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Connection between constructive mathematics and "computing” has been
recognized by some logicians Scotlt, Martin-Lof etc. and by some computer
scientists Constable, Goto, Takasu, Sato etc.. Some leading logicians, e.g. Scott
and Martin-Lof, seem to believe that constructive logic is "a logic of comput-
ing". Martin-Lof [5] showed that his theory of types can be regarded as a pro-
gramming language with verification. (Indeed, an interpreter of Martin-Lof’s
theory of type has been implemented on computer by Nordstrom [4].) On the
other hand, Dana Scott suggested to try to see the possibility of using realizabil-
ity for interpreting a "logic of computability” in his lecture in Logic Colloquium
'83. .
In Hayashi [3], the author introduced a formal theory LM, which is a
Feferman type formal theory of class and algorithm (cf. Feferman [1]). In LM,
algorithms are described by (pure) LISP programs, and the author showed how
to extract LISP programs from proofs of LM by using realizability based on
LISP. A system based on LM had been implemented, but the author recog-
nized some defects of LM through using it. One of them is the lack of induc-
tive definition as its fundamental facility. Inductive definitions make possible to
define some kinds of data types such as lists and trees in a natural way. A new
system PX (Program eXtractor) remedies this defect by introducing a sort of
determunastic inductive definition CIG. In the following, we will sketch PX, and
show some examples in PX.

PX has been implemented by the author on VAX/UNIX at Computer
Center of University of Tokyo. The author would like to express his hearty
thanks to Prof. Masahiko Sato for discussions on the subjects.

PX as a package of Franz Lisp ‘

PX can be thought as a package or an extension of Franz Lisp. PX
exlracts and verifies (pure) Franz Lisp functions. Its PX top-level is a
modification of CMULIisp top-level (cf. Foderaro & Sklower[2]). It has a his-
lory mechanism, where users can edit events by ex, vi or the Lisp Editor.



Syntax of PX
constant ::= individual constant ' class constant
variable (vér’) ;= individual variable (ab)

| class variéble (X,Y,..)

| term variable (?1,22,..)
term (tm) ::= variable }‘constant (function term ... term)
function ::= system function

i user-defined function

| (lambda (var ... var)) tm)

formula :: = implicative | implicative < -> implicative
implicative ::= disjunctive ‘ disjunctive -> implicative
disjunctive = cénjunctive | conjunctive + disjunctive
conjunclive 1= monadic) monadic & conjunctive
monadic :: = atomic ~ parenthetic l quontative ' - monadic
parenthetic :: = ( formula )

quonlative ::= (UN cvl) pq-formula| (EX cvl) pq~formul%1
pg-formula :: = parenthetic | quontalive
alomic := tm = tm|tm : tm
|CLtm|E tm
lgp (tm ... tm) | dp (tm ... tm)
| TRUE | FALSE
gp - = generic predicate (predicate free variable)
dp ::= defined predicate (Users can abbreviate formulae by dp.)

¢vl ;= var ... var : tm | var ... var



Examples of formulae.
(UNab:N){(EXqr: N)
(-b = 0->a = (add (product b q) r) & (lessprb) = t)

(UN a : (List X)) (a = nil + (cara): X & (cdr a) : (List X))

Logic of PX (logic of parlial terms)
lm : C P(?1) [?1:c] P(?1) [ASP(?1)] P(x) Etm [ASP(x)].

P(tm)

(EX z:C)P(X) (UN z:C)P(x)  P(tm) [ASP(tm)]’ P(tm) [ASP(tm)]

Axioms of PX

. axioms on primitives.
21 . Dp-> E (car ?1), B (addl ?1) <-> 2?1 : N, E (car ?1) -> ?1: Dp,

21 Alm <-> (alom ?1) = t, ?1: Dp <-> (dtpr ?1) = t,
(list 21 ?2 )= (cons ?1 (list ?2 ..)),

21T -> (cond (?1 ?22) (?3°?24) .)= 2?2, x: T <-> -x = nil,
t ((lambda (x y ..} ?1) 22 ?3 ..) -> E ?2 E ?3

cle...

I'hese axioms are available through a funclion "so" as follows:
1 (assume '§?1 : Dp{) ; A formula must be enclosed by braces.
$.]- 21 Dpt

(so "§I (car ?21)%it)

J- & (car ?1)}

(asp it)

§21 : Dp})

<.
{
3.
(
2. CIG (conditional inductive generalion).

This is a special case of Feferman’s inductive generation, but much more
practical than lhe general one. E.g., the class of lists of elements of a class A is
declared as follows:

1.(deCIG §x : (List A)}
((dtpr x) §(car x) : A} §{cdr x) : (List A){)
(Lix = nilf))
List
CiG can be used to define classes simultaneously. See Appendix 1 for an

cxample. ['or each CIG-declaration, an induction principle is associated. See
Appendix 2 for an example of such an induction.
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3. ECAU)
Negative elementary comprehension axiom ECA() (cf.[1],[3]) is avail-
able as a class declaration as follows:

1.(deECA {x : (Cartesian X Y)${ §(car x) : X & (edr x) : Y})
Cartesian ; Cartesian s decalred.

2.so §CL (Cartesian Atm Dp){ ; Cartesian is class-valued.
§]- CL (Cartesian Atm Dp)i ‘
3.axiom Cartesian ; the axtom of Cartesian

§]- x : (Cartesian X Y) <-> (car x) : X & (edr x) : Y}

ECA() can be derived from CIG, so ECA(~) is defined as a macro in PX.

4. Join.

This is the same as Feferman [1]. This corresponds to coproduct. So it is
usclful to define a data type such as record of PASCAL. (See Martin-Lof [5].)

5. Induction for N and V.

N is the class of natural numbers and V is the domain of PX, i.e. the class
of S-expressions. See Hayashi [3] and Appendix 3 for such induction principles.

6. Using extracled functions.

Extracted functions can be named and used as follows:

1.(sctg tm "(cons (cons a b) (cons ¢ d)))

(cons (cons a b) (cons ¢ d))

2.(exl $(EX z) (z = tm)} (so ‘{,tm = ,tmi]

§]- (EX z) (z = (cons (cons a b) (cons ¢ d)))}

3.(deEXTFUN foo (b cad) it)

foo

4. axiom foo

$]- (EX z) ((foobcad) = (list z) & z = (cons (cons a b) (cons ¢ d)))}

7. Structural induction rule is not included.

Structural induction rule SIR of Hayashi[3] is not included. Practically,
SIR will be substituted by its weak form SIR, of Hayashi [3]. Furthermore,
SIR, will be substituted by the induction principle associated to CIG. So we
will not make use of SIR in construction of actual proofs of specifications. But -
the system with SIR or full inductive generation (IG) is proof theoretically
slronger than PX. So these might be included optionally in the future version
of PX.
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Appendix 1.

- The following are examples of CIG.

1.% cat test ; the conlents of the file " lest'.
(setq tree

"(deCIG f{a : (Tree A)}
((atom a) fa : Af)
(t

$(car a) : (Tree A)} {(cdr a) : (Tree A)})))

(setq even-odd
'"(deCIG (§{x : Even{ (in N)
((equal x 0) {TRUEY{) (t {(subl x) : Odd}))
($x : Odd} (in N)
((equal x 1) {TRUE}) (t {(subl x) : Even}))))

0

2.sload test | loading the test file.

lree

even-odd

nil

3. (eval tree) ; Tree is defined

(Tree A)

4.axiom Tree ; the azxtom of Tree

{]- (atom a) : T & a: A + (atom a) = nil & (car a) : (Tree A)
& (cdr a) : (Tree A) <-> a: (Tree A)}

5.(eval even-odd) ; Even and Odd are defined simultaneously.
(Even Odd)

6.axiom Even ; the axtom of Even

$1- x : N & ((equal x 0) : T + (equal x 0) = nil & (subl x) : Odd)

- x
<-> x : BEven{

1



Appendix 2.
The following is an example of the induction principle associated to CIG
declaralion of List.

l.axiom List ihe axiom of List
§]- (dlpr x) : T & (car x) : A & (cdr x) : (List A) +
(dipr x) = nil & x = nil.<-> x : (List A){
2.% cal cilg.test ; the conlents of the file " cig. test’

(selg

mj (assume '$a : (List X)})

lemmal (so '§{x : Dp} (assume "{(dtpr x) : T$))

lemmaZ2 (assume '${x = nil})

lemma3 (disjl "{x = nil{ lemmal)

lemma4 (disjl lemmaZ? '{x : Dp})

th (cigIND 'x mj lemma3 lemma4)) ;the mduction associated to List
(Ip inj lemmal lemma?2 lemma3 lemma4 th) lsting proved theorems.
G
3.load cig.test ; loading cig. test
[load /usr/usrl/a6647/px/cig.test]
mj.

$a - (Lisl X))}

from

[1] $a : (List X)}

Clemmal.
§x © Dpf
from
[1] §(dtpr x) - 1§

lemmaZz.
$x = nil}
[rom
[1] $x = nil}

lemma3.
§x = nil + x : Dp}
from
[1] $(dipr x) : 1%

lemimead.
§x = nil + x: Dp}

from
[1] §x — nil}
Lh.
fa == nil + a: Dp}
from

[1] fa : (List X)}
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Appendix 3.

The following displays a proof of the Euclidian division theorem., which is
based on mathematical induction derived from the following definition of N.

(deCIG §x : N} (in Atm) ((zerop x) {TRUE{) (t {(subl x) : N}))

. type declarations

(setq TYa (assume '{a : N})
TYb (assume '§b : N})
TYql (assume "§ql : N{)
TYrl (assume '{rl1 : N§))

- abbrevialions
(setq

b*ql +rl

"(plus (times b q1) r1)

hypt

“$(subl a) = ,b*ql+rl & (lessprl b) = t}
IIYP! (assume hypl)

cascl

$(lessp (add1rl) b) = t§
cased

$(lessp (add1 r1) b) = nil)

(defun division (a) “§$(EX qr: N) (,a = (plus (times b gq) r) & (lesspr b) = t)})

c lemmala

(selq
LIEMMA'L . ..]- ta = (plus (times b q1) (add1 r1))}
(eval
‘[egchain
a = (addl (subl a)) (assume "§{(subl a) : N})
= (addl ,b*ql +r11) (conjE HYP1 1)
= (plus {limes b q1) (addlrl)) )
T'™MP

(so "§(addl r1) = b}
(so "§(lessp b (addl r1)) = nil} (conjE HYP1 2)) (assume case2))

TMP1
(so '§(limes b (add1 q1)) : N} TYb (so '§(addl q1) : N} TYql))

LEMMAZ D ]- $a = (plus (times b (add1 q1)) 0)}
[egchain
a = (plus (times b ql1) (add1 r1)) LEMMAI1
= {(plus (times b q1) b) TMP

.8_



= (plus b (times b q1))
= (times b (add1 g1))
= (plus (times b (addl q1)) 0) TMP1 ])

(setq :
BASIS ; the case {(zerop a): T} (T is the class of non-nil objects)
(exI (division ’a)

{conjl
(trns
(so ‘fa = 0} (assume '{(zerop a) : T}))
(Equal "$0 = (plus (times b 0) 0)}
(so '$0 = (plus 0 0)%) (so '{0 = (times b 0)} TYDb)))
(assume "§(lessp 0 b) = t}))))
(setq
CASE!1

(exI (division 'a) (conjl LEMMA1 (assume casel)) TYql TYrl)
‘CASEZ ,
(exI (division 'a) (conjl LEMMAZ (assume '{(lessp 0 b) = t})) TYql))

(setq
IND-STEP ; the case §{(zerop a) = nil}
(exE ‘
(assume
H(EX gl r1 : N) ((subl a) = (plus (times b q1) r1) & (lessprl b) = t)})
(disjE (so ‘}_casel + _case?
(so '§(add1rl) : N} TYr1) TYb)
CASE!L
CASER)))

(setq DIVISION (cigIND 'fa : N{ BASIS IND-STEP))
The conclusion and assumptions of DIVISION is as follows:
$(EX qr: N) (a = (plus (times b q) r) & (lessprb) = t)}
from
[1] $a : N}
[2] {b - N3
[3] §(lessp 0 b) = t}
The following are the extracted realizers of the above proof. (<rec0> a
b) realizes DIVISION, and <rec0>-aux is an auxiliary function for <recO>
with a global variable <sv>00186. If <recO0> is defined by a recursion
directly, 6 is pushed on a stack at each call of <recO0>. But it is not necessary
and wasles spaces and times.
(def <recO>
(lambda (a b)
(let ({(<sv>001861b)) (<recO>-aux a))))



(def <recO>-aux
(lambda (a)
(conzi ({(zerop a) (list 0 0))
t
(let (((@1:1 @1:2) (<recO>-aux (subl a))))
(cond ((lessp (addl @ 1:2) <sv>00186)

(list @ 1:1 (add1 @1:2)))
(t (list (add1 @1:1) 0))))))))
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