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A Subsystem of Classical Analysis proper to

Takeuti's Reduction Method for Ni-Analysis

By

Toshiyasu ARAI \ %i # 24 ﬁi )

After Gentzen's works for the pure number theory, G.Takeuti
gave consistency proofs of some impredicative subsystems of
classical analysis in [71, 191, L10] and [111 ( [11] with
M.Yasugi ). In these proofs, the only “Uberschreitung’ beyond
the finitist standpoint in the Hilbert'% s sense is accessibility
of some systems of o.d.'s ( ordinal diagrams ) which were also
introduced by Takeuti in [6] and [8]. Thus these works may be
regarded as nice extensions of Gentzen's. But, unfortunately,
the consistency proof for the formal system SINN'*/ which is
equivalent to (N}-CA) + (BI) is unsatisfactory for the following
two reasons: |

i) The proof consists of two ideas, i.e., y-degree ( cf.
[10, p.317]) ) and use of the substitution rule (cf. [10,.p.318]).
And in the reduction of impredicative proof-figures, the latter

plays an essential role, while the former can be deleted.

*) Usually this proof is said to be one for SINN which is
equivalent to (I}-CA), but as remarked in [10, footnote 2], it is

at the same time one for SINN?!.
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ii) The system of o.d.'s O(w+1,w®) with respect to <, used
in this ?roof was not shown to be optimal for the consistency
proof for (Ii-CA) + (BI).

In this paper, we will propose a subsystem of classical
analysis AII which is convenient to the reduction method using
the substitution rule and eq;ivalent to SINN', and prove the
consistenéy of AIT by the accessibiiity of the system O(w+1,1)
with respect to <y, following’Gehtzen (2] and Takeuti [10].
Also in [1], we will show that the transfinite induction up to
each o.d. from the system O(w+1,1) with respect to <§ is
derivable in AITI. Thus we will complement the Takeuti's
consistency proof for (Ni-CA) + (BI). (cf. i), ii) ).

In 81 the definition of AII and some preliminary definitions
for a consistency proof will be given. In §2 the main lemma will
be proved and from which together with the accessibility of the
system O(w+1,1)rwith respect to <y, the consistency of AII
follows immediately. A discussion for the significance of the
consistency proof will be given in the Appendix.

The author is indebted to Dr. T.Yukami for the seminar
undef the guidance of him during the preparation of this paper.
The aﬁthor wishes to express hié hea;t-felt thanks to
Prof. N.Motohashi for reading this paperrin‘manuscript and

suggesting a number of linguistic improvements.



§1. Preliminary Definitions

In this paper, we will use the terminology and notation

in the same sense as those in [PT].

Definition 1.1. -
The systems of second order arithmetic INN', AII and AIN}
are obtained from INN ( Definition 27.4, [PT, p.320] ) by

modifying second order Y:left

F(V), T — A

=3

= A

.v¢F(¢),

, as follows

.

1.1.1. The system INN' ( , which was called SINN' in
[10, footnote 21 ).

1.1.1.1. The principal formula y4F(¢) is isolated
( Definition 27.2.(5), [PT, p.322] ),
or,

1.1.1.2. the abstract V in the auxiliary formula ( Neben-
formel ) F(V) is isolated.

1.1.2. The system AII.

1.17.2.1. The principal formula V¢F(¢) is isolated,
or,

1.1.2.2. the abstract V in F(V) is a second order free

variable.



1.1.3. The system AIN}.
1.1.3.1. The principal formula y¢F(¢) is a Hi-formula,
or,
1.1.3.2. the abstract V in F(V) is a second order free

variable.

ATI ( AII} ) is an abbreviation of the Axiom of
Instantiation Y¢F(4) > F(V) with the Isolated formulae ( Ni-
formulae ) Y ¢F(o).

Observe that AIN} contains (BI) +(H;-CA), and (BI) contains
AIN{, hence AIH%, (BI) + (nm2-CA) and (BI) are equivalent each
other. Also nate that a formula of the form,

3¢VX1--~VXn( ¢(x1,...,xn) = A(x1,.f.,xn)),
is isolated provided that A is a M}-formula and the bound,
variable ¢ does not occur in A. Hence the l-comprehension axioms

are derivable in AII, and so, AII, INN' and (II}{-CA) + (BI) are

equivalent each other.

In the rest of this section, we will give some preliminary

definitions for a consistency proof of AIT.

Following the idea of Takeuti, we add the rule of

substitution to AII.



Definition 1.2.

1.2.17. Rule of substitution.

A "..’An eB,] ,-.-,Bm

;
A () seeest () —>Bo(5)s e uuB ()

where o 1s a second order free variable, V is an arbitrary
abstract with the séme number of argument-places as a, AT""’An’
B1""’Bm are arbitrary formulae, and A1(%) is the formula
‘obtained from A1 by replacing every occurrence of a in A1 by V,
etc. Here a is called the eigenvariable of the substitution.

1.2.2. Rule of term-replacement.

FI’F(S)’F2'~9 A T _‘>A1,F(S),A2

FI’F(t)’P2_ﬁ A, r _)AI’F(t)’AZ

where s and t are closed terms of the same numerical values,
and F(t) is obtained from F(s) by replacing some occurrences

of s in F(s) by t.

In what follows, a proof (-figure) will mean a proof tree
which is locally correct with respect to the rules of AII,

substitution and term-replacement.

The end-piece of a proof of — contains the following
inference rules only : cut, weakening, contraction, exchange,

term-replacement, substitution and ind (induction rule).



b
ERE

. Definition 1.3. Let P be a proof of — and d a mapping
(called‘an assignment of P ) from the set of substitutions in P
to the set of positive integers, where the value d(J) is called
the degree of J ( with respect to d ) for each substitution J in
P.

We call the pair <P,d> a proof with degree if the following
conditions are satisfied.

1.3.17. Every substitution is in 'the end-piece and there is
no ind under a substitutidn.

1.3.2. Let A be a semi-formula in P. If we calculate the
degree d(A) of A by the following clauses 1.3.2.1.-1.3.2.4., then
we have

- (*) d(B) < d(J) for every substitution J in P and
every formula B in the upper-
sequent of J. -

1.3.2.1. d(A) = w if A is not isolated. Suppose A is

isolated.

1.3.2.2. d(A) = 0 if A contains no logical symbol.
1.3.2.3. d(74) = d(A), d(AnA,) = max{d(4),d(A,)},
d(vxA(x))
d(

da(a(x)).

1.3.2.4. d(VoF(¢)) = max{d(F(s)) + 1,d(J)}
where J ranges over substitutions which disturb
YoF (¢) .

Definition 1.4.
1.4.1. The grade of a formula A, denoted by g(A), is the

number of occurrences of logical symbols in A.



1.4.2. Let P be a proof and S a sequent in P. The height of

S in P, denoted by h(S;P) or simply h(S), is defined inductively

'from below to above'!, as follows :

1.4.2.1. h(S) =

1.4.2.2. h(8S)

1.4.2.3. n(S)

0 if S is the end-sequent of P or S
uppersequent of a substitution
h(S') where S is an uppersequent of

" inference exept substitution,

is the
in P,
an

cut,

ind and second order Yy :left, and S!

is the lowersequent of the inference,

max{h(S'),g(D) + 1}

where S 1s an uppersequent of cut, ind or second

order ¥ :1eft, and D is the cut formula, induction

formula or auxiliary formula of the inference,

respectively, and S' is the lowersequent of the

inference.

Next, we will assign an o.d. from O(w+1,1) to each sequent

in a proof with degree. For simplicity, we write (i,u) for a non-

zero connected o.d.

(1,0,u).

Definition 1.5. For each o.d. u fromOW+1,1) and natural

number n, we define inductively an o.d. w(n,u), as follows

M(O)U) = U,

w(nt1,u) = (w,w(n,u)).

Definition 1.6. For each i such that 0 < i < , we define

a relation <<i between two o.d.'s, as follows :
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1.6.1. u <<, v iff
1.6.1.1. for each j such that i < < w and for each
j-section p of u, there exists a j-section 1 of v for
which p ij T,
and,

1.6.1.2. for each k such that i <k < w, u<, v.

k

1.6.2. ug<, v Aff p << vor w o= v

By the definition, the following proposition'is easily

verified ( cf. Lemma 27.1, [PT, p.3207 ).

Proposition 1.7.

1.7.1. u‘<<i v implies w(n,u) <<y w(n,v) and
w(n,u#o) <<y w(n,v#6) for every natural number n and
every o.d. 6.

1.7.2. u <<y vand 1 < j < w imply (j,u) << (§av).

Definition 1.8. Let <P,d> be a proof with degree. To each
sequent S in P, we will assign an o.d. 0(S;P,d) or simply 0(S)
from O(w+1,1) inductively 'from above to below!, as follows :

1.8.1. 0(8) = 0 if S is an initial sequent of P.

In the following, we will assume that S is the lowersequent
of an inference J, and the o.d.('s) has (have) been assigned to
the uppersequent(s) of J.

1.8.2. !

—— : J 1s a weak structural rule or term-replacement.

S
0(s) = 0(s').
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1.8.3. 3! : o -
—— ¢t J is 7, A:left, first order |\ or second order
S . . .
Y: right.
0(8) = (w,0(8")).

¢ J is A:right.

S ‘
0(s) = (w,0(8:1)40(82)).
1.8.5. S!
w— ¢ J is second order V:left or ind.
S
0(S) = w(h(s')-h(sS)+1,0(8")).

: J is cut.

]
0(S) = w(h(S1)-h(8),0(8:1)#0(S2)).
1.8.7. 8
— ¢+ J is substitution.
S
0(s) = (a(J),o(s")).

1.8.8. 0(P,d) = 0(S;P,d) where S is the end-sequent of P.’

The preliminary definitions has finished and now we can

state the following main lemma.

Main Lemma.

If <P,d> is a proof with degree, then we can construct,
primitive recursiveiy, another proof with degree <P',d'> such
that

o(pr,d') <o 0(P,d).



Assume that the main lemma has been proved finitistically.
gince for any proof of — in AII and the empty assignment ¢,
<P,0> is a proof with degree, the consistency of AII will follow
from the accesibility of the system O(w+1,1) with respect to <.

A proof of the main lemma will be given in the next section.

'§2, Proof of the Main Lemma.

The reduction step from <P,d> to <P',d>1is almost the same
as in TPT]. Up to (3) in [PT, p.328], the reduction steps are
completely the same as in [PT], i.e., (1) substitution the
individual constant O for redundant first order free variables,
(2) 'VJ Reduktion' in [2] and (3) eliminating equality axioms in
the end-piece of P.

(4) By virtue of the above, we may assume that there are no
applications of ind and no equality axioms as initial sequents ih
the end-piece of P. Suppose that the end-pilece of P contains
logical initial sequents.

Suppose P is of the following form and D-— D is one of the

initial sequents in the end-piece of P :

-10-



D—>D
Po .:0 .I:O
U Vo,
r —=->A,D! D', 1 ——>A,,D'", A, 1
T,I w(1=m,u#v) Ay, Ay ,D", Ay m

where D" is D' up to term-replacement andil is h(I'— A,D';P),
etc.

We reduce P to the following P! ( and d' is defined to be
the restriction of d to P'. ) :

PO )
U'
I —> A,D! m
F,Hﬂ A’Al ’D"’Az m
ey

We see easily that for every sequent S in Py
0(S;P',d') <<o w(h(8;P)—n(S;P'),0(S;P,d)).

In particular u' <<o w(l—m,u), and so, u' <<y w(l-m,u#v).

Thus by proposition 1.7. we have 0(P',d') <<, 0(P,d).

(5) We may assume besides the conditions in (4) that the
end-piece of P contains no logical initial sequents. Then let P*

be the proof obtained from P by eliminating weakenings in the end

-11-
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piece of P and d¥ be the restriction of d for P*. Similarly in
the case (4) we have O(P¥,d*) <<, 0(P,d).

(6) Suppose that the end-piece of P contains no ind, weaken-
ing or axiom other than mathematical ones. Then the end-piece of
P. contains a suitable cut J. ( cf. Sublemma 12.9., [PT, p.105] )

_(7)‘The caSe’where the cut formula of J is of the form
VoF (¢) . |
Case 1. VoF(d) is isolated.

Let P be the following form :

I's ———A—;é Ay,Fy(a) Fo(V),I, H — M 1,

. J— + R
' (w,2) Ay, YOF: (o) YoF, (), 1, w(ly—ls+1 U)} A 1
Ty, ——> A,,VoF (o) VOF(0),1, e > Ay 1,
J N
FZ’HZ U)(lz—l]_ ’T#D) KZDAZ li
ra—v9A3 0
g S 0

where both YoF:1(d) and VoF,(6) are VoF(¢) up to term-replacement.
Let i be d(Y¢F1(¢)). I's —> A3 is the i-resolvent of

P,,M, —> A;, 0. Let P' be the following

-12-



rl“‘L)AI’Fz(Ol) Fo(V),I, H > A 1,
' ~1;+
Py——5F,(a),01,y0F1(0)  VoFa(9),m, —2Le=latlom) o
. .
I, F(a)h,,VoF (o) VoF(¢),0, 0 > Aa 1,
. 1
',z w(l,—1,,7'#p) F(a),A2, M 1,
" Fs -5 As,F(a) O ‘ '.S.'
J17 T g e) 1
I3 —=——"—>A;3,F(V) F(V),I, —— 1, 14
1"3’]'[1 w(lk.—l3’(i’e)#U) > AS)AI 13
Vd)Fz(d)),Hl,Ts > AS’A].
1
Pz‘#Az:VCDF(dJ) VoF () ,M2, 3 P — A3z, Ay 1,
_ 1
szHg,l"a (L)(lz ll,T#p )7\ AZ’ASaAZ 11
[z,02,T3 > A3z,05,A7;
— ' N
FS,FS v > A3’A3
s —> A3 0
o'e 0

where J; 1s a substitution with eigenvariable a. d'(J‘) for =
substitution J' except J; is defined to be d(J") where J" is the

corresponding substitution to J' in P. d'(J:) is defined to be 1i.

-13-
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Following propositions (7.1)-(7.5) are easily verified by

proposition 1.%. ( ef., [PT, pp.332-333] )

- (7.1)
(7.2)
(7.3)
(7.4)
(7.5)

T! <<q T,

8 <<, Vv,

w(lu—l‘a; (i,8)#u) <<i+‘l w(ly=1l3+1,u),

Pl <<i49 P>

V! <j v for all j < w, and for each k such that

k < i and for each k-section w' of v',lthere exiéts

~a k-section m of v for which =! 3 m, and for each

i-section n of v', n <5 V. ( Here note that v and v!

are connected. )

It follows from (7.5) that o' <o o.

Case 2. YoF(d) is not isolated.

Let P be the following form :

3 .

' ‘——A——> Ay,Fi(a) Fo(B),I, ————E——> A m
ry )y 4 yer(s) VoF (o), My —aidsy g
To ——> Ay, YoF (o) COYOF(0),, ————> A, 1

J

Poyllyg — Az, Ay

-1~



where & -——>Y denotes the uppermost sequent below J whose

height is less than 1. Let P' be the following :

I1%A:,F1(B) FZ(B),ngl\im
TPF(B),A1,¥0F1(d) VoF, () ,I1,F2(B)>A,

r29F(B)’A2:V¢F(<b) V(DF((I))’HZ‘)AZ TZ%AZ’Vd)F(d)) V¢F(¢),H2,F(B)9A2 l

Ty, —> F(B),82,0A2 T5,012,F(B)—>A5,4,

And for every substitution J' in P', d'(J') is defined to be
d(J")_where J" is the corresponding substitution to J' in P.
From 1' < 1 we see easily that 0(P',d') <, 0(P,d).

(8) The cases where the cut formula of J is of the form

FikF5, 7F or YxF(x) are treated in the same way as the Case 2., in

(7).

This completes the proof of the main lemma.

s

Remark. A consistency proof of AINi by the accessibility of
the system 0(2,1) with respect to <, can be given similarly for

the above consistency proof of AII,

-15-
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Appendix.

If the works of Gentzen's, Takeuti's and mine are regarded
as 'merely' computing the ordinals of the formal systems, then
it is fair to say that the ordinal analysis ( ef. L51) by
Schutte and Pohlers, etc. is superior to ours in itself.

Therefore we may ask what has been achieved by these
consistency proofs. The question is whether they ﬁave the
specific - sometimes called 'epistemologically interesting' -
characters that one expects from a 'consistency proof!'.

I must confess that I have myAdoﬁbt about it, or rather,
at the present time I cannot answer 1it. Here we are féced*by
Kreisel's view in [4, p.240] :

the analysis of the significance of a consistency proof
may be more difficult than the proof itself.

It seems to me that the analysis is a matter of paramount
importance for a consistency proof. As a matter of fact, the
0.d.'s give an appropriate representation of complexities of
some impredicative (intuitive) proofs expressed by formal proof-
figures, as seen above. But we should ask further, e.g., in the
Case 1. of (7) of the proof of the main lemma, in what sense the
proof expressed by P! is simpler than the proof expressed by
P. Since we ddﬁnot\know whether any natural ordering among proofs
exists, this question is also left open.

When we neglect the combinatorial aspect in these consistency
proofs, though I think this aspect to be important, we can note
a minor fact that follows immediately from 'optimal' consistency

proofs.

_16-



Let T be the pure number theory, AIN} or AII, and « the
primitive recursive well-ordering obtained by a canonical
arithmetization of the notation system whose agcessibility is
used in the consistency proof of T. And let ¢ be an enumeration
of variables in a formula A of the primitive recursive
arithmetic PRA.

Then the accessibility_;f <4 may be expressed in the
language of PRA by the following rule Accy :

Acc

infer 7A(c) from A(c)—> V(c,x') < ¥v(ec,x)
where y is an arbitrary primitive recursive function and x is
a variable distinct from the variables in c.

For a formula F, if there is a derivation P of F in PRA +
Acc ¢ such that every sub-derivation ending with a premiss of
Accy in P is-a derivation in PRA, we say that F 1s deducible from
PRAwith one application of Accy. That is to say, when we require
that the premiss of Accg should be established finitistically,
i.e., should be‘derivable in PRA, we have the deducibility
from PRA with one application of Accy.

It follows from the consistency proof for T that ConsisT,
i.e., 7Provy(x, 0 = 17) is deducible from PRA with one
application of Accy, where ProvT is a canonical proof predicate
for T. ( In the case that T is AII, ProvT contains the code of
' degree assignment function' d. )

Conversely, if A(c) — V(c,x') < ¥(c,x) is derivable in PRA,
then it follows from [3] or the remark 2. in [1] that 7A(c) is
derivable in PRA + ConsisT. Thus we have the following fact :

one application of Accy is equivalent to ConsisT over PRA.

217-
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