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Embedding Theorem for Lattices with Complementation

Hiroakira Ono ( Hiroshima University )

/e 33 ‘1i A

§ 1, Introduction

In this paper, we will show embedding theorem for lattices
with cémplementationo Our aim is twofold; one is of course, a
study of lattice theory and the other is a semantical study of
some nonclassical logics. We will first explain this relationship
in the following.

As is well-known, the following representation theorem for
distributive lattices holds, which is proved by Birkhoff and
Stone ( see [1] ); a lattice is distributive if and only if
it is isomorphic to a ring of sets. Thus, every distributive
lattice can be embedded in a complete distributive lattice, which
is made of the power set of a set. This can be proved in the
following way. Let F*(L) be the set of all prime filters of a

given distributive lattice L, and A be the set of all sub-

Fx (L)

sets of F*(L)., Then, the mapping h : L —»A defined by

F*(L)

(1) h(a) = { F € F¥(L) ; a € F } for each a € L,
gives a lattice isomorphism.

This method can be applied to show the embedding theorem for
various algebras, which are distributive as lattices. For
example, let A be any Heyting algebra. Then, F*(A) is partiaily
ordered by the set inclusion < in this case, so we will take

the set of all closed subsets of F*(A), instead of the power

set, for AF*(A)O Here, we say that a subset S of a p.o.set )



is closed if

(2)  x €S and x <y imply y € S,
Then, it can be shown that AF*(A) is a Heyting algebra and
that the mapping defined similarly as (1) is an isomorphism for
Heyting‘algebras°

Here, we will call informally a set F*(A) a dual space for
a Heyting algebra A. In general, for any given class A of algebras,
a class M of structures, called the class of dual spaces for A,

will be required to satisfy at least the following ;

1) for each algebra A in A, we can construst a structure
X(A) in M,

2) for each X in M, we can construct an\algebra AX in A,

3) there exists an embedding h froh A to AX(A)’ for each
A in A. | |

From a logical point of view, the problem of finding a suitable
class of dual spaces for a given class of aigebras is closely
related to the problem of finding a suitable Kripke-type ( or
relational ) semantics for a given logic. Thié relationship

will be shown schematically as follows:

logic lattice theory
logic L the class A of algebras
( e.g., the intuitionistic corresponding to L

logic ) |( e.g. the class of

‘Heyting algebras )

Kripke-type semantics for L a dual space for A

( e.g. partially ordered sets )] ( e.g. partially ordered sets )
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completeness theorem for L embedding theorem for each
with respect to the Kripke- algebra in A, via its dual

type semantics space

In the following two sections, we will introduce dual spaces
for various lattices with complementation and prove the embedding
theorem for them, by using Goldblatt's method in [ 3], which is
based on the idea developed in [2]. In §4, we will show how
these results can be translated into completeness theorem for

corresponding logics.

§ 2, Distributive lattices with complementation

We will consider four kinds of complementations on lattices.
Let L be a lattice having the minimum element O and the maximum 1,
and ' Dbe a unary operation on L. We will consider the follow-

ing conditions on ' ;

() a Na' =90 for each a,

(2) a < b' dimplies b < a', for each a, b,

(3) (a')" < a for each a,

(4) a Nb=0 if and only if a < b', for each a, b.

Then, the operation ' is
a weak pseudo-complementation, if it satisfiés (1) and (2),
a pseudo-complementation, 1if it satisfies (4),
& quasi-complementation, 1if it satisfies (2) and (3),
an ortho-complementation, 1if it satisfies (1), (2) and (3).
We can show easily the following.
LEMMA 1. 1) Any pseudo-complemented lattice is a weakly

pseudo-complemented lattice.



C1R3

2) Any pseudo-complemented lattice satisfying that (a')' < a
for each a 1is an orthomodular lattice, but the converse does
not hold.

3) Any ortho-complemented distributive lattice is a Boolean

algebra.

In this section we will consider distributive lattices with
complementation, We will introduce six kinds of spaces, in the
following.

-space is a triple < X, < ; L > such

DEFINITION 1, 1) An SI

that
(1) <X, £ > 1is a nonempty p.o.set with a partial order 2z,
(2) 4 is an irreflexive, symmetric relation on X satisfying
that x 4 y and y £z imply x . z for every x, y, Z.
2) An SII-space is a triple < X, A e such that
(1) < X, <> 1is a nonempty p.o.set with a partial order <,
(2) L is a binary relation on X satisfying the condition that

XLy if and only if there exist no z's such that x <

[ A
N

and y < z,
3) An S*-space is a quadrupie <X, £, *; 1> such that
(1) <X, <> 1is a nbnémpty p.o.set with a partial order <,
(2) * is a unary operation on X such that i) (x*)* = x
and ii) y < x* implies x < y¥*,
(3) 4 is a binary relation on X satisfying the condition that
Xx Ly if and only if y £ x*.
4) A To—space is a pair < X ; 4 > of a nonempty p.o.set X and

a symmetric relation & on X,

9) A T_-space < X ; L > 1is a To—space satisfying that L is also

I

irreflexive.
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6) AT -gpace is a pair < X ; L > of a nonempty set X and a

I1T1
binary relation 4 satisfying the condition that

x Ly 1if and only if x # y.

In each space S in the above definition, the set X is called

the underlying set of S. The following can be easily verified.

LEMMA 2, 1) If <X, < ; & > is an SI—space then < X ; 1 >
is a TI—spaceo
2) Any SII—space is an SI—space°

3) The relation A in any S*-space is symmetric.

‘4) Any

TIII—space is a TI—space°

5) Let < X, £ ;4L > Dbe an SII—space with the trivial order <,
i.e., X <y implies x =y for each x, y. Then, < X ; o >
is a TIII—spaceo Conversely, every TIII—space supplemented by
the trivial order is an SII—spaceo |

6) Let < X, <, * ; L > be an S*-space with the trivial ofder <
such that =x* = x holds for each x. Then < X ; L > is a TIII—
space., Conversely, each T -space < X ; L > supplementéd by

ITI

the trivial order and a unary relation * satisfying x* = x,

is an S*-space.

Let 1 be any fixed binary relation on a set X. For each
subset S of X, define a subset s* of X by
S*={x€X; foreachy, y €S implies x 1.y }.
For any p.o.set X, a subset S of X is said to be closed if
X €8S and x <y imply y € S.

LEMMA 3. Let S be an SI—space or an S__-space Oor an S*-

II
space, with the underlying set X. If S, S1 and 82 are closed
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subsets of X then S , S,V 82 and slrw 82 are also closed.
Moreover, if Si is a closed subset of X for each i € I then

U N
both icT Si and iel Si are also closed.

LEMMA 4, For each closed subsets S, and S, of X,

1 2
Q@ = L L\~
81USZ— ( 8,7 N8, )
holds, if S is either an S*-space or a TIII—space;
Proof,  Since S,V S, C ( 'Sl"' N Sz" Yy* holds always, we

have only to show the converse inclusion. Suppose that S ( =

<X, <, * ;4 >) 1is any S*-space. We assume that x is in

( Sl*/\ 82* )*. Then, for every =z € Slqu SéL, x Lz, i.e.,

. ' FU 4 . o L 4
z £ x*, Hence, x* ¢ S1 f\Sz . So, either x* ¢ S1 or x* ¢ 82 .
If x* ¢ Sl* then x* L u -does not hold for some u € Slo This

means that u < (x*)* = x for some u € Slo Hence, X € Slo

Similarly, if x* £ S,* then x € S,. Therefore, x € S, U S,.

2'0
By using Lemma 2 6), we can show our lemma when S is a TIII_
space. We remark here that every subset of X is closed if

<X, £> 1is a p.o.set with the trivial order <.

LEMMA 5., 1) Let S be an SI—space ( or an S_._-space or an

I1
S*-space ), with'the underlying set X, Then, the set AS of all
closed subséts of X fofms a complefe, weakly pseudo—complemented
( or, pseudo-complemented or quasi-complemented, respectively )
distribufive’lattice with respect to U, N and &,

2) Let S be a T ‘

I p71-Space ) with the underlying

set X. Then, the power set BS of X forms a complete, weakly

-space ( or a T

pseudo-complemented ( or, ortho-complemented, respectively )

distributive lattice with respect to U, N and L.

- 6 -
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Let L be any lattice with the complementation '. A nonempty
subset F of L is a filter ( of L ), if

(1) a €EF and a < b imply b € F,

(2) a €F and b € F imply a n b € F,
A filter F of L is proper 1if F is a proper subset of L. More-~
over, a proper filter F is prime 1if

(3) a Ub € F implies either a € F or b € F.
The set of all proper filters of L is denoted by F(L) and the
set of all prime filters of L is denoted by F*(L). Next, we
will define a binary relation L on F(L) by

FALG if and only if a € F and a' € G for some a € L,

LEMMA 6, 1) If L is a weakly pseudo-complemented distributive
lattice then < F*(L), € ; L > 1is an SI-space, and hence
< F¥(L) ; L > is a TI—spaceo Similarly, if L is a pseudo-
complemented distributive lattice then < F*(L), € ;1L > is an
SII—space°
2) If L is a quasi-complemented distributive lattice then
< F¥(L), €, * ;1L > is an S*-space, where * is defined by

F* = { x; x'" ¢F }.

3) If L is an ortho-complemented distributive lattice then
< F¥(L) ; L > is a TIII—spaceo

Proof. 1) We will show only that .L is an irreflexive,
symmetric relation on F*(L). Suppose that F € F*(L) and a, a' € F
for some a., Then a n a' = 0 € F, But this contradicts the fact
that F is proper. Hence F L F does not hold. Next suppose
that F 1l G. Then there exists a € L such that a € F and

a' € G. Since a < (a')' holds in every weakly pseudo-complemented



lattice, a' € G and (a')' € F hold., Hence, G L F, Next
suppose that L is a pseudo-complemented lattice. We will show
that F AL G 1if and only if there are no H's in.F*(L) such that
FCH and G € H. We assume first that F L G, FCH and G < H
for some H € F*(L). Then for some a € L, a € F&€H and a' € G
< H. Therefore, a n a' = 0 € H, But, this is a contradiction,
Conversely, suppose that F L G does not hold. Let E be the
filter generated by F UG. If E is not proper then there exist

a € Fand b € G such that a n b = 0. Since L is a pseudo-
complemented lattice, b < a' follows ffom this., Thus, a € F
and a' € G. This implies F L G, But this is a contradiction,
So, E is proper. Therefore, E can be extended to a prime filter
H, which contains both F and G.

2) We can show easily that (F*)* = F and that G € F* implies
F <« G*, Next we will show that F L G if and only if G & F*,
Suppose that F 1. G. Then GLF, so a € G and a' € F for some
a, Hence, a € G - F*, The converse of these implications holds
also, |

3) We will show that F L G 1if and only if F # G, By 1),

L is irreflexive, so F L G implies F # G. Suppose that

F# G, Let a € F - G, Since L is a Boolean algebra by Lemma 1 3),

a Ua' =1 holds. On the other hand, since G is prime and

a U a' 1 e€G, a' € G, Thus, F LG,

For each complemented distributive lattice L, the dual space
defined in Lemma 6 is denoted by S(L). Combining Lemma 5 with

Lemma 6, we have the following.
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THEOREM 7 ( Embedding theorem for complemented distributive
lattices ) Let L be a weakly pseudo-complemented distributive
lattice., Then L can be embedded in a complete, weakly pseudof
complemented distributive lattice AS(L) . In fact, the mapping

h : L —A defined by

S(L)
h(a) = { F ¢ F*(L) ; a € F } for each a € L,
gives a lattice isomorphism. ( The mapping h can be considered
also as a lattice isomorphism from L to BS(L)’ since AS(L) is
a subalgebra of BS(L) in this case. ) Similar result holds also
for pseudo-complemented or quasi—complemented distributive lattices,
Similarly, the mapping h : L __*'BS(L) defined as the above gives
a lattice isomorphism, when L is an ortho-complemented lattice,
Proof. It suffices to show that h is an isomorphism. Here
we will show only that h(a') = h(a)*. Let F € h(a'). Then,
a' € F. Thus, F.L G for every G € h(a). Conversely, suppose
that F ¢ h(a'). We will show that there exists a prime filter
H in h(a) such that F 1L H does not hold. Notice here that
a > 0, since otherwise a' = 1 € F. Now define the set I by
I =1{G; Gis a proper filter such that a € G
and F L G does not hold }.
Let F, = { x; a<x 1}, Then, F, € T. For, if F L F, then
b € F and b' € F, for some b. So, a < b' and therefore

b < a'. Hence, a' € F. But this is a contradiction. Thus, I

there exists a maximal element

is nonempty and inductive. So,

Hin I by Zorn's Lemma., Moreover, we can show that H is prime.

§ 3. Nondistributive lattices with complementation
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In this section, we will deal with dual spaces for non-
distributive lattices with complementation. We remark here that
prime filters of lattices does not work well in nondistributive

lattices, So, it is necessary to modify our approach developed

in the previous section,

DEFINITION 2, 1) A UO—space is a triple < X, < ;a4 > such

that

(1) < X, <> 1is a nonempty meet-semilattice with respect to
the partial order X,

(2) L 1is a symmetric relation satisfying that for each x, vy,

z € X

s
i, if x 1y and y < z then x L z,
ii. if xay and x4t z thenm x L (ynz).
2) A UI—space is a Uo—space <X, £ ;4 > such that 1 is also
irreflexive.
3) A Uyr,;-space is a triple < X, ; ; L > such that
(1) < X, < > 1is a nonempty meet-semilattice with respect to

the partial order <,

(2) AL 1is a binary relation on X satisfying the condition
that

i, x Ay 1if and only if there exist no z's such that

X <z and y £ z,

ii., if xLy and x ALz then x L (y NnNz),

Similarly as Lemma 2, we have the following,
LEMMA 8. 1) 1If <X, <; L > is a UO—Space ( or a UI—

space ) then < X ; L > is a To-space ( or a TI~space-)°

- 10 -
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2) Any UII-space is a U_-space.

I

< ;&> bea UOFspaceo Then, a subset S of X is

said to be N-closed if it is closed and if x, y € S implies'

Let < X

3

X Ny €S, Also, a subset S of X is said to be regular if (St)*

= S. For each U.,-space S with the underlying set X, the set of

0]
all N-closed subsets ( or the set of all regular subsets, or the

set of all Nn-closed regular subsets ) of X is denoted by CS

2
( or Dg or Eg, respectively ). Next, we will define 8,V 8§,
and S1 V% S

for each subset S, and 82 of X by

2 1
Sz if S1 =0,
S1 \/1 Sy = S1 if S2 = 0,
{x; ynz<x for some y € S, and z € S, }
otherwise,
= L L4
51V, 8, = (8,7 NSy )
Moreover, for each set -{Si}iEI of subsets of X, define
}Vi Si = { x ; for some m and some il,oea,lm €I, Vi € Si
ie J J

A
b
—

(j=1,...,m ) and Vi N oo Ny

1 m -
_ 'l L\
i\e/si_(iEISi)"

LEMMA 90' Let < X, < ; 4 > be any Uo-spaceo

1) If 8, S1 and S2 are N-closed subsets of X then S , Slfﬂ 82

and Sl\/1 82 are also N-closed. Moreover, if Si is a N-closed
subset of X for each i € I then both () S. and V; S. are
ier i . } i
1€
also N-closed.

2) If 8, S; and S, are regular then S , S;,MN S, and S; Vg 8,

2
are also regular. Moreover, if Si is regular for each i € I then
poth [V S. and \, S. are also regular.

iel i 16% i

- 11 -
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. o .
We can see that Sl.\& 82 ( or Sl.Vb So ) is the smallest

N-closed ( or regular ) subset containing both S, and 82, if both

1
S1 and 82 are n-closed ( or regular, respectively ).

~LEMMA 10, 1) Let:'S be a UI—space ( or a UII—sbace ). Then,
CS fqrms a complete, weakly pseudo—complemented ({or, pseudo-
complemented ) lattice with respect to \ll,f\ and *,

2) Let S be a To—space ( or a T .-space ). Then, DS forms a

I
complete, quasi-complemented ( or ortho-complemented ) lattice
with respect to Vé,l\ and *o‘: | | |

3) Let S be a U04space (/or a UI—space, or a UII—space ). Then,
ES forms a complete, quasi—complemented-1attice ( or ortho-

complemented lattice, or pseudo-complemented lattice satisfying

(a')' < a, respectively ) with respect to V,, N and -
= ‘ k 21!

We can observe that the set F(L) of all proper filters of
a lattice L forms a meet-semilattice with respect to the set
inclusion. Now, we have the following lemma, which corresponds
to Lemma 6.

LEMMA 11, 1) 1If L is a weakly pseudo-complemented ( or, a
pseudo-complemented, or a quasi-complemented ) lattice, then
<F(L), €; L > is a UI—space ( or a UII—space, or a Uo—space,
respecfively )

2) If L is a quasi—complemented ( or an ortho-complemented )

lattice then < F(L) ; L > 1is a To—space ( or a T . -space ).

I
Proof. We will show only that F AL G and F L H imply

FL(GNH ) for every F, G, H € F(L). By the assumption,

there exist a and b such that a € F, a' € G, b € F and b' € H.

Then, clearly a N b € F and a' U b' € GMN H. Notice here

- 12 -
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that a' U b' < (a nb )’ holds, whenever the condition
a < b' implies b < af for each a, b
is satisfied. Hence, a nb &€F and (a nb )" € GNH. Thus,

FL(C(GNH )., By using Lemma 8 1), 2) can be derived from 1),

THEOREM 12 ( Embedding theorem for complemehted, nondistribu—
tive lattices ) 1) Let L be a weakly pseudo-complemented (‘or
a pseudo-complemented ) lattice., Then, L can be embedded in a
complete, weakly pseudo-complemented ( or pséﬁdo—complemented )

lattice In fact, the mapping h' : L — CS(L) defined

CS(L)D
by

h'(a) = { FE€ F(L) ; a €F } for each a € L,
gives a latticé isomorphismo ' |
2) Similarly, the mapping h' : L _—’E%kLJ givss a lattice
isomorphism, when L is a quasi-complemented lattice or an ortho-
complemented lattice, or a pseudo-complemented lattice satisfying
(a')' < a.
3) When L is either a quasi-complemented or an ortho-complemented
lattice, ES(L) is a subalgebra of DS(L)' Thus, h' can be
also regarded as a lattice isomorphism of L into DS(L)"in these

cases,

The above embedding theorem for each ortho-complemented
lattice L into another lattice DS(L) is an algebraic version

of the result proved by Goldblatt [3].
§ 4. Completeness theorem

By using these embedding results, we can introduce Kripke-

type semantics for logics corresponding to these lattices and

- 13 -



show the completeness theorem for them, as we have mentioned in
§ 1, Here, we will take the weakly pseudo-complemented logic as
an example., Other logicsbcan be treated quite similarly.

We will take A, Vv and - as 1ogica1 connectives., Formulas
can be defined in the usual way. Let L be any weakly pseudo-
complemented lattice. An assignment f of L is a mapping from
the set of propositional variables to L. Then f can be extended
to a mapping from the set of formulas to L, following the require;

ments;

(1) f( A ANB) £f(A) n £(B),

(2) f( AVB)

f(A) U £(B),

(3) f( =A ) = £(A)'.

We say that a formula B is derivable from formulas Al’ eoo Am
in the weakly pseudo-complemented logic Lup and write
Al eeo 5 AL I B,
if for every weékly pseudo-complemented lattice L and every
assignment f of L,
f(Al) N ooe N f(Am) < £(B) (or, £f(B) =1, whenm = 0 ),
holds. ( of course, it is possible to define the logic LWP in

a purely syntactical_wayo But this is not essential in thé follow-
ing argument. )

Next, we will introduce a Kripke-type semantics for LWPO We
call any U;-space an L, -structure. A valuation E on an Lyp~
structure < X, < ;4 > 1is a relation between the set X and the
set of propositional variables satisfying that for each a, b € X
and each propositional variable p,

(1) if afFp and a <b then b [ p,

(2) if afF p and bfEp then anbf p.

- 14‘_
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Each valﬁation E can be extended to a relation between X andl
the set of formulas‘by the requirementé;
(3) alk A if and only if b J A for each b such that
| - a4 b,
(4) alk A AB if and only if ak A and a f B,
(5) a F AV B if and only if i) for some b, c such that
bnec<a, bfAand c E B, or ii) a F A, or iii) a k
‘We can show that for each formula A; | |
(6) if afF A and a < b then b [ A,
(7) if ak A and bE A then a nb [ A.
‘This can be proved quite similarly as Lemma 9 1), We say that
a formula A is a semantical consequencé of forﬁﬁlas Al,ouo, A

m

with respect to LW?-structures, ;f' for each LWP—structure
<X, < ;4 > and each valuation F on it, a F.Al , «o. and
a [ Am imply a F B for every a € X. By using Lemma 10 1)
and Lemma 11 1), we have the following theorem.

THEOREM 13 ( Completeness theorem for the weakly pseudo-

complemented logic L For each formula A A _, B,

WP ) 1 " 2 "m?
B is derivable from Al’ oo Am in pr if and only if B is

a semantical cbnsequence of A Am with respect to L. -

17 c°° o WP

structures.

A different approach to Kripke-type semantics for ( non-
distributive ) logics with some weak negations will be seen in
[3]. By combining the method in [5] with the method developed
in this paper, we have obtained the completeness theorem for

the classical logic without the contraction rules in [6]. An

- 15 -~
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interesting problem which remains open is to find a suitable

class of dual spaces for orthomodular lattices, or equivalently,

to find a suitable Kripke-type semantics for the orthomodular
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