Countable J_a^S -admissible ordinals

Juichi SHINODA (篠田壽一)

Department of Mathematics College of General Education Nagoya University

§0. Introduction.

In [3], Platek constructs a hierarchy of jumps J_a^S indexed by elements a of a set 0^S of ordinal notations. He asserts that a real $X \subseteq \omega$ is recursive in the superjump S if and only if it is recursive in some J_a^S . Unfortunately, his assertion is not correct as is shown in [1]. In [1], it also has been shown that an ordinal $>\omega$ is J_a^S -admissible if it is $|a|_S$ -recursively inaccessible, where $|a|_S$ is the ordinal denoted by a.

Let A be an arbitrary set. We say that an ordinal α is A-admissible if the structure $< L_{\alpha}[A], \in$, $A \cap L_{\alpha}[A] >$, which we will denote by $L_{\alpha}[A]$ for simplicity, is admissible, a model of the Kripke-Platek set theory KP, where $L_{\alpha}[A]$ is the sets constructible relative to A in fewer than α steps. We use ω_1^A or $\omega_1(A)$ to denote the first A-admissible ordinal $>\omega$, and use $\omega_1(A_1,\cdots,A_n)$ for $\omega_1(< A_1,\cdots,A_n>)$.

The purpose of this paper is to prove the following theorem.

Theorem 1. Suppose $a \in 0^S$ and $\alpha > \omega$ is a countable $\left|a\right|_S$ -recursively inaccessible ordinal. Then, there exists a real $X \subseteq \omega$ such that $\alpha = \omega_1(J_a^S, X)$.

In the case $|a|_S = 0$, $J_a^S = {}^2E$, the Kleene object of type 2, and $\omega_1({}^2E$, $X) = \omega_1^X$ for all reals $X \subseteq \omega$. α is an admissible ordinal if and only if it is 0-recursively inaccessible. Therefore, Theorem 1 is an extension of the following theorem of Sacks.

Theorem 2. (Sacks [4]). If $\alpha > \omega$ is a countable admissible ordinal, then there exists a real X such that $\alpha = \omega_1^X$.

Sacks also showed that the real X mentioned in Theorem 2 can be taken to have the minimality property:

 $\omega_1^Y < \alpha$ for every Y of lower hyperdegree than X.

Likewise, we can show that for every countable $|a|_S$ -recursively inaccessible ordinal $\alpha > \omega$ there is a real X such that:

$$\alpha = \omega_1(J_a^S, X) ;$$

and

$$\omega_1(J_a^S, Y) < \alpha$$
 for every Y of lower J_a^S -degree than X.¹⁾

Theorem 1 will be proved by the forcing with J_a^S -pointed perfect trees. Let $\alpha > \omega$ be a countable $\left|a\right|_S$ -recursively inaccessible ordinal and X be a generic real with respect to this forcing relation. Then $L_{\alpha}[X]$ is admissible and $\alpha \leq \omega_1(J_a^S,X)$. To see $\omega_1(J_a^S,X) \leq \alpha$, we must show that X preserves sufficiently many admissible ordinals below α to make α to be $\langle J_a^S,X \rangle$ -admissible.

§1. $|a|_S$ -recursively inaccessible ordinals.

A normal type 2 object is a total function F from ω^{ω} to ω such that the Kleene object 2E of type 2:

$${}^{2}E(f) = \begin{cases} 0 & \text{if } (\exists n)f(n) = 0, \\ 1 & \text{otherwise,} \end{cases}$$

is recursive in F. The superjump S(F) of F is a type 2 object

¹⁾ For J_a^S -degrees, the reader may refer to [5].

defined by:

$$S(F)(\langle n, f \rangle) = \begin{cases} 0 & \text{if } \{n\}^{F}(f) \text{ is defined,} \\ 1 & \text{otherwise.} \end{cases}$$

Platek [3] defines a hierarchy J_a^S of type 2 objects along with a set 0^S of ordinal notations, starting from 2E and iterating the superjump operation transfinitely.

An ordinal α is 0-recursively inaccessible if it is admissible. α is $(\sigma+1)$ -recursively inaccessible if it is σ -recursively inaccessible and a limit of σ -recursively inaccessible ordinals. For limit λ , α is said to be λ -recursively inaccessible if it is σ -recursively inaccessible for all $\sigma < \lambda$. Let X be an arbitrary set. σ -recursively-in-X inaccessible ordinals are defined in the same way starting from X-admissible ordinals. By $RI(\sigma, X)$, we denote the class of all σ -recursively-in-X inaccessible ordinals. In the case $X = \phi$, $RI(\sigma, \phi)$ is the class of all σ -recursively inaccessible ordinals.

The following lemma, due to Aczel and Kinman, gives a characterization of $\omega_1(J_a^S,X)$ for $X\subseteq\omega$.

Lemma 3. (Aczel and Hinman [1]). Suppose $a \in 0^S$ and $\sigma = |a|_S$, the ordinal denoted by a. Then $\sigma < \omega_1(J_a^S)$, and for any ordinal $\alpha > \omega$ and $X \subseteq \omega$:

$$\alpha \in RI(\sigma, X) \longrightarrow \alpha$$
 is $\langle J_a^S, X \rangle$ -admissible.

 $\omega_1^{(J_a^S,X)}$ is the least ordinal in RI(σ , X).

Let λ_0 be the least ordinal λ such that λ is λ -recursively inaccessible. Lemma 3 shows that $\left|0^S\right|=\sup\{\left|a\right|_S:a\in 0^S\}\leq \lambda_0.$ In [1], it has shown that $\left|0^S\right|=\lambda_0.$

Let $\alpha > \omega$ be a countable admissible ordinal. Using the unbounded

Levy forcing over L_{α} , we can add to L_{α} a generic function $K:(\alpha-\omega)\times\omega$ $\to \alpha$ such that if $\omega \leq \beta < \alpha$ then the function $\lambda nK(\beta, n)$ is a bijection from ω onto β . Therefore, in $L_{\alpha}[K]$ all sets are countable. It has been shown in [4] that $< L_{\alpha}[K]$, \in , K > is an admissible structure in which Σ_1 -DC (Σ_1 -Dependent Choice) holds.

Suppose $a \in O^S$. For any $X, Y \subseteq \omega$, $X \leq_{J_a^S} Y$ means X is recursive in $\{J_a^S, Y\}$, which is equivalent to that $X \in L_{\rho}[Y]$, where $\rho = \omega_1(J_a^S, Y)$. X and Y have the same J_a^S -degree, $X \equiv_{J_a^S} Y$, if $X \leq_{J_a^S} Y$ and $Y \leq_{J_a^S} X$. $X <_{J_a^S} Y$ if $X \leq_{J_a^S} Y$ but $X \not\equiv_{J_a^S} Y$.

Lemma 4. Suppose $\alpha > \omega$ is a countable $|a|_S$ -recursively inaccessible ordinal and K is a generic function with respect to the unbounded Levy forcing over L_{α} . Then for any X, Y $\subseteq \omega$:

$$X \leq_{J_{\alpha}^{S}} Y$$
 & $Y \in L_{\alpha}[K] \longrightarrow X \in L_{\alpha}[K]$.

<u>Proof.</u> The unbounded Levy forcing preserves admissible ordinals. That is, if $\beta < \alpha$ is an admissible ordinal then β is K-admissible. This is because for admissible β , K $\Gamma(\beta-\omega)\times\omega$ is generic with respect to the unbounded Levy forcing over L_{β} . Therefore, if $Y\in L_{\alpha}[K]$ then α is $|a|_S$ -recursively-in-Y inaccessible, so $L_{\rho}[Y]\subseteq L_{\alpha}[K]$, where $\rho=\omega_1(J_a^S,Y)$. Thus we have the lemma.

§2. J_a^S -pointed perfect trees.

7 ~

Let a be an element of 0^S such that $\left|a\right|_S > 0$. We put $J = J_a^S$ for simplicity.

A perfect tree is a set P of finite sequences of 0's and 1's such that:

(1)
$$p \in P$$
 & $q \subseteq p \longrightarrow q \in P$;

and

(2) $(\forall p \in P)(\exists q, r \in P)$ (q and r are incompatible extensions of p), where $q \subseteq p$ denotes that p is an extension of q. For a perfect tree P, [P] denotes the set of all infinite paths through P:

$$[P] = \{f \in 2^{\omega} : (\forall n) \overline{f}(n) \in P\}.$$

We say that P is J-pointed if:

(3)
$$(\forall f \in [P])(\omega_1(J, P) \leq \omega_1(J, f) \& P \in L_{\omega_1(J, P)}[f]).$$

Note that if P is J-pointed then it is \leq_J -pointed in the sense of Sacks [4:2.1], but not vice versa.

Lemma 5. Suppose P is J-pointed. If $X \subseteq \omega$ and $P \leq_J X$, then there exists a J-pointed $Q \subseteq P$ such that $Q \equiv_J X$.

Proof. In [4: 2.3], Sacks constructed a perfect subtree Q of
P such that:

(4) Q is recursive in P and f for every $f \in [Q]$; and

$$(5) \quad Q \equiv_J X.$$

To see Q is J-pointed in our sense, fix $f \in [Q]$. Since P is J-pointed and $f \in [P]$, by (3), we have:

(6)
$$P \in L_{\omega_1(J,P)}[f]$$
.

Clearly:

(7)
$$f \in L_{\omega_1(J,P)}[f]$$
.

From (4) (6) and (7), we obtain:

(8)
$$Q \in L_{\omega_1(J,P)}[f]$$
.

From (5) and the assumption $P \leq_{T} X$, we see:

(9)
$$\omega_1(J, P) \leq \omega_1(J, Q)$$
.

From (8) and (9), we obtain
$$Q \in L_{\omega_1(J,Q)}[f]$$
.

For any ordinal δ , $\{\delta\}^f$ denotes the δ -th element of L[f] in the canonical wellordering on L[f]. A perfect tree P is said to be uniformly J-pointed if there exists an ordinal δ such that:

(10)
$$(\forall f \in [P]) (P = \{\delta\}^f \& \delta < \omega_1(J, f)).$$

Obviously, uniformly J-pointed perfect trees are J-pointed. Let $\alpha > \omega$ be a countable $|a|_S$ -recursively inaccessible ordinal and K a generic function over L_α in the sense of the unbounded Levy forcing. Observe that if P is uniformly J-pointed and $P \in L_\alpha[K]$ then there exists a $\delta < \alpha$ which satisfies (10) since the leftmost path f_P through P is recursive in P and so $\omega_1(J, f_P) \leq \omega_1(J, P) < \alpha$.

Let M be a countable admissible set and P be a perfect tree in M. Then P becomes a partially ordered set as usual. The forcing with P as the set of conditions is called the local Cohen forcing over M and denoted by $\|\frac{P}{M}$, or simply by $\|\frac{P}{M}$. If $f \in [P]$ is generic with respect to $\|\frac{P}{M}$, then M[f] is an admissible set, and so is $L_{\mu}[f]$, where $\mu = M \cap On$.

Lemma 6. For any $\xi < \alpha$ and any J-pointed perfect tree P in $L_{\alpha}[K]$, there exists a uniformly J-pointed perfect tree $Q \subseteq P$ such that $\xi < \omega_1(J, Q)$ and $Q \in L_{\alpha}[K]$.

<u>Proof.</u> Since ξ is countable in $L_{\alpha}[K]$, there is a real $X \in L_{\alpha}[K]$ such that ξ is recursive in X. By Lemma 5, there is a J-pointed perfect subtree P_1 of P such that $P_1 \equiv_J X$. Then we see $\xi < \omega_1(J, P_1)$, and $P_1 \in L_{\alpha}[K]$ by Lemma 4. Thus, we may assume $\xi < \omega_1(J, P)$ from the beginning. Put $M = L_{\omega_1(J, P)}[P]$. Consider the local Cohen forcing relation $\frac{P}{M}$ over M. Since P is J-pointed, we have:

(11)
$$(\forall f \in [P])\omega_1(J, P) \leq \omega_1(J, f);$$

and

(12)
$$(\forall f \in [P]) (\exists \gamma \leq \omega_1(J, P)) \{\gamma\}^f = P.$$

By (12), there exists a $p_0 \in P$ and $\gamma < \omega_1(J, P)$ such that:

$$(13) \quad P_0 \quad \left| \frac{P}{M} \left\{ \stackrel{\vee}{\gamma} \right\}^{\mathcal{T}} = \stackrel{\vee}{P},$$

where $\mathcal J$ is the canonical name which denotes the generic reals. As in [4:2.10], we can construct a perfect tree Q \subseteq P such that:

(14)
$$Q \in L_{\omega_1(J,P)}[P]$$
;

and

(15)
$$(\forall f \in [Q]) \{\gamma\}^f = P.$$

From (14), we can find a $\delta < \omega_1(J, P)$ such that $\{\delta\}^P = Q$. So, by (15), there is an $\epsilon < \omega_1(J, P)$ such that:

(16)
$$(\forall f \in [Q]) \{\epsilon\}^f = Q.$$

Let f_Q be the leftmost branch of Q. Then, by (11):

(17)
$$\omega_1(J, P) \leq \omega_1(J, f_0) \leq \omega_1(J, Q)$$
.

Hence, from (16), we see that Q is uniformly J-pointed. By (17),

we also see $\xi < \omega_1(J, Q)$. Since $P \in L_{\alpha}[K]$, we have $\omega_1(J, P) \leq \alpha$, and so $Q \in L_{\omega_1(J, P)}[P] \subseteq L_{\alpha}[K]$.

Let $\mathcal L$ be a first-order language. A Π^1_1 formula in $\mathcal L$ is a second-order formula of the form:

$$(\mathtt{AS}_1) \cdots (\mathtt{AS}_m) \psi$$
,

where S_1, \dots, S_m are predicate variables and ψ is first-order formula in the expanded language $\mathcal{L} \cup \{S_1, \dots, S_m\}$.

Lemma 7. Suppose A is a countable admissible set such that $\omega \in A$ and $\mathcal{L} \in A$ is a first-order language. Let $\theta(\mathbf{x}_1, \cdots, \mathbf{x}_n)$ be a Π^1_1 formula in \mathcal{L} . Then there exists a Σ_1 formula $\Phi(\mathbf{x}_1, \cdots, \mathbf{x}_n, \mathbf{y})$ such that for any structure $\mathcal{M} = \langle \mathbf{M}, \cdots \rangle \in A$ for \mathcal{L} and any $\mathbf{a}_1, \cdots, \mathbf{a}_n \in M$:

$$A \models \Phi(a_1, \dots, a_n, \mathcal{M}) \longleftrightarrow \mathcal{M} \models \theta(a_1, \dots, a_n).$$

Proof. This is well-known. See, e.g., Barwise [2: IV. 3.1].

Using this lemma, we obtain the following lemma.

Lemma 8. The set of all uniformly J-pointed perfect trees in $\mathbf{L}_{\alpha}[\mathtt{K}] \quad \text{is} \quad \Sigma_{1} \quad \text{over} \quad \mathbf{L}_{\alpha}[\mathtt{K}].$

<u>Proof.</u> Put $\sigma = |a|_S$, (recall that $J = J_a^S$). Let P be a perfect tree in $L_{\alpha}[K]$ and $\delta < \alpha$. Let $\beta(P, \delta, \sigma)$ denote the least admissible ordinal $\beta < \alpha$ such that $\max(\delta, \sigma, \omega) < \beta$ and $P \in L_{\beta}[K]$. The function β is Σ_1 over $L_{\alpha}[K]$. We can easily find a Π_1^1 formula θ in the language of set theory such that for any perfect tree $P \in L_{\alpha}[K]$:

P is uniformly J-pointed \longleftrightarrow $(\exists \delta < \alpha) L_{\beta(P,\delta,\sigma)}[K] \models \theta(P,\delta,\sigma).$ Thus the lemma follows from Lemma 7.

§3. Forcing with uniform J_a^S - pointed perfect trees.

Suppose $|a|_S > 0$ and put $J = J_a^S$. Let $\alpha > \omega$ be a countable $|a|_S$ -recursively inaccessible ordinal and K a generic function with respect to the unbounded Levy forcing over L_{α} , which we fix throughout this section.

Let $\mathcal{L}(\alpha,\mathcal{T})$ be a ramified language containing names for all members of $L_{\alpha}[f]$. $\mathcal{L}(\alpha,\mathcal{T})$ includes: a numeral \bar{n} for each $n\in\omega$, unranked variables x,y,z,\cdots ; ranked variables $x^{\beta},y^{\beta},z^{\beta},\cdots$ for each $\beta<\alpha$; and abstraction operator \hat{n} . It is intended that \mathcal{T} denotes $\{n\in\omega\colon f(n)=1\}$, that x ranges over $L_{\alpha}[f]$, that x^{β} ranges over $L_{\beta}[f]$, and that $\hat{x}^{\beta}\phi(x^{\beta})$ denotes the set:

$$\{x \in L_{\beta}[f] : L_{\beta}[f] \models \phi(x)\}.$$

C(β) is the set of names for elements of $L_{\beta}[f]$ and $C = \bigcup_{\beta < \alpha} C(\beta)$. Let C denote the set of all uniformly J-pointed perfect trees in $L_{\alpha}[K]$. P, Q, R, \cdots denote the members of C. For a ranked sentence C of C of C of and C of C of C and C of that C of C of

- (1) ϕ is ranked. $P \models \phi$ iff $(\forall f \in [P]) L_{\rho(P,\phi)}[f] \models \phi$;
- (2) $\phi \lor \psi$ is not ranked. $P \Vdash \phi \lor \psi$ iff $P \Vdash \phi$ or $P \Vdash \psi$;
- (3) $(\exists x^{\beta})\phi(x^{\beta})$ is not ranked. $P \models (\exists x^{\beta})\phi(x^{\beta})$ if $P \models \phi(c)$ for some $c \in C(\beta)$;
- (4) $P \models (\exists x) \phi(x)$ iff $P \models \phi(c)$ for some $c \in C$;
- (5) ϕ is not ranked. $P \models \neg \phi$ iff $(\forall Q \subseteq P) \neg (Q \models \phi)$.

Using Lemma 7 and 8, it is easy to see that the forcing relation $P \models \varphi \text{ , restricted } \Sigma_1 \text{ sentences } \varphi \text{, is } \Sigma_1 \text{ over } L_{\alpha}[K].$

3.

Lemma 9. For each P and φ , there exists a Q \subseteq P such that Q $||-\varphi|$ or Q $||-\neg\varphi|$.

<u>Proof.</u> In view of (5), we may assume that ϕ is ranked. By Lemma 6, we may also assume that $\phi \in L_{\delta}[P]$ for some P-admissible δ such that $\delta < \omega_1(J, P)$. Then, in $L_{\delta}[P]$, all sets are countable. Thus, in $L_{\delta}[P]$, we can enumerate all ranked sentences of rank \leq rank(ϕ):

$$\phi = \phi_0, \phi_1, \cdots, \phi_n, \cdots (n \in \omega).$$

Let $|\frac{P}{P}|$ be the local Cohen forcing relation over $L_{\delta}[P]$. In $L_{\delta}[P]$, we can construct a family $<q_s:s\in Seq(2)>$ of elements of P such that:

- (6) $q_s \parallel^{\frac{p}{q}} \phi_n$ or $q_s \parallel^{\frac{p}{q}} \neg \phi_n$, where n = lh(s);
- $(7) \quad q_{\widehat{s<0}>} \quad \text{and} \quad q_{\widehat{s<1}>} \quad \text{are incompatible extensions of} \quad q_s \;,$ where Seq(2) is the set of all finite sequences of 0's and 1's. Let $Q = \{q \in P : (\exists s) \; q \subseteq q_s\}$. Then by (7) Q is a perfect subtree of P. By (6), it is easy to see that $Q \models \varphi$ or $Q \models \neg \varphi$. Since $Q \in L_{\delta}[P]$, $Q = \{\gamma\}^P$ for some $\gamma < \delta$. Therefore Q is uniformly J-pointed because P is.

A real $f \in 2^{\omega}$ is said to be generic if for every dense subset $\mathscr D$ of $\mathscr P$ which is definable over $L_{\alpha}[K]$ there is a $P \in \mathscr D$ such that $f \in [P]$. For every $P \in \mathscr P$, there is a generic f such that $f \in [P]$. From Lemma 9, it follows that for every generic f and sentence ϕ :

$$L_{\alpha}[f] \models \phi \text{ iff (AP)(} f \in [P] \& P \models \phi \text{)}.$$

Lemma 10. If f is generic, then $L_{\alpha}[f]$ is admissible.

Proof. We need to show that $L_{\alpha}[f]$ satisfies the Δ_0 Collection. Let $\phi(x,y)$ be a formula of $\mathcal{L}(\alpha,\mathcal{T})$ with no unranked quantifiers. We claim that if $P \models (\forall n) (\exists y) \phi(n,y)$ then there exists a $Q \subseteq P$ and a $\beta < \alpha$ such that $Q \models (\forall n) (\exists y)^{\beta} \phi(n,y)^{\beta}$. The proof of this claim is almost the same as that of [4:3.12] with some notational changes. So, we omit the proof here. From the claim, it follows that $L_{\alpha}[f]$ satisfies the Δ_0 Collection.

<u>Proof of Theorem 1.</u> Let $\alpha > \omega$ be a countable $|a|_S$ -recursively inaccessible ordinal and K be as before. Put $\sigma = |a|_S$ and $J = J_a^S$. In the case $\sigma = 0$, Theorem 1 is exactly Theorem 2, which has already been established by Sacks [4]. So we may assume $\sigma > 0$. Let $f_0 \in 2^\omega$ be a generic real over $L_\alpha[K]$ with respect to the forcing with uniform J-pointed perfect trees. By Lemma 6, for each $\xi < \alpha$, the set $\{P \in P : \xi < \omega_1(J, P)\}$ is dense in P. It is obviously definable over $L_\alpha[K]$. Therefore there is a $P \in P$ such that $f_0 \in [P]$ and $\xi < \omega_1(J, P)$. Since P is J-pointed, we have:

$$\xi < \omega_1(J, P) \leq \omega_1(J, f_0).$$

Thus, we have $\alpha \leq \omega_1(J, f_0)$. To see $\alpha = \omega_1(J, f_0)$, we must show that $\alpha \in \mathrm{RI}(\sigma, f_0)$. At first we consider the case where $\sigma = \tau + 1$ for some τ . It is sufficient to prove that α is a limit of ordinals in $\mathrm{RI}(\tau, f_0)$, since then by induction on τ we can show that $\alpha \in \mathrm{RI}(\tau, f_0)$, (note that $\alpha \in \mathrm{RI}(0, f_0)$ by Lemma 10). Suppose $\xi < \alpha$. We shall show that the following set \mathscr{D}_{ξ} is dense in \mathscr{C} :

$$\mathcal{D}_{\xi} = \{ P \in \mathcal{P} : (\exists \delta < \alpha) (\xi < \delta \quad \& \quad (\forall f \in [P]) \delta \in RI(\tau, f)) \}.$$

Assume this can be done. Using Lemma 7, it is easy to see that \mathscr{L}_{ξ} is Σ_1 over $\mathsf{L}_{\alpha}[\mathtt{K}]$. Therefore, for every $\xi < \alpha$, there exists a $\delta < \alpha$ such that $\xi < \delta$ and $\delta \in \mathsf{RI}(\tau, \, f_0)$.

To show that \mathcal{D}_{ξ} is dense in \mathcal{C} , take an arbitrary $P \in \mathcal{C}$. By Lemma 6, we may assume $\xi < \omega_1(J, P)$. Take a $\delta \in \mathrm{RI}(\tau, P)$ so that $\xi < \delta < \omega_1(J, P)$. Such a δ exists because $\omega_1(J, P)$ is a limit of ordinals in $\mathrm{RI}(\tau, P)$. Consider the local Cohen forcing relation $\stackrel{P}{\models}$ over $\mathrm{L}_{\delta}[P]$. Let δ^+ be the next P-admissible ordinal of δ . Then, $\mathrm{L}_{\delta}[P]$ is countable in $\mathrm{L}_{\delta+}[P]$. So we can enumerate inside $\mathrm{L}_{\delta+}[P]$ all sentences of the appropriate forcing language:

$$\phi_0, \phi_1, \cdots, \phi_n, \cdots$$
 $(n \in \omega)$.

As in the proof of Lemma 9, we can construct a perfect subtree $Q \in L_{\delta+}[P]$ of P such that:

 $(\forall f \in [Q])$ f is generic with respect to $||\frac{P}{Q}|$.

Q is uniformly J-pointed since $Q \in L_{\delta+}[P]$, $\delta^+ < \omega_1(J, P)$ and P is uniformly J-pointed. To show that $\delta \in RI(\tau, f)$ for all $f \in [Q]$, take $f \in [Q]$. Let $\beta \leq \delta$ be an arbitrary P-admissible ordinal $> \omega$, and $|\frac{P}{\beta}|$ be the local Cohen forcing relation over $L_{\beta}[P]$. It is easy to see that f is generic with respect to $|\frac{P}{\beta}|$, and so β is f-admissible. From this, by induction on τ , we see that $\delta \in RI(\tau, f)$.

Now we consider the case whre σ is a limit ordinal. The proof is carried out in the same way. For any $\,\xi\,<\alpha\,$ and any $\,\tau\,<\sigma,$ let ${\mathcal L}_{\xi\tau}$ be the set:

Then $\mathcal{L}_{\xi\tau}$ is dense in \mathscr{C} and definable over $L_{\alpha}[K]$. Therefore, we have that $\alpha = \omega_1(J, f_0)$ for any generic f_0 with respect to |-|.

REFERENCES

- [1] P. Aczel and P.G. Hinman, Recursion in the superjump, in:

 Generalized Recursion Theory, edited by J.E. Fenstad and P.G. Hinman

 (North-Holland, Amsterdam, 1974), 3-41.
- [2] J. Barwise, Admissible Sets and Structures, Springer, Berlin, 1975.
- [3] R. Platek, A countable hierarchy for the superjump, in: Logic Colloquium '69, edited by R.O. Gandy and C.E.M. Yates (North-Holland, Amsterdam, 1971), 257-271.
- [4] G.E. Sacks, Countable admissible ordinals and hyperdegrees,
 Advances in Math., 19(1976), 213-262.
- [5] J. Shinoda, On the upper semi-lattice of J_a^S -degrees, Nagoya Math. J., 80(1980), 75-106.

Department of Mathematics College of General Education Nagoya University Chikusa-ku, Nagoya 464, Japan