goooboooogoo
0 5160 1984 0 12-21

Consliructive mathematics and program synthesis

Susumu HAYASHI

The Metropolitan College of Technology
Asahigaoka 6-6, Hino, Tokyo

PR 3
£l

Avin

Connection between constructive mathematics and "computing” has been
recognized by some logicians Scotlt, Martin-Lof etc. and by some computer
scientists Constable, Goto, Takasu, Sato etc.. Some leading logicians, e.g. Scott
and Martin-Lof, seem to believe that constructive logic is "a logic of comput-
ing". Martin-Lof [5] showed that his theory of types can be regarded as a pro-
gramming language with verification. (Indeed, an interpreter of Martin-Lof’s
theory of type has been implemented on computer by Nordstrom [4].) On the
other hand, Dana Scott suggested to try to see the possibility of using realizabil-
ity for interpreting a "logic of computability” in his lecture in Logic Colloquium
'83. .
In Hayashi [3], the author introduced a formal theory LM, which is a
Feferman type formal theory of class and algorithm (cf. Feferman [1]). In LM,
algorithms are described by (pure) LISP programs, and the author showed how
to extract LISP programs from proofs of LM by using realizability based on
LISP. A system based on LM had been implemented, but the author recog-
nized some defects of LM through using it. One of them is the lack of induc-
tive definition as its fundamental facility. Inductive definitions make possible to
define some kinds of data types such as lists and trees in a natural way. A new
system PX (Program eXtractor) remedies this defect by introducing a sort of
determunastic inductive definition CIG. In the following, we will sketch PX, and
show some examples in PX.

PX has been implemented by the author on VAX/UNIX at Computer
Center of University of Tokyo. The author would like to express his hearty
thanks to Prof. Masahiko Sato for discussions on the subjects.

PX as a package of Franz Lisp ‘

PX can be thought as a package or an extension of Franz Lisp. PX
exlracts and verifies (pure) Franz Lisp functions. Its PX top-level is a
modification of CMULIisp top-level (cf. Foderaro & Sklower[2]). It has a his-
lory mechanism, where users can edit events by ex, vi or the Lisp Editor.

Syntax of PX
constant ::= individual constant ' class constant
variable (vér’) ;= individual variable (ab)

| class variéble (X,Y,..)

| term variable (?1,22,..)
term (tm) ::= variable }‘constant (function term ... term)
function ::= system function

i user-defined function

| (lambda (var ... var)) tm)

formula :: = implicative | implicative < -> implicative
implicative ::= disjunctive ‘ disjunctive -> implicative
disjunctive = cénjunctive | conjunctive + disjunctive
conjunclive 1= monadic) monadic & conjunctive
monadic :: = atomic ~ parenthetic l quontative ' - monadic
parenthetic :: = (formula)

quonlative ::= (UN cvl) pq-formula| (EX cvl) pq~formul%1
pg-formula :: = parenthetic | quontalive
alomic := tm = tm|tm : tm
|CLtm|E tm
lgp (tm ... tm) | dp (tm ... tm)
| TRUE | FALSE
gp - = generic predicate (predicate free variable)
dp ::= defined predicate (Users can abbreviate formulae by dp.)

¢vl ;= var ... var : tm | var ... var

Examples of formulae.
(UNab:N){(EXqr: N)
(-b = 0->a = (add (product b q) r) & (lessprb) = t)

(UN a : (List X)) (a = nil + (cara): X & (cdr a) : (List X))

Logic of PX (logic of parlial terms)
lm : C P(?1) [?1:c] P(?1) [ASP(?1)] P(x) Etm [ASP(x)].

P(tm)

(EX z:C)P(X) (UN z:C)P(x) P(tm) [ASP(tm)]’ P(tm) [ASP(tm)]

Axioms of PX

. axioms on primitives.
21 . Dp-> E (car ?1), B (addl ?1) <-> 2?1 : N, E (car ?1) -> ?1: Dp,

21 Alm <-> (alom ?1) = t, ?1: Dp <-> (dtpr ?1) = t,
(list 21 ?2)= (cons ?1 (list ?2 ..)),

21T -> (cond (?1 ?22) (?3°?24) .)= 2?2, x: T <-> -x = nil,
t ((lambda (x y ..} ?1) 22 ?3 ..) -> E ?2 E ?3

cle...

I'hese axioms are available through a funclion "so" as follows:
1 (assume '§?1 : Dp{) ; A formula must be enclosed by braces.
$.]- 21 Dpt

(so "§I (car ?21)%it)

J- & (car ?1)}

(asp it)

§21 : Dp})

<.
{
3.
(
2. CIG (conditional inductive generalion).

This is a special case of Feferman’s inductive generation, but much more
practical than lhe general one. E.g., the class of lists of elements of a class A is
declared as follows:

1.(deCIG §x : (List A)}
((dtpr x) §(car x) : A} §{cdr x) : (List A){)
(Lix = nilf))
List
CiG can be used to define classes simultaneously. See Appendix 1 for an

cxample. ['or each CIG-declaration, an induction principle is associated. See
Appendix 2 for an example of such an induction.

(R
£

-

3. ECAU)
Negative elementary comprehension axiom ECA() (cf.[1],[3]) is avail-
able as a class declaration as follows:

1.(deECA {x : (Cartesian X Y)${ §(car x) : X & (edr x) : Y})
Cartesian ; Cartesian s decalred.

2.so §CL (Cartesian Atm Dp){ ; Cartesian is class-valued.
§]- CL (Cartesian Atm Dp)i ‘
3.axiom Cartesian ; the axtom of Cartesian

§]- x : (Cartesian X Y) <-> (car x) : X & (edr x) : Y}

ECA() can be derived from CIG, so ECA(~) is defined as a macro in PX.

4. Join.

This is the same as Feferman [1]. This corresponds to coproduct. So it is
usclful to define a data type such as record of PASCAL. (See Martin-Lof [5].)

5. Induction for N and V.

N is the class of natural numbers and V is the domain of PX, i.e. the class
of S-expressions. See Hayashi [3] and Appendix 3 for such induction principles.

6. Using extracled functions.

Extracted functions can be named and used as follows:

1.(sctg tm "(cons (cons a b) (cons ¢ d)))

(cons (cons a b) (cons ¢ d))

2.(exl $(EX z) (z = tm)} (so ‘{,tm = ,tmi]

§]- (EX z) (z = (cons (cons a b) (cons ¢ d)))}

3.(deEXTFUN foo (b cad) it)

foo

4. axiom foo

$]- (EX z) ((foobcad) = (list z) & z = (cons (cons a b) (cons ¢ d)))}

7. Structural induction rule is not included.

Structural induction rule SIR of Hayashi[3] is not included. Practically,
SIR will be substituted by its weak form SIR, of Hayashi [3]. Furthermore,
SIR, will be substituted by the induction principle associated to CIG. So we
will not make use of SIR in construction of actual proofs of specifications. But -
the system with SIR or full inductive generation (IG) is proof theoretically
slronger than PX. So these might be included optionally in the future version
of PX.

References

I'eferman, S., Conslructive theories of functions and classes, Logic Collog. 78,
D. van Dalen et al. eds., 1978

Foderaro, J. K. & Sklower K. L., The FRANZ LISP Manual, ,Unwersity of
Cabiformia, Berkeley, 1982

Hayashi, S., Extracting Lisp Programs from Constructive Proofs: A Formal
Theory of Constructive Mathematics Based on Lisp, Publications of RIMS,
Vol. 19, No. 1, 1983

Nordstrom, B., Programming in Constructive Set Theory: Some Ezxamples,
Proceedings of 1981 Conference on Functional Programming Languages
and Computer Architecture, 1981

Martin-Lof, P., Constructive Mathematics and Computer Programming, Logic,
Methodology and Philosophy of Science VI, Studies and the Foundations
of Mathematics 104, North-Holland, 1982

Appendix 1.

- The following are examples of CIG.

1.% cat test ; the conlents of the file " lest'.
(setq tree

"(deCIG f{a : (Tree A)}
((atom a) fa : Af)
(t

$(car a) : (Tree A)} {(cdr a) : (Tree A)})))

(setq even-odd
'"(deCIG (§{x : Even{ (in N)
((equal x 0) {TRUEY{) (t {(subl x) : Odd}))
($x : Odd} (in N)
((equal x 1) {TRUE}) (t {(subl x) : Even}))))

0

2.sload test | loading the test file.

lree

even-odd

nil

3. (eval tree) ; Tree is defined

(Tree A)

4.axiom Tree ; the azxtom of Tree

{]- (atom a) : T & a: A + (atom a) = nil & (car a) : (Tree A)
& (cdr a) : (Tree A) <-> a: (Tree A)}

5.(eval even-odd) ; Even and Odd are defined simultaneously.
(Even Odd)

6.axiom Even ; the axtom of Even

$1- x : N & ((equal x 0) : T + (equal x 0) = nil & (subl x) : Odd)

- x
<-> x : BEven{

1

Appendix 2.
The following is an example of the induction principle associated to CIG
declaralion of List.

l.axiom List ihe axiom of List
§]- (dlpr x) : T & (car x) : A & (cdr x) : (List A) +
(dipr x) = nil & x = nil.<-> x : (List A){
2.% cal cilg.test ; the conlents of the file " cig. test’

(selg

mj (assume '$a : (List X)})

lemmal (so '§{x : Dp} (assume "{(dtpr x) : T$))

lemmaZ2 (assume '${x = nil})

lemma3 (disjl "{x = nil{ lemmal)

lemma4 (disjl lemmaZ? '{x : Dp})

th (cigIND 'x mj lemma3 lemma4)) ;the mduction associated to List
(Ip inj lemmal lemma?2 lemma3 lemma4 th) lsting proved theorems.
G
3.load cig.test ; loading cig. test
[load /usr/usrl/a6647/px/cig.test]
mj.

$a - (Lisl X))}

from

[1] $a : (List X)}

Clemmal.
§x © Dpf
from
[1] §(dtpr x) - 1§

lemmaZz.
$x = nil}
[rom
[1] $x = nil}

lemma3.
§x = nil + x : Dp}
from
[1] $(dipr x) : 1%

lemimead.
§x = nil + x: Dp}

from
[1] §x — nil}
Lh.
fa == nil + a: Dp}
from

[1] fa : (List X)}

1)

Appendix 3.

The following displays a proof of the Euclidian division theorem., which is
based on mathematical induction derived from the following definition of N.

(deCIG §x : N} (in Atm) ((zerop x) {TRUE{) (t {(subl x) : N}))

. type declarations

(setq TYa (assume '{a : N})
TYb (assume '§b : N})
TYql (assume "§ql : N{)
TYrl (assume '{rl1 : N§))

- abbrevialions
(setq

b*ql +rl

"(plus (times b q1) r1)

hypt

“$(subl a) = ,b*ql+rl & (lessprl b) = t}
IIYP! (assume hypl)

cascl

$(lessp (add1rl) b) = t§
cased

$(lessp (add1 r1) b) = nil)

(defun division (a) “§$(EX qr: N) (,a = (plus (times b gq) r) & (lesspr b) = t)})

c lemmala

(selq
LIEMMA'L . ..]- ta = (plus (times b q1) (add1 r1))}
(eval
‘[egchain
a = (addl (subl a)) (assume "§{(subl a) : N})
= (addl ,b*ql +r11) (conjE HYP1 1)
= (plus {limes b q1) (addlrl)))
T'™MP

(so "§(addl r1) = b}
(so "§(lessp b (addl r1)) = nil} (conjE HYP1 2)) (assume case2))

TMP1
(so '§(limes b (add1 q1)) : N} TYb (so '§(addl q1) : N} TYql))

LEMMAZ D]- $a = (plus (times b (add1 q1)) 0)}
[egchain
a = (plus (times b ql1) (add1 r1)) LEMMAI1
= {(plus (times b q1) b) TMP

.8_

= (plus b (times b q1))
= (times b (add1 g1))
= (plus (times b (addl q1)) 0) TMP1])

(setq :
BASIS ; the case {(zerop a): T} (T is the class of non-nil objects)
(exI (division ’a)

{conjl
(trns
(so ‘fa = 0} (assume '{(zerop a) : T}))
(Equal "$0 = (plus (times b 0) 0)}
(so '$0 = (plus 0 0)%) (so '{0 = (times b 0)} TYDb)))
(assume "§(lessp 0 b) = t}))))
(setq
CASE!1

(exI (division 'a) (conjl LEMMA1 (assume casel)) TYql TYrl)
‘CASEZ ,
(exI (division 'a) (conjl LEMMAZ (assume '{(lessp 0 b) = t})) TYql))

(setq
IND-STEP ; the case §{(zerop a) = nil}
(exE ‘
(assume
H(EX gl r1 : N) ((subl a) = (plus (times b q1) r1) & (lessprl b) = t)})
(disjE (so ‘}_casel + _case?
(so '§(add1rl) : N} TYr1) TYb)
CASE!L
CASER)))

(setq DIVISION (cigIND 'fa : N{ BASIS IND-STEP))
The conclusion and assumptions of DIVISION is as follows:
$(EX qr: N) (a = (plus (times b q) r) & (lessprb) = t)}
from
[1] $a : N}
[2] {b - N3
[3] §(lessp 0 b) = t}
The following are the extracted realizers of the above proof. (<rec0> a
b) realizes DIVISION, and <rec0>-aux is an auxiliary function for <recO>
with a global variable <sv>00186. If <recO0> is defined by a recursion
directly, 6 is pushed on a stack at each call of <recO0>. But it is not necessary
and wasles spaces and times.
(def <recO>
(lambda (a b)
(let ({(<sv>001861b)) (<recO>-aux a))))

(def <recO>-aux
(lambda (a)
(conzi ({(zerop a) (list 0 0))
t
(let (((@1:1 @1:2) (<recO>-aux (subl a))))
(cond ((lessp (addl @ 1:2) <sv>00186)

(list @ 1:1 (add1 @1:2)))
(t (list (add1 @1:1) 0))))))))

- 10 -

