h.

Definition.

Let F, G : A—>B be a pair of pre-arrows of E¥. We write
F { G, when the following condition is satisfied:
(Va €A)(Vb € B)(Vh : a—>b)
( 6*(a, b) < h implies F*(a, b) < h ).

If PG and G F, then we write F ~G.

Remark.

Let P, G : A—>B be a pair of arrows in E¥*,

(1) If F < G, then F  G.

(2) F ¢ ¢ iff LIF*(a, b) < LG*(a, b) for every pair of a € A
and b € B.

Let A and B be two objects of E. The arrows from A to B are
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equivalence classes of pre-arrows from A to B with respect to =,
We use the same notation [F] as in the definition of &-categories

for representing the equivalence c¢lass that contains each

pre-arrow F of E¥*,

Lemma 5.
Let C be a complete order-enriched cartesian closed category
and let E* be an g*¥-categeory of C. |
(1) If P : A—>B and G : B——>C are two pre-arrows of E*;_then
Li(eeP)*(a, c) |
= Wl gef | (3 b €B)( £ € F¥(a, b) and g € G*(v, c) ) }
for any a € A and ¢ € C.
(2) If F : C—>A and G : C—>B are two pre-arrows of E¥, then
LI(kP, 6>)*(c, axb) = <UF*(ec, a), WG*(c, b)>
for any a € A, b €B and ¢ € C.
(3) IfT F : CXA—>B is a pre—arrow of B¥, then
LI(F")*(c, d*) = (LUF*(c a, b))"
for any a € A, b é’B and ¢ &€ C.

Here GeF, <P, G> and F" means the same pre-arrows as defined in

Section %3 and Section 4 as to €-categories.

Proof. (1) Let L = (GeF)*(a, c¢) and

R= { gf| (3beB)( f€F*(a, b) and g éG*(b, c) ) }.
Then more generally we can show that L = R. It 1is clear that
R € L. Conversely if h € (G F)*(a, c), then there exist
f:a'—>b €F and g : b—>c' € G such that h £ gef. Let
a < a' (ia, ja) and ¢ € ¢! (iC, jc). Then h < jogefei,,
jo8 € G*¥(a, b) and foi_ € P*(b, ¢). Thus L € R.

(2) Pirst we shall show  that (<P, G>)* = <F*, G*>. If
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h: c—>axb € (KF, G>)*, then there exist f : c'——>a' € F and

g : ¢c'—>b' € G such that h E-_<_f, g>. Let . a < a' ~(ia, ja),

b < b (ib, jb) and ¢ € c' (ic', j:c). Then h 5,,.(jax jb')°<f, g>ei,,

b . . a,b . . b
x?’ °h < Jg® f°lc and 7c2’ oh < Jpe8ei,. Because ’I1a’ °eh € F* and
2% n € G*, h o= <1t?’,boh, 2200 € <F*, g%, Therefore

2‘
(<P, G>)* C <F*, g%>. '

Conversely if k, : c—>a €F* and k, : c—>b € G*, then

there exist f ;: ¢c'-—>a' € F and. g : ¢c'—>b' € G such that
k, £ f and k,E g Let a¢a (ia, ig)s B¢ B (i, §,) and
¢c ¢ e’ (g d,)+ Then k, < Joefei , k, < jpegei, and <k, k> <
(3g X J)e<f, g>ei,. Because <k,, k2> £<t, & € <F, &, <k, k,
€ (<P, G>)*. Thus <F*, G*> C (<P, G>)*. |

'Usi;rlg 'the(above," B

x?’bo LI(<F, G>)*(c, a D)

il

U{x®Pn | n € (<F, 6)*(c, axD) |}

I

LI x?'b«f, g | £ EF*(c, a) and g € G*(c, b) }
Lr*(c, a).

g’bo LI(<F, @>)*(c, axb) = La*(e, b).

Hence LI(KF, @>)*(c, axb) = <UF*(c, a), Ue*(e, b)>.

Similarly &t

(3) First we shall show that (F*)* = (F*)". If

h : c—>b® & (FP")*, +then there exists f : ¢'xa'—b' F such
that h Ef". Let a

AN

a' (i, 3,), b ¢ b (i, i) and
e ¢e' (jg, ig). Then h ¢ j,[i,a,jb]of“oic; (Jpefe(iyxiy))” from
Lemma 1 (4). Because jbofo(icxia) € F¥, h € (F¥)". So
(F*)* S (F%)". |

Conversely if k : cxa—>b € F*, then  there exists
f: c'Xa'—sb' €F such that k Ef. Tet a < a' (ia, ja),

b < b' (i, §,) end ¢ ¢ e' (i, j ). Because k < jofe(i_ xi,),
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k™ < (jb°f°(ic xia))“’= j[ia,jb]of“oic. - So k" £ £ and
k* &€ (P")*. Therefore (F*)" C (F")*.
Using the above, we can calculate as follows:
LI(F*)*(c, b*) ‘
(ev® Pad LI(F)*(c, b3)en$?2, 257 *5)°

(L_\{<eva'bo<h.9t§”a, 25'%> | h € (F")*(c, b?) )"

using (1) and (2)

(U{<eva'bo<h-t1°’a, 3% | h € (F*)"(c, b¥)})"

(L{<ev® Poceron?s?, 25225 | £ € P¥(c a, b)})°
(UF*(cxa, b))".

]

Theorem 2.

Let C be a complete order-enriched cartesian closed

category. Then an g¥-category of C is an order-enriched cartesian

closed category.

Proof. It is enough to show that Lemma 2, Lemma 5 and Lemma 4

still hold with respect to ¢ on the set of pre-arrows.

(Lemma 2) Let F1, F, : A—>B and G1, G2 : B—>C. If F

G, § G,, then for every pair of a € A and ¢ € C
LI(6;0F,)*(a, o)

LIf gef | (3b €B)( £ eF;‘(a, b) and g eGT(b, c) )}

1 < F2 and

I

by Lemma 5 (1)
= {u{gof{feF;*(a,b)andgeGT(b, c) } | b €B}
= { Uef(a, p)eUF¥(b, ¢) | b €B ]
< { l_!G;(a, b)oupg(b, c) | e B }
= ’(G2oF2)*(a, c).
Hence G1°F1-§ G2°F2.
(Lemma 3) Let F1, F2 : C——>A and G1, G2 : C—>B be pre-arrows.
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F2 and G1 < G2, then for any a € A, b &€B and ¢ € C,
LJ(<F1, G1>)*(c, axb) '

]

<LJFT(c, a), LJGT(C; b)> by Lemma 5 (2)

<Ur3(e, a), uez(e, b)>

LJ(<F2, G2>)*(c, axb).

Hence <F1,'G1> < <F2,’G2>.

o ¢ CX A——>B be pre-arrows. If F1 < F2, then

I

(Lemma 4) Let F,, F

1’
for any a €A, b €B and ¢ €C, |
LI(F)*(e, b®) = (LIFf(c xa, b))" by Lemma 5 (3)
< (UF%(exa, b)° = LI(F3)*(c, v*).

Hence F; < Fé. | | 0

7. Some remarks on €-categories and &€*-categories

Let E and ,E*( be an éE-category and an €&*-category,
respectiverly. Similarly to é—categories> we define a partial
order relation < on the set of all arrows of E* as follows: for
each pair of arrows [F] : A—>B and [¢] : A—>B, [F] < [¢] iff
F < G.

Proposition 2.

Both E and E* are‘complete order—enriched cartesian closed

categories.

Proof. By Theorem 1 and Theorem 2, we have already proved that E
and E* are order-enriched cartesian closed categories. Now we

shall show that both E and E* are complete.
Let P be a directed set of arrows from A to B. If we define

H=U{F| [F] &EP}, then H is a pre-arrow from A to B and
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clearly LIP = [H]. Let Q be a directed set of arrows from B to C.
Then

LiQeLlp

[ Uf{ GeF | [F] € P and [G]réQ]]
Lif [ger] | [F] €P and [G] €Q }
Lf{ [agle[Fr] } [F] €P and [c] €Q }.

The above hold in both E and E*. Hence E and E* are complete. 0

Note that [H] = [U{ *([F]) | [F] € P }] in the proof, where
A([F]) is an arbitrarily chosen pre;érrow contained in [F].

In Section 5 we have defined a preorder relatibn vg on the
set of all objects of B, and defined two pre-arrows IA,B : A—B
and JA,B ¢ B——A, when A { B. Similarly, in E¥-categories we
define ¢, IA,B and JA,B’ and wuse the same notations. Then
Proposition 1 1is also satisfied in the case of s*—categOries,
because F < G implies F ¢ G.

We defineva category RA whose objects are just the 'same
objects of E and whose arrows are ([IA,B]’ [JA,B]) : A—>B under

the condition A < B. Similarly we define a category R* with

respect to E¥.

Proposition 3.

The above R and R* are retraction map categories of E and

E*, respectively. We call R and R* generated retraction map

categories of E and E¥*.

Proof. We shall prove the proposition as to R. If A < A' and
B ¢ B', then AXB < A'X B' and )

[TpxB,a1xpd
= [{ ixiy | (2a€r)(3a'€r')(3peB)(3b'eB)

(aga' (i, §,) and b ¢ b (i, §) ) }]

- 22 -



157

]

=A,B =A,B
[<IA,A‘°“1’ » Ig pi® Ty’ 2]
| [Ty, p0]el1g 500

Similarly [J

AXB,A'XB'] = [JA,A'])([JB,B']'

If A < A' and B ¢ B', then B* ¢ B'*" and
[Tpa piar]
[{ ﬂjwiﬁ | (3a€pr)(Fa'en)(3adveB)(3Ivp'EB)

(a<a' (ig,j,) and b < b' (i,3,) ) }]

—A,B_,=BA A" =BA,A' |
= [(IB,B|°8VA °<“ﬂ ! ’ JA’A|°“é ’ >) ]
= i[[JA,A']’[IB,B']].
Similarly [JBA’B,A.] = j[[IA’A,], [JB’B,]]. Hence with

Proposition 1, R is indeed a retraction map category of E.

The proof of the proposition as to R* is just the same. .

Proposition 4.

The g¥-category E~ of E* with respect to fhe generated
retraction map category R* of E¥ is equivalent to E¥*. Namely
there is a pair of functors K : EE=—>E* and I : B¥X——E" such
that K L is naturally isomorphic to the identity functor IE* and

L K is also naturally isomorphic to the identity functor I

EN.
Proof. For each object X of E” we define a pair of pre-arrows tX
and fX by

Ty =1 [Ty, yxd 1 A€X} : X—{UX],

| £y = lLM’UX]{A‘EX} : {UX}—X.
Note that A ¢ UX in E* for every A € X. Then we define a pair of

functors K and L as follows:

K(X) = UX for each X of E”,

- 23 -



K([P]) = U(tyePepy) + UX—>UY
for each arrow [P} : X——>Y of E”,
L(A) = {A} for each object A of E¥,
L([r]) = [{[F]}] : {A}—>{B] |
for each arrow [F] : A—>B of E¥.
Note that T ePefy is a pre-arrow from {UX} to {UY}. So TyoPe Sy
is a directéd set of arrows from UX to UY. And note that K([P])
is independent of the choice of representatives contained in the

equivalence class [P].

For every object A of E*, (KeL)(A) = A. For every arrow
[F] : A—>B of E¥ |
(KeL) ([F]) = K(L{[FII]) = L (Tyqyol[F1)e 5,))
= [15,gle[Flelg, 41 = [F]. ‘
So KeL is naturally isomorphic to Ip.
Conversely we shall show that L K is naturally isomrphic to
Ig~e Let [P] : X——Y be an arrow of E~. Because [fY]o[tY] = idY'
and (Lek)([P]) = [{U(zyPor)}] = [zyePefy] = [ryle[P]-[fy],
[§y1e(Lek) ([P]) = [§ylelrylelPlelry] = [Plelpy].
Thus we can regard [f(_)] as a natural transformation from LeK to

IEN.

[£y]
(Lek)(X) = {UX} X > X
(Lek)([P]) \ [P]
(Lek)(Y) = {uY} >Y 5
[ty]

Moreover it can be proved  that [?X]o[tX] = idy  and
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[tylelsy] = idy,x}- The former is clear. The latter is shown by

the following calculation:
U([Z41e[f 1) (UX, UY)
Uy £4)

LI [IA’ UX JA’UX] | A€ X }

[UE T, x®dy, ux | 2E€XT]

by the remark below the proof of Proposition 2

[ { iej' | (3A€X)(Faer)(3b eX)(3Ab' € X)
(a<b (i, j) and b < d' (i', §') ) } ]
[ { d93" | (32a€euX)(3beuUx)(3vre UX)

(a<b(i, j) and b ¢ b' (i', ') ) } 1]
[ {id, | a€ UX | ]
= id

i}

ux®

Hence [f(_)] is a natural isomorphism from L K to Ig~. 0

Proposition 4 does not generally hold in <€-categories. 1In
the -case of é&-categories, it 1is not generally satisfied that
IX'fX = ld{UX} in the proof of Proposition 4. But it can be
proved that [t(_)] and [F(_)] are natural transformations from

IE” to L°K and from L°K to IE”’ even though E~ is the &-category
of E¥*.

8. A-algebras and A-models

We can naturally construct a A-algebra ¢ from a cértesian
cloéed‘category C with an object u and a pair of arrows
® ; u—>ut and Y ﬁu—~—>u such that 9Y = iduu. Then the

following is well-known:
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Fact 2.
The following two conditions are equivalent fact.
(1) e is a.A—model;b
(2) Por every pair of arrows f, g : u—>u, £ £ g iff there is

an arrow h : 1——>u such that feh # goh.

We examine the necessary'and sufficient conditions that make -

the generated A-algebras from suitable €¥-categories -models.

Theorem 3.

Let C* be a complete order-enriched cartesian closed
category and let E* be an &*¥-category of C¥. For every pair of
objects A and B of E*, the following conditions are equivalent.

(1) For every pair of objects a € A and b € B and every pair of
arrows f, g : a—>b in C*, if f { g, then there exists an
arrow h : 1——a in C¥ such that £ h £ g h.

(2) For every pair of pre-arrows F, G : A—>B, if F { G, then

there exists a pre-arrow H : 1——A such that FeH £ GeH.

Proof. (1) => (2). Assume that the condition (1) is satisfied. If
F g G, then there exists a € A, b €B and an arrow k : a—é-éb
such that G¥(a, b) < k and F*(a, b) £ k. Because F*(a, b) £ k,
there exists f € F¥(a, b) such that f £ k. From the conditior
(1), there exists an arrow h : 1—>a such that feh { kfh.’ We
define a pre-arrow H = { ieh | (3a'€A)( a < a' (i, j) ) } from
1 to A. We can show that (a) (GeH)*(1, b) < keh. Indeed if
k' € (GeH)*(1, b), then there are a'é& A, b' € B, g &G(a', b")
such that a < a', b < b! and k' < jbogeia°h, where
a { a' (ia, ja) and b £ b (ib, jb). Because j°gei, < k from
6*(a, b) < k, k' < keh. So (G°H)*(a, b) < keh. |
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Next we shall show that (b) (FeH)*(1, b) £ koh.  From
f € P¥(a, b) - there exists a' € A, b' € B and f' € F(a', bf) such
that a < a', b < b' and £ < jb°f'°ia, vhere a ¢ a' (i_, j,) and
b < b! (ib, jb). So £ h ¢ jyef'ei_ch. Because f' & F(a', b') and
“i_eh € H(1, a'), foh & (FoH)*(1, Db). From foh £ koh,
(FeH)*(1, b) £ keh.
From the above (a) and (b), FeH £ GeH. Hence the condition
(2) is satisfied.
(2) => (1). Assume that the condition (2) is satisfied. Suppose
that a € A, b €B, f, g: a—>b and f £ g. We define two

pre—~arrows from A to B:

F = { iefe], | (éa'eA)(ab'eB)
(a¢a (iy, J,) and b ¢ b (i, §y) ) 1},
G = { ipeged, | (3a'€A)( 3b' €B)

(ag<a' (ia’ j,) and b < ' (i, 3p) ) }.
We shall show that P { G. Because f € F¥(a, b) and f {£ g,
F*(a, b) £ g; But G*(a, D) < g since g' < g ~ for any
g' € G*(a, b). So F £ G.

From the condition (2), there exists a pre-arrow H : 1——A
such that F H va H. So there exist D" € B and anv arrow
k : 1——>Db" such that (GeH)*(1, b") < k and (FeH)*(1, b") £ k.
From (FeH)*(1, b") £ k, there are a' € A, b'€B, and an arrow
h' : {——>a' such that aa', b < b', b" < b and
jeipefej_en' { k, where a < a (igs 3g)» b < B' (i, 3y) and
b" < b' (i, j). But Jeiyegej oh' < k Dbecause Jjeijegejoh’
(GeH)*(1, D") < k. So Jeipofej oh! £ jeiyegejoh’ and
fejoh! £ gejgeh'. If we take joh' to h, the condition (1) is
satisfied. 4

D .
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Corollary of Theorem 3.

-Let E¥ be an 5*—category of a complete order-enriched
cartesian closed category C*. Assume that E¥ has an object U such
that UU < U. Let M bve the generated A-algebra from E*_with

(u, [IU,UU]’ [JU,UU])‘ Then the following conditions  are

equivalent:
(1) M is a A-model;
(2) For every pair of objects a, b € U and for every pair of

arrows f, g : a—>b in C*, if f £ g, then there exists an

arrow h : 1—>a in C*¥ such that feh # geh.

II. Examples

9. An example P of order-enried cartesian closed categories and

its retraction map category R1

Let PO be the cafegory whose objects are all partialljv
ordéred sets and whose arrows are all monotone functions among
them. We define an order relation on the sets of arrows as
follows: for veach pair of arrows f, g: a—>b, f < g iff
f(x) < g(x) for all x & a. Then we can prove that PO is an
order—-enriched cartesian closed category. We shall give a sketch

of the proof.

For each pair of ordered sets a and b, we define two ordered

sets axb and b? as follows:
(1) axb is the Cartesian product with the order relation £
such that <x, y> < <x', y'> iff x < x' and y £ y';
(2) b® is the set of all the monotone functions from a to b

with the order relation < such that £ < g iff f(x) < g(x)
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for all x & a.

For each pair of objects a and b, we define an arrow eva’b
from b®*xa to b as follows: eva’b(<f, x>) = f(x) for

<f, x> € bax a. Clearly 'eva’b~ is monotonic. TFor each arrowv

f : cxa—->b, we define an arrow f* : ¢c—>b?

by
£ (z)(x) = f(Kz, x>) for z e c, x € a. Clearly f* is monotonic
because f 1is so. By simple calculation, it can be shown that

a,b

ev and f" satisfy the axioms for cartesian closed categories.

- The rest structures are clear.

Next we shall define a full subcategory P of PO. (Let~ a
partially ordered set - p with the least element L be givén. We
define the set of objects of P by indunction.

(1) 1 ( a singleton set ) is an object of P; -
(2) p is an object of P;
(3) if a and b are objects of P, then axb and b?* are also
objects of P.
The arrows of P between each pair of objects are the same as of
PO. ‘Then P is an order enriched cartesian closed category.

We shall define a retraction map category R1 of P. Here we
assume ‘that, for ‘every object a of P, the structure of a is
uniquely determined. Namely the set of objects of P is the free
algebra génerated from {1, p} by the binary operators (-)x(-) and
(—)(—). For each object a of P, we define a nonnegative integer
grade(a) as follows:

grade(1) = 0, grade(p) = O,
grade(axb) = grade(a) + grade(b) + 1,
grade(b?) = grade(a) + grade(db) + 1.

By the above assumption, each object of P has the unique grade.
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For each pair of objects a and b such  that
grade(a) < grade(b), we definé arrows from a to b in R, by double
induction on gradé(b) and grade(b)-grade(a) (i.e; transfinite
induction on w - grade(b)+(grade(b)-grade(a)) ).

(1) (idc, idc) : c—>c is an arrow of R,;
(2) 1f (ic, jc) : c—>c' and (id, jd) : d—>d' are arrows of

R,, then (icxid, jcxjd) : cxd—>c'Xd' and

(i[jc, id], j[ic, jd]) : 3°—>a'%" are also arrows of Ry;
(3) 1If (i, j) : a—sc and (i', j') : c—>b are arrows of R,
and grade(a) < grade(c) < grade(b), then
(i'ei, jej') : a——>b is an arrow of R,;
(4) (5, ¥o) p—-p® is an arrow of Ry,
where ¢, : p——p® and»?b : pP—»p are arrows of P defined
by ?O(x)(y) = x for x, y € p and ?O(f) = £(L) for £ € pP.

We can easily prove that R1 satisfies +the conditions for
retracfion map catégories.

Now 1let E1 be +the E—Category of P with respect to R1. We
define an object U of E1 by induction as follows: p &€ U; if a € U
and b E&U, then 1*EU. Let & = [y ¢l : U—>u’  and

] U

[I ] : U —>U, which are defined in Section 2.5. Because
ul,u
U

H

U

IN

vV ana 0V < u, BT = ia 45U and $+® = id; by Proposition 1.

10. Another retraction map category R, of P

2

We shall construct another retraction map category R, of P.

2
Note that every object of P has the least element since p has the

least element. We use the same symbol L for representing each

least element.
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For every object a, there exists a retraction pair
(s[a], tla]) : a—>axa. Indeed if we define s[a] and t[é]vby
s[a](x) = <x, 1> for x € a,
t[a](<x, y>) = x for <x, y> € axa,
- then (s[a], t[a]) : a—saxa is really a retraction pair. We
choose a retraction pair (s[a], t[a]) : a—>a xa for each a.
| Next we define arrows from a to b in R2 by double induction
on grade(b) and grade(b)-grade(a).
(1) (idc, idc) . c—c is an arrow of R,;
(2) 1f (ic, jc) : c—c' and (ig, jd) : d—>d' are arrows of
R,, then (i, i4, i, jd) : ¢c xd——>c'xd' and
(ildg, ig1s 31, 341) - d®—d'®" are also arrows of Ry;
(%) 1f (i, j) : a—sc and (i', j') : ¢ —>b are arrows of R,
and grade(a) < grade(c) < grade(b), then
(i'ei, joj') : a——b is an arrow of R,;
(4) (%5, V) p—>p® is an arrow of R,, where ¢, and ¥, are
the same as defined in Section 9;

(5) (slp], tlp]) : p—>pxp and

1 ' ' 1 ' '
(s[c® 1, t[c® ]) : c® ——>c® x c® are arrows of R, for
every ¢’ |

Remark.
(1) If grade(b) < grade(a), R, contains no arrow from a to b.
(2) For every object c, R, contains only (idc, idc) : ¢c—>cC as

an arrow from ¢ to c.

(3) For every arrow (i, j) of R,, i and j preserves the least
2

element 1.

We can prove that R2 satisfies the conditions for retraction

map categories. We only show the following. The rest are clear.
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Lemma 6.

For every pair of objects a and b, R2 contains at most one

arrow from a to b.

Proof. We use double- induction on grade(b) and
grade(b) - grade(a). When grade(a) = grade(b), thr lemma holds by

the above remark (2).

(1) When a = a;xa, and b = b, Xb,, some arrows from a to b may
be introduced by the rule (2) and (3). By the indunction
hypothesis, the number of arréwsyintroduced by the rule (2) is at
most bne. When the rule (3) is applied, c must be of the form
¢, ¢, and R, must have (11, j1) P a,—>Cy, (12, j2) : 8,—>Cyp,
(i1, 3{) = ¢y—>b, and (i}, jb) : c,—>b,. Bo the introduced
arrow is ((1{011)‘X(ié012), (j1oj{) x(j2ojé)) : a1Xa2-——>b1xb2.
By the induction hypothesis; the number of arrows introduced by
the rule (3) is also at most one. Moreover the arrows introduced
by the rule (2) and by the ruie (3) are same.

(2) When b = b, X b, and é is of the form(aéf1 Oor p, SOme Arrows
may be introduced by the rule (3) and (5). If the rule (3) is
applied, then the rule (5) can not be applied. We' consider the
case where more than two arrows are introduced by the rule (3).
Namely there exists ¢ and c' such that grade(a) < grade(c)
< grade(b), grade(a) < grade(c') < grade(b) and R, has four
arrows from a to ¢, from a to ¢', from a to b.and from ¢' to D.
Moreover we can assume that R2 has the arrowg illustrated by the
following diagrams. Here c is of the form(céf‘x(céf1 or(c£f1 and

c' is of the form (0901*(%)0;1 or (Cé)q .

- 32 -



167

L7
1’ 31 / \(11’ 31 | (12: 32)/ \11', 31')
C1 1)1 ‘

(B (e

AL
(1, a)\ /(1' (1, 3)\ /(i', i)
| . byxhb,
(1,x1,, j1x32/ \(i{xié, 31x33)
e ey e ey
(sley], tlef1) l[ , ] (S[@ 1], tleyt 1)

(e ey

(i, j)’\ /1 i)
a

By the induction hypothesis, (i1,j1)°(i,j) = (i1',j1‘)0(i',j') and

(i,,35)°(1,3) = (i},34)e(i',3'). We define the following arrows:

¥ = (i X i))es[ey1]ei : a—>b,

[
—x
1

jotlies1e(3y x i)+ b—a,

1% = (i) xiy)esley 111 : a—>b,

o
=
[o]]
[
N
i

retles (i x 35) = b—sa.
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By the definition of (s[-], t[-]),
iT(x) = <i1(i(x)),1,> = <ii(i'(x)),J_> = iz(x)
for all x € a, and |
¥ (<yy, v) = 33,3 = 31031 3)) = 33Ky, vp2)
for all <¥y» ¥,> € b. Hence (iT, jT) = (i;, j;).
(3) When b =(b2)b1, it is clear. \ a

Let E2 be the g-category of P with respect to R2. We define

an object V of E2 as the set of all the objects of P without 1.

Lemma 7..

For every pair of objects a and b € V, there exists c € V

such that a { ¢ in R, and b ¢ ¢ in R,.

Proof. First note thafvp < d in R2 for every d € V, which can be
proved by induction on grade(d). |

We use induction on grade(a) + grade(b).

(1) When a = p, p < b by the above remark.

(2) When b

p, it is similar to (1).

(3) When a = a, xa, and b = b, X by, by the induction hypothesis,

there exist Cy € V and Cs & V such that ay < Cy b1 < Cqr 85 < Cy
and b, ¢ ¢, in R,. Thus ayxa, { ¢4XcCy and b1x'b2 $ eyxcy in
R,.

(4) When a =(aéf1 and b =(béf1, by +the induction hypothesis,

b, < ¢

10 %1 2 G #2
. a c ¥ o\C
and b, ¢ ¢, in R,. So(ay)l < (e ) and ()1 < (e

there exist c, €V and ¢, € V such that a, {¢ < C5
(5) When a =(aéf1 and b = b, X b,, there exist ¢, € V and c, € V
such that a ¢ c,, b, $cyy a ey and b, { ¢, in R,. S0

axa < cy X cy and b ¢ C X Cy in R,. From the rule (5) of the
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h,
g
[

construction of R2, a { aXa in R,. Hence a < c, X ¢, in R,.

b .
(6) When a = a, x a, and b :(b2)1, similar to (5)- u|

Let ® : V——)VV and \P : VV—>V be two arrows of E defined

2
. 3 v 5 :
by ®= [JVV,V] and ¥ = [IVV,V]' Because V' €& v, $oP = idyy by

Proposition 1. But it cannot be generally proved that §°@ = ibdv.

Lemma 8.

If Pod # idy, then p is a singleton set.

Proof. If idy < $3P, then there exist j : c—>b> € Iy, v ~and
it bP——0ect € IVV,V such that idpxpE i'ej. Because p { ¢ and
b2 < ¢, from the definition of R2, ¢ must be of the form CyX Cy
and b < b? x b2 < cyX c, = C. Also v% x v? ec'. Hence
id, » < (3%x j*)os[v®1et[1*]e(i* x i*), where p ¢ b* | (i*, j*) in
R2.. If we apply <x, y> € pxp to both the. ‘hands of this

inequation, <x, y> < <x, j*(L)>. Because j* preserves the least

element, y < j*(L) = L for any y & p. Therefore p must be a

singleton set. a
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11. Two examples of A-models

If p in P is finite, then the set of all arrows in P is

finite. So P is complete and the &¥-categories of P with respect

to R1 and R

examine more general cases.

5 are the same as E and E

1 2 respectively. We shall
Let CPO be the category whose objects are all complete

partially ordered sets and whose arrows are all continuous

functions. Here a complete partially ordered set means a
partially ordered set X such that every directed subset Z of X
has the least upper bound L1Z in X. A continuous function from X
to Y means a function f such that f(L3Z) = P{ f(x) | x € X } for
every directed subset Z of X. It is well-known that CPO is a
cartesian closed category. Moreover we can easily'show that CPO
is a compléte order-enriched cartesian closed category. Here we
define an order relation < among arrows of CPO as follows: for
f, g : a—>b, f < g iff f(x) < g(x) for any x€ a. Then if F is
a directed set of arrows from a to b, then
(LUP)(x) = Wf f(x) | £ &P } for every x €& a.

We shall define a full subcategory P* bf CPO similar Hto P.
Let p be a complete partially ordered set with the least element

L. We define P¥ as the category obtained from CPO by restricting

the set of objects as follows:
(1) 1 (a singleton set) is an object of P¥*;
(2) p is an object of P¥;
(3) if a and b are objects of P¥, then a xb and ba_are also
objects of P¥*,
Then P* is a complete order—-enriched cartesian closed category.

We define two retraction map categories R? and Rg of P* in
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the same way as R, and R, of P. The proof that RT and R"Z‘ are

really retraction map categories of P* is just the same as  the

proof for R, and R, of P. Let E¥ and EX be the g*-categories of

1 2
P*¥ with respect to RT and Rg, respectively.
We define an object U* of ET and V* of E’Z* as the same as U

of E1 and V of E2, respectively. It is clear that U¥ and V¥ are

objects of ET and Eg Especially V¥* in E; satisfies the same as

* * *
Lemma 6 as to V in E,. Because u*U" € u* ana vV € v¥, U ¢y
* o .
and v*' ¢ V. Let Wty and M5 be 7-algebras generated from EY

with (U*,~[JU*U*’U*], [IU*U*’U*]) and  from E; with  (V¥*,
[JV*V*,V*]’ [JV*V*,V*])’ respectively. Then by Corollary of
Theorem 3 ?TtT and ’m*z* are both A-models.

‘Moreover E’Z‘ satisfies the following similar to Lemma 8.

Lemma 9.

If id

I

v* [IV*V*,V*]o[JV*V*,V*]’ then p is a singleton set.

Proof. Let I = Tyay* yx and J = Jyxy* yx. If idyx < [1]e[J], then

idpxp < W(IeJ)*(pxp, pxp). By Lemma 5 (1)
LI(Ted)*(pxp, pxP)
= LI gef | (BCEV*V*)(fGJ*(pxp, c) and g€I*(c, pxp) }.
If gel¥*(c, pxp)\, then there exist b2 € V*V* and d €V* such
that b®* < d and g £ i, where b® < d (i, j). From the definition

of R%, b*

< b*xDbp* <¢a and i = i'os[ba], where b%x1b? < d
(i', j'). From the definition of s[b®] and the remark above
Lemma 6, Eg’p(g(z)) =L for any z € c. So for any x&€p and ye€ p,

y = (n3rPeia ) )(<x, y>)

I

L (25 Peget) (<x, y) |

. . ¥*
(2cev*V )( £fe&i*(pxp, c) and g€I*(c, pxp) ) )

- 37 -



Therefore p must be a singleton set. ‘ 0

We assume that p is not a singleton set. Then by Lemma 9 and
Pact 1, mmg is not extensional. While Wm? is extentional because

u* ¢ g*UT,

~

12. Two examples of A-algebras but not A-models

We will give' an example of e*-category whose generated
A-algebras are not A-models using Theorem 3.
First we define another complete order-enriched cartesian
closed category CPO° similar to CPO. The objects of CPO° are
pairs of complete partially ordered sets a and their subsets a!'
such that for every directed subset X of a' the least upper bound
(IX is contained in a'. The arrows from (a, a') to (b, b') in
CPO’ are continuous functions from a to b such that f(x) € b' for
évery x € a'. The order relation £ among the arrows is the same
as in CPO.
The resf components of CPO° are defined as follows:
(1) 1 (terminal of CPO°) = (1, 1);

(2) (ar a')X(b, b') = (aXb, a'Xb');

(3) (b, b)(2 ") o (12 &), where
XA ={f | f: a—>b is é continuous function
and (¥x e€a')( f(x) é’b' ) 1
(4) gef = gof (in the usual sense)
for £ : (a, a')—>(b, b') and g : (b, b')—>(c, c');

(5) id(a,ac) = ida;
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a,b

=5

,a'),(b,b! b,
(7) xéa a'),( ) - ng ;

(8) <f, g = <f, g (in the usual sense);

(6) jt‘ia’}a')’(b’b') )

a,b
= ev ',

(9) ev(a,a'),(b,b')
(10) £ = £* (in the usual sense).
We can easily show that fhé'aboVé cP0° is a complete cartesian
closed category.
Similarly to P* we shall define a full subcategory P° of
CPO° by restricting objecté. Let p be a complete partially
ordered set with the 1easf element L. Let p' be a proper subset
of p such that L &€ p' and for every directed subset X p' the
léast element LIX is contained in p'. Furthermore we assume that
(p, ") saﬁisfies the following ciondition: there exists two
distinct continuous functions f and g from p to p such that
f(x) = g(x) € p' for every x € p'. For example, if 'p = {1, T} and
" p' = {L}, +then (p, p') satisfies the above conditions. Here we
define L £ 7T in p. |
We define the objects of P° as follows:
(1) (1, 1) is an object of P°;
(2) (p, p') is an object of P°; ,
(3) if (a, a') and (b, b') | are objects of P°, then

(a, a') X(b, b') and (b, b') (a, a') are also objects of

P .

Then clearly P 1is a complete order-enriched cartesian closed
cétegory. |
We shall define two retraction map category of R, and R, of

1 2
P° similar to R¥ and R% of P*. Let ¥, ¥, slal and t[a] be the
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same as defined in Section 9 and Section 10. Then they are all

arrows in P°. Namely in P°,
]
?O : (p, p')—)(p’ p')(p’ P ),

Yo ¢ (py p) (B PN (p, b1y,

it

s[(a,a')]

sla] : (a, a')—>(a, a') x(a, '),

t[(a,a")]

il

tfa] : (a, a')x(a, a')—>(a, a').

Here note that for every object (a, a') of P°, a contains the

least element | and 1L €a'. Using these four kinds of arrows we

and R; in the same way as in RT and R;.
(-]

1 and E; be the €*-categories of P° with respect to R:

and R;, respectively. We define an object U° in E1 and V° in E2

in the same way as U in E, and V in E,. Then V' and U' are indeed

define R

(]
1
Let E

objects. Especially R; satisfies similar properies to Lemma 8 as

to R,. And clearly u°Y% < U° ana v°V

(<]

; with U° and from E} with Ve,

< V°. Let WN; and Wt; be
A-algebras generated from E

respectively.

(]

Here E; > have comfortable prbperties. There exists a

1
pair of arrows f, g : (p, p')——>(p, p') such that f £ g and

and E

foh = goh for every h : (1, 1)——>(p, p'). Note that h must be a
function from 1 to p' and that p' & p. Because (p, p') €U and
(p, p') € V, from Corollary of Theorem 3 both 7%; and 7Wg are

not A-models.

We can prove the following similar to Lemma 6 as to E;: if

idy < [IV0V°’V9] [Jvov°’vo], then p' is a singleton set. So if
we assume that p' is not a singleton set, then from Fact 1 WK;

does not satisfy the ]-rule. While 7R; satisfies the -rule,
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since U° ¢ v U,
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