A method of axiomatizing fragments of intuitionistic theories

上江洲 忠弘 Tadahiro Uesu

Department of Mathematics

Faculty of Science

Kyushu University

The purpose of this paper is to present a method of axiomatizing fragments of intuitionistic theories. The main theorem
is an extension of Motohashi's Axiomatization Theorem which
concernes classical theories (N. Motohashi: An Axiomatization
Theorem, J. Math. Soc. Japan 34 (1982), PP. 551-560).

Let Q be a set of predicate symbols. A formula is Q-atomic if it is an atomic formula with a predicate symbol in Q.

A sequent is a Q-clause if its sequent formulas are either Q-atomic or Q-free.

A set of Q-clauses is Q-closed if it is closed for substitutions, contractions, interchanges and the following inference rules:

$$\frac{\Gamma \to A \qquad A, \Gamma \to \Delta}{\Gamma \to \Delta}$$

where A is Q-atomic.

$$\frac{\Gamma \rightarrow P(\bar{s}) \qquad P(\bar{t}), \Gamma \rightarrow \Delta}{\bar{s} = \bar{t}, \Gamma \rightarrow \Lambda}$$

where $P \in Q$.

$$\frac{\mathbb{A}_{1}(s), \dots, \mathbb{A}_{m}(s) \rightarrow \mathbb{B}_{1}(s), \dots, \mathbb{B}_{n}(s)}{s=t, \mathbb{A}_{1}(t), \dots, \mathbb{A}_{m}(t) \rightarrow \mathbb{B}_{1}(t), \dots, \mathbb{B}_{n}(t)} .$$

Proposition 1. Let C be a finite set of Q-clauses whose sequent formulas are quantifier free. Then there is a Q-closed set \bar{C} of Q-clauses such that $C \subseteq \bar{C}$, the theory $LJ_{=}[\bar{C}]$ is equivalent to the theory $LJ_{-}[C]$, and \bar{C} is primitive recursive.

Let P, N and F be mutually disjoint sets of predicate symbols. A formula is a $(P,N,F)_+$ formula if it is P-positive, N-negative and F-free. A formula is a $(P,N,F)_-$ formula if it is $(N,P,F)_+$.

A (P,N,F)-basic sequent is a sequent of the form

$$A_1 \supset B_1, \ldots, A_n \supset B_n, \forall \bar{x}C \rightarrow \bar{3\bar{y}D},$$

where A_1, \ldots, A_n and D are disjunctions of conjunctions of formulas which are either PUF-atomic or PUNUF-free, and B_1, \ldots, B_n and C are conjunctions of formulas which are NUF-atomic or PUNUF-free.

A sequence of $(P,N,F)_+$ formulas is a $(P,N,F)_+$ -sequence if it has the form

<A(Σ)| Σ is a finite sequence of P \cup F-atomic formulas>, where each free variable in A(Σ) occurs in Σ for each Σ .

A sequence of $(P,N,F)_{-}$ formulas is a $(P,N,F)_{-}$ -sequence if it has the form

<A(Σ ;R)| Σ is a finite sequence of P \cup F-atomic formulas and R is a N \cup F-atomic formula>,

where each free variable in $A(\Sigma;R)$ occurs in Σ or R.

Let A_+ and A_- be a $(P,N,F)_+$ -sequence and $(P,N,F)_-$ -sequence, respectively. For each finite sequence Σ of $P \cup F$ -atomic formulas, each disjunction D of conjunctions of formulas which are either $P \cup F$ -atomic or $P \cup N \cup F$ -free, and each conjunction C of formulas which are either $N \cup F$ -atomic or $P \cup N \cup F$ -free, we define formulas $A_+(\Sigma,D)$, $A_-(\Sigma;C)$ and $A_-(\Sigma,D;C)$ by the following way:

If C is PUNUF-free, then A_(Σ ;C) is the formula A_(Σ) \supset C. If C is not PUNUF-free and has the form C₁ \land C₂, then A_(Σ ;C) is the forula A_(Σ ;C₁) \land A_(Σ ;C₂).

If D is not PUNUF-free and has the form $D_1 \vee D_2$, then $A_+(\Sigma,D)$ and $A_-(\Sigma,D;C)$ are the formulas $A_+(\Sigma,D_1) \vee A_+(\Sigma,D_2)$ and $A_-(\Sigma,D_1;C) \wedge A_-(\Sigma,D_2;C)$, respectively.

If D has the form $\bigwedge \Sigma_0 \wedge A_1 \wedge \bigwedge \Sigma_1 \wedge \cdots \wedge A_n \wedge \bigwedge \Sigma_n$, where $\Sigma_0, \Sigma_1, \ldots, \Sigma_n$ are sequences of PUF-atomic formulas and A_1, \ldots, A_n are PUNUF-free, then $A_+(\Sigma, D)$ and $A_-(\Sigma, D; C)$ are

$$A_{+}(\Sigma,\Sigma_{0},\Sigma_{1},\ldots,\Sigma_{n}) \wedge A_{1} \wedge \cdots \wedge A_{n}$$

and

11.

$$A_1 \wedge \cdots \wedge A_n \supset A_-(\Sigma, \Sigma_0, \Sigma_1, \dots, \Sigma_n; C)$$
,

respectively.

Let S be a (P,N,F)-basic sequent of the form $\mathbb{A}_1(\bar{u})\supset\mathbb{B}_1(\bar{u}),\ldots,\mathbb{A}_n(\bar{u})\supset\mathbb{B}_n(\bar{u}),\ \forall\bar{x}\mathbb{C}(\bar{x},\bar{u})\to\exists\bar{y}\mathbb{D}(\bar{y},\bar{u}),$ where \bar{u} is the sequence (lined up by a fixed order) of all the variables occurring free in S. Then we denote $A_+(\Sigma:S)$ and $A_-(\Sigma:R:S)$ the following formulas, respectively:

$$\forall \bar{z} (\bigwedge_{1 \leq i \leq n} A_{-}(\Sigma, A_{i}(z); B_{i}(z)) \wedge \forall \bar{x} A_{-}(\Sigma; C(\bar{x}, \bar{z})) \supset \exists \bar{y} A_{+}(\Sigma, D(\bar{y}, \bar{z}))),$$

where no variable in \overline{z} occurs in Σ or S.

Let \$ be a finite set of (P,N,F)-basic sequents. Then we define the pair $(A_+^{\$,k},A_-^{\$,k})$ of a $(P,N,F)_+$ -sequence and a $(P,N,F)_+$ -sequence for each natural number k as follows:

$$A_{+}^{\$,0}(\Sigma)$$
 is $A_{+}(\Sigma)$;
 $A_{-}^{\$,0}(\Sigma;R)$ is $A_{-}(\Sigma;R)$.
 $A_{+}^{\$,k+1}(\Sigma)$ is the formula
 $\bigwedge \{A_{+}^{\$,k}(\Sigma;S) \mid S \in \$\} \bigwedge A_{+}^{\$,k}(\Sigma)$;
 $A_{-}^{\$,k+1}(\Sigma;R)$ is the formula
 $\bigvee \{A_{-}^{\$,k}(\Sigma;R;S) \mid S \in \$\} \bigvee (A_{+}^{\$,k}(\Sigma) \supset A_{-}^{\$,k}(\Sigma;R))$.

Theorem 2. Let $\mathbb C$ be a PUNUF-closed set of PUNUF-clauses and $\mathbb S$ a finite set of (P,N,F)-basic sequents. Let $\mathbb A_{\mathbb L}$ and $\mathbb A_{\mathbb L}$ be

a $(P,N,F)_+$ -sequence and a $(P,N,F)_-$ -sequence, respectively. Let T be a theory with the following properties:

- (1) For each P-atomic formula A, $\vdash_m A_+(A) \rightarrow A$.
- (2) For each N-atomic formula A, $\vdash_T A \to A_-(\epsilon;A)$, where ϵ is the empty sequence of formulas.
 - (3) For each F-atomic formula A, $\vdash_T A_-(A;A)$.
- (4) For each clause $\Sigma,\Pi\to\Delta$ in C, where Σ is a sequence of PUF-atomic formulas and Π is a sequence of N-atomic formulas or PUNUF-free formulas, if Δ is PUNUF-free or a P-atomic formula, then $\vdash_T A_+^{\$,k}(\Sigma),\Gamma\to\Delta$ for some number k; if Δ is a NUF-atomic formula, then $\vdash_T \Pi\to A_-^{\$,k}(\Sigma;\Delta)$ for some number k.
- (5) For each pair Σ , Σ ' of finite sequences of P \cup F-atomic formulas such that each formula in Σ occurs in Σ ', and for each N \cup F-atomic formula R,

$$\frac{1}{T} A_{+}(\Sigma') \rightarrow A_{+}(\Sigma),$$

$$\frac{1}{T} A_{-}(\Sigma;R) \rightarrow A_{-}(\Sigma';R),$$

and

· 🐧 ,

$$T \rightarrow A_{+}(\Sigma) \rightarrow A_{-}(\Sigma;R)$$
.

(6) For each finite sequence Σ of PUF-atomic formulas, each NUF-atomic formula R and each substitution θ ,

$$\begin{array}{c} \mathbf{A}_{+}(\Sigma) \theta \equiv \mathbf{A}_{+}(\Sigma\theta), \end{array}$$

and

$$T A_{\Sigma}(\Sigma;R) \theta \equiv A_{\Sigma}(\Sigma\theta;R\theta)$$
.

Suppose that the language of T contains all the symbols of LJ_[C \cup \$] other than symbols in F.

Then, for each finite sequent Σ of $P \cup F$ -atomic formulas

and each $(P,N,F)_+$ sequent $\Gamma \to \Delta$, $LJ_{=[C \cup S]} \Sigma,\Gamma \to \Delta$ implies $LJ_{+} A_{+}^{S,k}(\Sigma)$, $\Gamma \to \Delta$ for some number k.

Colloary 3. Let \mathbb{C} , \mathbb{S} , \mathbb{A}_+ , \mathbb{A}_- and \mathbb{T} be the same as in Theorem 1. Moreover suppose that

(7) for each finite sequence Σ of PUF-atomic formulas and each NUF-atomic formula R,

$$LJ_{\underline{\Gamma}}[\underline{\mathbb{C}}\cup\underline{\mathbb{S}}] \quad \Sigma \rightarrow A_{\underline{\Gamma}}(\Sigma)$$

and

$$LJ_{C \cup S}$$
 Σ , A_{C} ; $R) \rightarrow R$,

and

(8) $LJ_{=}[C \cup S]$ is an extension of T. Then, for each $(P,N,F)_{+}$ sequent $\Gamma \rightarrow \Delta$,

$$\Big|_{T\big[\big\{A_{+}^{\$,k}(\epsilon)\,\big|\,k\in\,\omega\big\}\big]} \quad \Gamma \,\rightarrow\, \Delta \text{ if and only if } \Big|_{LJ_{=}[C\,\cup\,\$]} \quad \Gamma \,\rightarrow\, \Delta.$$

Let $\mathbb C$ be a set of $P \cup N \cup F$ -clauses. Let Σ be a finite sequence of $P \cup F$ -atomic formulas, and A a $N \cup F$ -atomic formula.

A formula is a positive (P,N,F)-section of Σ for $\mathbb C$ if it has the form $\bigwedge \Gamma \supset \bigvee \Delta$, where

- (i) Γ is a finite sequence of formulas which are either N-atomic or $P \cup N \cup F\text{-free,}$
- (ii) Δ consists of at most one P-atomic or P \bigcup N \bigcup F-free formula,
- (iii) for some subsequence Σ' of Σ the sequent Σ' , $\Gamma \to \Delta$ belongs to \mathbb{C} ,
 - (iv) no formula occurs twice in Γ , and

- (v) each variable occurring free in $\Gamma \rightarrow \Delta$ occurs in Σ .
- A formula is <u>negative</u> (P,N,F)-<u>section</u> of Σ and R for $\mathbb C$ if it has the form $\bigwedge \Gamma$, where
- (i) Γ is a finite sequence of formulas which are either N-atomic or $P \cup N \cup F$ -free,
- (ii) for some subsequence Σ ' of Σ the sequent Σ ', Γ \to R belongs to \mathbb{C} ,
 - (iii) no formula occurs twice in Γ ,
 - (iv) each variable occurring free in Γ occurs in Σ or R.

Let $A_{\perp}(\Sigma)$ be the following formula:

M {A|A is a positive (P,N,F)-section of Σ for \mathbb{C} }

 $\bigwedge \bigwedge \{B \mid B \text{ is a P-atomic formula occurring in } \Sigma \}$.

Let $A_{(\Sigma;R)}$ be the following formula:

 $A_+(\Sigma) \supset \bigvee \{A \mid A \text{ is a negative (P,N,F)-section of } \Sigma \text{ and } R \text{ for } \mathbb{C}\} \vee R$

if R is N-atomic;

 $A_{+}(\Sigma) \supset W\{A \mid A \text{ is a negative } (P,N,F)\text{-section of } \Sigma \text{ and } R \text{ for } \mathbb{C}\}$ $\vee W\{\bar{s}=\bar{t} \mid P(\bar{t}) \text{ occurs in } \Sigma\}$

if R is an F-atomic formula of the form P(s).

The sequences A_+ and A_- are called the <u>canonical</u> $(P,N,F)_+$ sequence for \mathbb{C} and the <u>canonical</u> $(P,N,F)_-$ -sequence for \mathbb{C} , respectively.

Proposition 4. Let $\mathbb C$ be a $P \cup N \cup F$ -closed set of $P \cup N \cup F$ -clauses. Let A_+ and A_- be the canonical $(P,N,F)_+$ -sequence for $\mathbb C$ and $(P,N,F)_-$ -sequence for $\mathbb C$, respectively.

(1) If A is a P-atomic formula, then $\left|\frac{1}{LJ_{-}}A_{+}(A)\right| \rightarrow A$.

- (2) If A is an N-atomic formula, then $LJ_{\pm}A \rightarrow A(\epsilon;A)$.
- (3) If A is an F-atomic formula, then $LJ_A(A;A)$.
- (4) If Σ , $\Pi \to \Delta$ is a clause in \mathbb{C} , where Σ is a finite sequence of $P \cup F$ -atomic formulas and $\Pi \to \Delta$ is a $(P,N,F)_+$ sequent, and if Σ^* is a finite sequence of $P \cup F$ -atomic formulas such that each formula in Σ occurs in Σ^* and each variable free in $\Gamma \to \Delta$ occurs in Σ^* , then $\left| \frac{1}{LJ} \right| A_+(\Sigma^*)$, $\Pi \to \Delta$.
- (5) If $\Sigma_*\Pi \to R$ is a clause in \mathbb{C} , where Σ is a finite sequence of PUF-atomic formulas, Π is a sequence of N-atomic or PUNUF-free formulas and R is a NUF-atomic formula, and if Σ^* is a finite sequence of PUF-atomic formulas such that each formula in Σ occurs in Σ^* and each variable free in Γ occurs Σ^* or R, then $\left| \frac{1}{LJ_-}\Pi \to A_-(\Sigma^*;R) \right|$.
- (6) If Σ and Σ ' is finite sequences of P \bigcup F-atomic formulas such that each formula in Σ occurs in Σ ', and if R is a N \bigcup F-atomic formula, then

$$\begin{array}{c} \left| \begin{array}{c} \\ \text{LJ} \end{array} \right| A_{+}(\Sigma') \rightarrow A_{+}(\Sigma), \\ \\ \left| \begin{array}{c} \\ \text{LJ} \end{array} \right| A_{-}(\Sigma;R) \rightarrow A_{-}(\Sigma';R), \end{array}$$

and

$$\Big|_{T_{\bullet}T} \neg A_{+}(\Sigma) \rightarrow A_{-}(\Sigma;R).$$

(7) If Σ is a finite sequence of PUF-atomic formulas, R is a NUF-atomic formula and θ is a substitution, then

$$|_{\overline{LJ}_{-}} A_{+}(\Sigma) \theta \equiv A_{+}(\Sigma \theta),$$

and

$$\left|\frac{1}{LJ}\right| = A_{-}(\Sigma;R)\theta = A_{-}(\Sigma\theta;R\theta).$$

(8) If Σ is a finite sequence of $P \cup F$ -atomic formulas and

R is a $N \cup F$ -atomic formula, then

$$|_{LJ_{=}[C]} \Sigma \rightarrow A_{+}(\Sigma),$$

and

44

$$LJ_{[C]} \Sigma, A_{(\Sigma;R)} \rightarrow R.$$

Corollary 5. Let \mathbb{C} , A_+ and A_- be the same as in Proposition 4. Let \mathbb{S} be a finite set of (P,N,F)-basic sequents. Suppose that the sequent $\to \exists \, \overline{y} P(\overline{x},\overline{y})$ belongs to \mathbb{S} , where P is a predicate symbol in $P \cup F$ and \overline{x} is not empty. Then, for each $(P,N,F)_+$ sequent $\Gamma \to \Delta$, $\frac{1}{LJ_{=}[\{A_+^{\mathbb{S}},k_-(i) \mid k \in \omega\}]} \Gamma \to \Delta \text{ if and only if } \frac{1}{LJ_{=}[\mathbb{C} \cup \mathbb{S}]} \Gamma \to \Delta.$

<u>Proposition</u> 6. For each finite set \mathbb{A} of sentences there exist a finite set \mathbb{G} of new predicate symbols, a finite set \mathbb{C} of $P \cup N \cup F \cup G$ -clauses whose sequent formulas are quantifier free, and a finite set \mathbb{S} of $(P,N,F \cup G)$ -basic sequents such that $LJ_{=}[\mathbb{C} \cup \mathbb{S}]$ is conservative over $LJ_{=}[\mathbb{A}]$ and the sequent $J_{+}(\mathbb{C} \cup \mathbb{S})$ belongs to \mathbb{S} for some predicate symbol P in $P \cup F$, where \mathbb{R} is not empty.

Axiomatization Theorem. Let L be a first order language without function symbols. Let A be a finite set of sentences of L. Let P, N, F and G be mutually disjoint sets of predicate symbols with $P \cup N \cup F \subseteq L$ and $L \cap G = \emptyset$. Let C and S be a finite set of $P \cup N \cup F \cup G$ -clauses and a finite set of $(P,N,F \cup G)$ -basic sequents, respectively, such that $LJ_{\perp}[C \cup S]$ is conservative over $LJ_{\perp}[A]$, and for some predicate symbol P in $P \cup F \cup G$ the

sequent $\rightarrow \exists \bar{y} P(\bar{x}, \bar{y})$ belongs to \$, where \bar{x} is not empty. Let A_+ and A_- be the canonical $(P, N, F \cup G)_+$ -sequence for C and the canonical $(P, N, F \cup G)_-$ -sequence for C, respectively. Then the $(P, N, F)_+$ part of $LJ_=[A]$ is axiomatized by the system of axioms $\{A_+^{S,k}(\epsilon) \mid k \in \omega\}$.