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§0. Introduction.

In [3], Platek constructs a hierarchy of jumps \Ji indexed by
elements a of a set 0° of ordinal notations. He asserts that a real
X € w 1is recursive in the superjump S if and only if it is recursive
in some Ji . Unfortunately, his assertion is not correct as is shown
in [1]. In [1], it also has been shown that an ordinal >w is Ji—
admissible if it is la[s—recursively inaccessible, where |a|s is the
ordinal denotéed by a.

Let A be an arbitrary set. We say that an ordinal a is
A-admissible if the structure <iLa[A], €, Af\Ld{AJ >, which we will
denote by La{A] for simplicity, is admissible, a model of the Kripke-
Platek set theory KP, where La[A] is the sets constructible relative
to A in fewer than o steps. We use mA or wl(A) to denote

1

the first A-admissible ordinal >w, and use wl(A ,--~,An) for

w (<A, A >).

l’

The purpose of this paper is to prove the following theorem.

Theorem 1. Suppose aGEOS and o >w 1is a countable ]aIS—recursively

inaccessible ordinal. Then, there exists a real XSw such that (x=w1(JS X).

a:?
s _ 2 .
In the case IaI = 0, Ja = "E, the Kleene object of type 2, and

X
1

S

wl(zE, ) =w for all reals X C w. o is an admissible ordinal if
and only if it is O-recursively inaccessible. Therefore, Theorem 1 is

an extension of the following theorem of Sacks.



Theorem 2. (Sacks [4]). If o>w 1is a countable admissible ordinal,

. X
then there exists a real X such that o = wl .

Sacks also showed that the real X mentioned in Theorem 2 can be

taken to have the minimality property:

wi < o for every Y of lower hyperdegree than X.

Likewise, we can show that for every countable ]als—recursively inaccessible

ordinal a>w there is a real X ’'such that:

— S -
a = wl(Ja , X)
and
1)

ml(Ji ,Y) <o for every Y ‘of lower Jz;degree than X.

Theorem 1 will be proved by the forcing with Ji—pointed perfect .
trees. Let 0o >w be a countable Ia}s4recursively inaccessible ordinal
and X be a generic real with respect to this forcing relation. Then
LOL[X] is admissible and diml(‘ji , X). To see (Jol(Jj1 , X) <o, we must
show that X preserves sufficiently many admissible ordinals belpw (x>to

make o to . be <J2 , X>-admissible.

§1. |a|s—recursively inaccessible ordinals.

A normal type 2 object is a total function F from w to w

such that the Kleene object 2E of type 2:

5 {o if (am)f(a) = 0,
E(f) = ’
1 otherwise,

is recursive in F. The superjump S(F) of F 1is a type 2 object B

1) For Ji—degrees, the reader may refer to [5].
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defined by:

« 0  if {n}'(f) is defined,
S(F)(<n, £>) =
1 otherwise.

Platek [3] Vdefim.as a hierarchy Ji of type 2 objects along with
a set OS of ordinal notations, starting from 2E and iterating’ the
super jump opération traﬁsfinitely.

An ordinal o is O-recursively inaccessible if it is admissible.
o is (0 +1l)-recursively inaccessible if it is o-recursively inaccessible
and a limit of O—reéursively inaccessible ordinals. For limit A, o
is said to be A-recursively inaccessible if it is G-recufsively in-
accessible for allilc‘ <A. Let X be an arbitrary set. o-recursively-
in-X inaccessible -ordinals are defined in the same way starting from
X-admissible ordinals. By RVI(G,’X), Qe denote Fhe class of all o-
recursively-in-X inaccessible ordinals. In the case X =¢, RI(0, ¢) is

the class of all o-recursively inaccessible ordinals.

The following lemma, due to Aczel and Hinman, gives a characterization

S
of wl(.]a , X) for | X < w.

Lemma 3. (Aczel and Hinman [1]). Suppose anS and ¢ = Ials,
the ordinal denoted by a. Then o <wl(Ji), and for any ordinal a>w

and X S w:

a € RI(o, X) —> o is <Ji , X>-admissible. -

wl(Ji , X) dis the least ordinal in RI(0, X).

Let >\0 be the least ordinal A such that X is A-recursively
inaccessible. Lemma 3 shows that |OS| = sup{la‘s HERS 05} < Xpe In (11,
it has sho§m that IOSI = A

0

Let a>w be a countable admissible ordinal. Using the unbounded



Levy forcing over Lon’ we can add to Loc a generic function K: (a-w) X w
—> o such that if w<B<a then the function AnK(B, n) 1is a bijection
from w onto B. Therefore, in La[K] all sets are countable. It has
been shown in [4] that <La[K], €, K> is an admissible structure in which
Zl-DC (Zl—Dependent Choice) holds.

Suppose anS. For any X,YS w, X< g¥Y means X 1is recursive
Ja

in <Ji , Y>, which is equivalent to that XeLp[Y], where p = ml(Jjl , Y).

X and Y have the same Ji—degree, X= gY, if X< SY and Y <X SX.
Ja Ja I

X<gY if X< Y but X# (V.

S
Ja Ja Ja

Lemma 4. Suppose 0 >w 1is a countable lal -recursively inaccessible

S
ordinal and K 1is a generic function with respect to the unbounded Levy

forcing over LOL. Then for any X, Y < w:

< <Y & Yel [K] — .
X< g ea[] XeLOL[K]

Proof. The unbounded Levy forcing preserv‘es admissible ordinals.
That is, if B<a 1is an admissible ordinal then R is K-admissible.
This is because for admissible B, KT (B-w) Xw is generic with respect
to the unbounded Levy forcing over LB. Therefore, if YeLa[K] then

o is [ais—recursively—in—Y inaccessible, so Lp[Y] ELOL[K], where

- S
o = o\)l(Ja ,Y). Thus we have the lemma. O

§2. JESI -pointed perfect trees.

Let a be an element of 0° such that ]a|s >0. We put J = Ji

for simplicity .
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A perfect tree is a set P of finite sequences of 0's and 1l's
such that:
(1) peP & q<Sp—>qeP;
and
(2) (ypeP)(gq, reP) (q and r are incompatible extensions of p),
where q < p denotes that p 1is an extension of q. For a perfect

tree P, [P] denotes the set of all infinite paths through P:
[P] = {fe2”: (yn)E(n) e P}.

We say that P 1is J-pointed if:

(3) (fe PDW I, P) <w,(, £) & Pel [£]) -

Note that if P is J-pointed then it is iJ - pointed in the sense of

Sacks [4:2.1], but not vice versa.

Lemma 5. Suppose P is J-pointed. If X cw and P< _X, then

J

there exists a J-pointed Q £ P such that QEJX.

Proof. 1In [4: 2.3], Sacks constructed a perfect subtree Q of
P . such that:
(4) Q 1is recursive in P and f for every fe [Q];

and

To see Q is J-pointed in our sense, fix fe [Q]. Since P. is J-

pointed and f e [P], by (3), we have:

(6) P e Lwl(J,P)[fL
Clearly:
(7y f e Lwl(J,P)[f]'



From (4) (6) and (7), we obtain:

(8 Q€L )[f].

wl(J,P

From (5) and the assumption Pij X, we see:

(9 w3, P) Luw(, Q.

From (8) and (9), we obtain QeLwl(J,Q)[f]" | O

For any ordinal &, {S}f denotes the &-th element of L[f] in
the canonical wellordering on L[f]. A perfect tree P 1is said to be

uniformly J-pointed if there exists an ordinal § such that:

(10) Wfe[PD(P= {é;}f & 8<w1(J, £)).

Obviously, uniformly J-pointed perfect trees are J-pointed. Let: a>w
be a countable Ia]s—recursively inaccessible ordinal and K a generie
function over Loc in the sense of the unbounded Levy forcing. Observe
that if P is uniformly J-pointed and PELO{,[K] then there exists a
§ <a which satisfies (10) since thé leftmost path fP through P is
recursive in P  and so wl(J, fP) iwl(J, P) < a.

Let M be a countable admissible set and P be a perfect tree in
M. Then P becomes a partially ordered set as usual. The forcing with
P as the set of conditions is called the local Cohen forcing over M
and denoted by ]]% . or simply by ”2 If fe[P] is generic with
respect to “-B, then M[f] is an admissible set, and so is Lu[f],

where u = M N On.

Lemma 6. For any & <o and any J-pointed perfect tree P in
La[K], there exists a uniformly -J-pointed perfect tree Q c P such that

E<wl(J, Q) and QeLa[K].



Proof. Since & 1is countable in LOL[K], there is a real Xe€ La[K]
such that & 1is recursive in X. By Lemma 5, there is a J-pointed

perfect subtree P, of P such that X.  Then we see £<wl(J, Pl),

1 F1Ts % |
and Pl GLOL[K] by Lemmd 4. Thus, we may assume £<wl(J, P) from the

pbeginning. Put M =L [P]. Consider the local Cohen forcing relation

wl(J,P)
H—b% over M. Since P 1is J—pointed, we have:

(1) Ee[PhoW, Y Lw (, )5
and

(12) (V£ e [P]) @y <u; (3, ) (y}F = .
By (12), there exists a poeP 'a’ﬁd y<u)1(J, P) such that:
: . P,. e
(13)  p, H—ﬁ{_y} = P,

where  1is the canonical name which denotes the generic reals. As in

[4: 2.10], we can construct a perfect tree Q £ P such that:

(14) Qe Lwl(J,P) [P];s
and

(15) (Vfe [QD) {Y}f = P.

From (14), we can find a 6<Lul(J, P) such that {S}P = Q. So, by (15),

there is an €<wl(J, P) such that:
- f
(16) (Vfe [qQ]) {el” = Q.

Lec £, be the leftmost branch of Q. Then, by (11):

an oG P w0, £) L0, (3, .

Q

Hence, from (16), we see that Q is uniformly J-pointed. By (17),
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we also see £<wl(J, Q). Since PELG[K]’ we have wl(J, P) < o, and

[P] < 1 [K]. 0

so QelL
ml(J,P)
Let L be a first-order language. A Hi‘ formula in £ ‘is a

second-order formula of the form: ‘-

(vsl) (Vsm) P,

where S --,Sm are predicate variables and Y is first-order formula

1’
in the expanded language &L U {Sl, <. ,Sm} .

Lemma 7. Suppose A 1is a countable admissible set such that weA
and £ €A is a first-order language. Let 9(xl,---,xn) be a Hi
formula in &£ . Then there exists a Zl formula Cb(xl,-“,xn, y) such

that for any structure ML = <M, --->¢cA for £ and any a "',aneM:

l)

A E @(al’...,an,vn) <« Mk e(al,...,an).

Proof. This is well-known. See, e.g;, Barwise [2: IV. 3.1]. O

Using this lemma, we obtain the following lemma.

Lemma 8. The set of all uniformly J-pointed perfect trees in

LOL[K] is Zl over La{K].

Proof. Put O = ]als , (recall that J=J§). Let P be a perfect‘
tree in La[K] and &§<a. Let B (P, 6, 0) denote the least admissible
ordinal B <o such that max(§, g, w) <B ‘and Pe LB[K] . The function
B is Zl over La[K]. We can easily find a Hi formula © in the
language of set theory such that for any perfect tree PELOL[K]:

P is uniformly J-pointed <—> (36 <a)LB(P,6,0) (K] E 2, &, 0).

Thus the lemma follows from Lemma 7. - C
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§3. Forcing with uniform Jz—pointed perfect trees.

Suppose la‘s >0 and put J=J:1 . Let ’OL>U) be a }countable
|a|S—recursively inaccessible ordinal and K a generic function with
respect to the unbounded Levy forcing over Loc’ which we fix throughout
this section.

Let f(a, 7) be a ramified language ;:onta;ining names for all
members of La[f]. i(a, T) ipcludes: a numeral n for each vneu),
unranked variables RID SR IR Fanked variables kB, yB‘, zB,
for each B <a; and abstractiqn operator "~ . It is intended that J

denotes {new: f(n) =1}, that x ranges over La[f]’ that xB ranges

over LB[f], and thatk §Bcb(x8) denotes the set:
{xesLB[f] P LalE] Eox)}.

C(B) is the set of natpes for elementé of LB[f] and ‘C = BL(JOLC(AB).‘

Let ?}Q denote the set of all uniformly J-pointed perfect trees
in LOL{K] . P,Q,R, -+ denote the members of %3 For a ranked sentence
¢ of L, J) and Pe SJ, let p(P, ¢)  be the least admissible
ordinal p<q such that Pe LO[K] énd rank(9) < p. The function p is

1
of L (a, ¥), is defined inductively:

z over LCL[K]. The forcing relation P H— ¢, where ¢ 1is a sentence

(1) ¢ is ranked. P |~¢ iff (Vfe [P])L (£] E ¢;

o(2,8)
(2) ¢ vy is not ranked. Pl ¢ vu iff Pl-¢ or Plu;

(3) (HXB)cb(xB) is not ranked. P ”-— (gxg)qb(xe) if PlFé¢(c) for

some ce C(B);
(4) Pl (@x)o(x) iff P I ¢(c) for some ceC;

(5) ¢ 1is not ranked. P |74 iff (vQ S P)1(Q |F9).



Using Lemma 7 and 8, it is easy to see that the forcing relation

g

[ ¢, restricted I, sentences ¢, is T

1 over La[K] .

Lemma 9. For each P and ¢, there exists a Q S P such that

Q¢ or Q- T79¢.

Proof. In view of (5), we may ‘assume that ¢ is ranked. By Lemma 6,
we may also assume that d)ee LG[P] for some P-admissible ¢ such that
6<u)l(J, P). Then, in 'LS[P], vall seﬁs are countable. Thus, in L6[P],

we can enumerate all ranked sentences of rank_f__rank((i)) :

q): ¢0’ d)l’...)q)

L (new).
e (mew).

Let H—E be the local Cohen forcing relation over Lg[P]. Imn Lg[P],

we can construct a family <q :ise Seq(2) > of elements of P such that:

(6) ﬁs' H“li ¢ or qs_.”_P_l ¢ » where n = Ih(s);
and

(7)Y ¢ nd q.-

—_ a are incompatible extensions of
s<0> ' §<1> P g »

where Seq(2) is the set of all fini‘te sequences of O0's and 1's.
Let Q = {qeP: (@s) ngs}. - Then by (7) Q is a perfect subtree of P.
By (6), it is easy to see that Q H—d) or Q |F71 ¢. Since QELS[P],

Q = {Y}P for some +vy<§. Therefore Q 1is uniformly J-pointed because

P is. 0

w
A real f e 2 is said to be generic if for every dense subset

,@ of ? which is definable over LOL[K] there is a P ¢ & such that
f € [P]. For every PEe€ {P, there is a generic f such that £ € [P].

From Lemma 9, it follows that for every generic f and sentence ©¢:

L [£] ko iff @) (felP] & P |- ¢).
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Lemma 10. If f 1is generic, then La[f] is admissible.

Proof. We need to show that La[f] satisfies the AO Collection.
Let ¢(x, y) be a formula of ot(u, 7)) with no unranked quantifiers.
We claim that if P H—-— (yn) (Ay) ¢ (n, y) then there exists a Q € P and
a B<a such that Q H-(Vn) (Hys)q;(n, y’e). The proof of this claim is
almogt the same as that of [4: 3.12] with some notational changes.
S0, we omit the proof here. AFrom the claim, it follows that La[f]
satisfies the A Collection. ’ O

0

Proof of Theorem 1. Let o >w be a countable |a|s—recursive1y

and J=JS .
a

inaccessible ordinal and K be as before. Put 0 = la[s
In the case 0=0, Theorem‘l is exactly Theorem 2, which has already
been established by Sacks [4]. So we may assumeA g>0. Let foe 2% be
a generic real over LOL[K] with respect to the forcing with uniform
J-pointed perfect trees. By Lemma 6, for each £ <o, the set

{pe P: £<wl(J, P)} is denée in . It is obviously definable over
Loc[K]' Therefore there is a Pe€ § such that foe [P] and E%wl(J, P).

Since P is J-pointed, we have:
g w I P < W, (J .
< ] ( bl ) —_ ] ( bl fo)

Thus, we have Ot_i_(ul(J, fo). To see a = Lul(J, fo), ’we must show that
aeRI(o, fo). At first we consider the case wheré 0 =71+1 for some T.
It is sufficient to prove that o 1is a limit of ordinals in RI(T, fo),
since then by induction on T we can show that o€ RI(T, fo), (ﬁote that
ae€RI(O, fo) by Lemma 10). Sl{ppose £ <a. We shall show that the following

set &, is dense in % -
S

£g= {(Pe P :(@S<a)(E<S & (VEe [P])SeRI(T, £))}.

- 11 -
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Assume this can be dome. Using Lemma 7, it is easy to see that L

g

is ,Zl over Lu[K]' Therefore, for every & <o, there exists a {§<q
such that &<§ and & e RI(T, fO).

To show that éDg is dense in &3, take an arbitra§y Pe 63.
By Lemma 6, we may assume E‘<w1(J, P). Take a JdeRI(t, P) .so that
£<é <wltJ, P). Such a .§ exists because wl(J, P) 1is a limit of
ordinals in RI(T, P). Consider the local Cohen forcing relation [Fg
over LG[P]’ Let st be the next P-admissible ordimal of ¢. Then,

L6[P] is countable }n L5+[P]. So we can enumerate inside L6+[P]

all sentences of the appropriate forcing language:

¢0s (bl:"', ¢ 5 - (new).

n

As in the proof of Lemma 9, we can construct a perfect subtree Q65L6+LP]

of P such that:
(vfe [Q]) f is generic with respect to EFB.

Q is uniformly J-pointed since Q<5L6+[P], 6+<<m1(J, P) and P is
uniformly J-pointed. To show that & eRI(T, f) for all f£fe< [Q], take
fe[Q]. 'Let B:ié be an arbitrary Pfadmissible ordinal >w, and Ihg
be the local Cohen forcing relation over LB[P]. It is easy to see that
f 1is generic with respect to IF%-, and so £ is f-admissible.
From this, by induction on 1, we see that &€ RI(T, f).

Now we consider the case whre ¢ 1is a limit ordinal. The proof
is carried out in the same way. For any &<o and any T<0J, let ‘EDETk

be the set:
{Pe ®: (@8<a)(§<8 & (Vfe[P]) SeRI(T, f)}. ~

-

Then & - is dense in & and definable over Lu[K]' Therefore, we

have that a = wlfJ, fo) for any generic fo with respect to |}-. O
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