On the indices and integral bases of abelian biquadratic fields

By

Toru Nakahara

- 1. Introduction. Let K be an algebraic number field over the rationals Q with finite degree. Z and \mathcal{O}_K denote the ring of rational integers and the integer ring of K respectively. If $\mathcal{O}_K = Z[\alpha]$ for some number α in K, it is called that \mathcal{O}_K has a power basis. For a number β in \mathcal{O}_K we denote by Ind β the group index $(\mathcal{O}_K: Z[\xi])$ if β is a primitive element of K and 0 otherwise. Then the index m(K) of any field K is defined by g.c.d. $\{\operatorname{Ind} \xi: \xi \in \mathcal{O}_K\}$. The minimum index m(K) of any K is defined by $\min \{\operatorname{Ind} \gamma: \gamma \in \mathcal{O}_K, Q(\gamma) = K\}$. In $\S 2$ we shall give an estimate of the index m(K) without using the decomposition theory of primes when K is any abelian biquadratic field. In $\S 3$ we shall investigate some relations between m(K) and an integral basis related to a problem of Hasse and construct such a field K that the minimum index m(K) is greater than any given integer N applying a method of M. Hall[2].
- 2. An estimate of the indices. By [8] it is well known that if a prime p divides the index m(K), then p is smaller than the degree [K:Q].

In our situation we obtain more precisely the next lemma.

Lemma 1. For any abelian biquadratic field K over Q it holds that if the number $2^e3^{e'}$ exactly divides the index m(K),

then $e \le 2$ and $e' \le 1$. Especially if the discriminant d(K) of a field K is even, then e = 0.

Proof. i) The cyclic cases. Let \mathcal{K} be a biquadratic character with odd conductor n determined by the biquadratic residue symbol. k_n denotes the n-th cyclotomic field $Q(\zeta_n)$, herein $\zeta_n = \exp(2\pi i/n)$. Let G be the Galois group of k_n/Q . The group $<\mathcal{K}>$ is a cyclic subgroup with order 4 of the character group of G. Let K denote the subfield of k_n corresponding to the kernel H of \mathcal{K} . Then we have $K = Q(\gamma)$ with the Gauss period $\gamma = \sum_{x \in \mathcal{H}} \zeta_n^x$. We fix an element δ in G such that

 $\chi(\delta) = i$, and denote $\delta(\xi)$, $\delta^2(\xi)$, $\delta^3(\xi)$ by ξ' , ξ'' , ξ''' respectively for ξ in K.

First we consider the case of odd conductor n. Since the set $\{1, \gamma, \gamma', \gamma''\}$ makes an integral basis of K, it is enough for computation of the Ind \S to choose $\S = x\gamma + y\gamma' + z\gamma''$ for \S in K. Let $n = \ell m$ be square-free for odd integers $\ell = a^2 + 4b^2$, m where any prime factor of ℓ is congruent to 1 modulo 4 and $\lambda = a + 2bi \equiv 1 \mod 2(1-i)$. Then by using the Gauss sum $\tau(\chi) = \sum_{\chi \in G} \chi(\chi) \zeta_{\chi}^{\chi}$ attached to χ and the Jacobi sum $\tau(\chi)^2 / \tau(\chi^2)$ we obtain $\text{Ind } \S = \sqrt{\lceil d(\S)/d(K) \rceil} = \lceil cN\alpha_n \rceil$, where $\alpha_n = (cm + d\sqrt{\ell})/2$, $c = ((x-z)^2 - y^2)b - (x-z)ya$, $d = ((x-y+z)^2 - \chi(-1) \times ((x-z)^2 + y^2)m)/2$. Herein $d(\S)$, N mean the discriminant of a number \S , the norm with respect to $Q(\sqrt{\ell})/Q$ respectively.

i), If $\ell \equiv 1 \mod 8$ and $b \equiv 0$, 4 mod 8 (resp. $b \equiv \pm 2 \mod 8$), then for $\S = 2\gamma + \gamma' - \gamma''$ (resp. $2\gamma \pm \gamma'$ from $\chi(-1) = \begin{cases} 1, -1, \\ -1,$

then for $\xi = \gamma + \gamma' - \gamma''$ we get Ind $\xi \equiv 1 \mod 2$. i)₃ If $m \equiv 0 \mod 3$ and $a \equiv 0 \mod 3$ (resp. $a \not\equiv 0 \mod 3$), then we choose $\xi = \gamma$ (resp. $\gamma + \gamma'$). Thus we have Ind $\xi \not\equiv 0 \mod 3$. i)₄ If $m \not\equiv 0 \mod 3$ and $a \equiv 0 \mod 3$, then $b \not\equiv 0 \mod 3$ and for $\xi = \gamma \pmod 4$ and $a \equiv 0 \mod 3$, then $b \not\equiv 0 \mod 3$ and $a \equiv 0 \mod 3$, then $a \equiv 0 \mod 3$ and $a \equiv 0 \mod 3$. When $a \equiv 0 \mod 3$ and $a \equiv 0 \mod 3$ and $a \equiv 0 \mod 3$. For $a \equiv 0 \mod 3$ and $a \equiv 0 \mod 3$ and $a \equiv 0 \mod 3$. For $a \equiv 0 \mod 3$ and $a \equiv 0 \mod 3$

Next we estimate the case of even conductor. At first we consider the case of $\chi = \chi_o^{(\nu)} \chi_\ell \psi_m$, $n = 16\ell m$, $\ell m \equiv 1 \mod 2$, where $\chi_o^{(\nu)}(x) = (-1)^{\nu(\chi-1)/2}$ is are the even and the odd biquadratic characters with conductor 16 for $\nu = 0$ and 1 respectively, and χ_ℓ , ℓ_m are the biquadratic, the quadratic characters with conductors ℓ , ℓ_m are the biquadratic, the quadratic characters with conductors ℓ , ℓ_m respectively. From $\chi((n/2) + 1)$ = -1, it follows that $\chi'' = \sigma^2(\eta) = \sum_{\chi \in \mathcal{H}} \zeta_n^{((n/2)+1)\chi} = -\sum_{\chi \in \mathcal{H}} \zeta_n^{\chi} = -\gamma$. However it is known that $\{1, \gamma, \gamma', \sqrt{f/2}\}$ is an integral basis of ℓ_m , where ℓ_m and ℓ_m and ℓ_m is the conductor of ℓ_m and ℓ_m is the conductor of ℓ_m and ℓ_m is the conductor of ℓ_m where ℓ_m is the conductor of ℓ_m and ℓ_m is the conductor of ℓ_m is the conductor of ℓ_m and ℓ_m is the conductor of ℓ_m is the conducto

and $m \not\equiv 0 \mod 3$, then $\operatorname{Ind} \xi_1 \equiv \pm 3 \mod 9$. If $a + 2b \equiv \pm 3 \mod 9$ (resp. $\not\equiv 0 \mod 3$) and $m \equiv 0 \mod 3$, then for $\xi_2 = \gamma + (\sqrt{f/2})$ we get $\text{Ind } \xi_2 = |a + 2b| |(a + 2b)^2 m^2 - 8\ell| \equiv \pm 3 \mod 9$ (resp. $\not\equiv 0 \mod 3$). If $a + 2b \equiv 0 \mod 9$ and $m \equiv 0 \mod 3$, then a - 2b $\not\equiv 0 \mod 3$ holds. Thus for $\xi_3 = \eta + \eta' + (\sqrt{f/2})$ we have Ind ξ_3 $\equiv 2|a-2b|\ell \not\equiv 0 \mod 3$. In the case of $(a+2b)m \not\equiv 0 \mod 3$, we have Ind $\xi_1 \not\equiv 0 \mod 3$ for $a \not\equiv -b \mod 3$, and put $\xi_2 = \gamma + \gamma^{\bullet}$, then Ind $\xi_{4} \equiv \pm 3 \mod 9$ for $a \equiv -b \mod 3$. If $a + 2b \equiv 0 \mod 9$ and $m \not\equiv 0 \mod 3$, then we have Ind $\xi_{\downarrow} \not\equiv 0 \mod 9$. Therefore we obtain e = 0 and $e' \le 1$. Secondly we treat the case of $\chi = \chi_{\ell} \psi_m$, $n = \ell m$, $m \equiv 0 \mod 2$. In this case the set $\{1, \gamma, \gamma', \gamma''\}$ is also not an integral basis of K. But $\{1, \gamma, \gamma', (1 + \sqrt{\ell})/2\}$ is an integral basis, where $d(K) = \ell n^2$, $f = \ell[3]$. Then for $\xi = x \eta + y \eta' + z(1 + \sqrt{\ell})/2$ we have Ind ξ = $|cN\alpha_f|$, where $\alpha_f = cm + d\sqrt{f}$, $c = -xya + (x^2 - y^2)2b$, $d = (x^2 + y^2)(m/2) - \alpha(-1)z^2$. For $\xi_1 = \gamma + \gamma' + (1 + \sqrt{\ell})/2$ we get Ind $\xi_1 \equiv 1 \mod 2$. Put $\xi_2 = \gamma + \gamma'$. If $abm \not\equiv 0 \mod 3$, then Ind $\xi_2 \not\equiv 0 \mod 3$. We choose $\xi_3 = 7$, $\xi_4 = 7 + (1 + \sqrt{\ell})/2$. If $a \equiv 0 \mod 3$, then from $b \not\equiv 0 \mod 3$ we have $\text{Ind } \xi_3 \equiv \pm 3$ mod 9 for $m \not\equiv 0 \mod 3$ and $\operatorname{Ind} \xi_{\mu} \not\equiv 0 \mod 3$ for $m \equiv 0 \mod 3$. If $b \equiv 0 \mod 3$, then from $a \not\equiv 0 \mod 3$ we obtain $\operatorname{Ind} \xi_1 \not\equiv 0$ mod 3 for $m \not\equiv 0 \mod 3$ and $\operatorname{Ind} \xi_i \equiv \pm 3 \mod 9$ for $m \equiv 0 \mod 3$. Thus we have e = 0 and $e' \le 1$.

ii) The non-cyclic cases. Without loss of generality we can set $K = Q(\sqrt{\ell m_1}, \sqrt{\ell m_2})$, where $\ell m_1 m_2$ is a square-free integer and $\ell > 0$. For brevity we denote $(1 + \sqrt{\ell m_1})/2$, $(1 + \sqrt{\ell m_2})/2$ $(\sqrt{\ell m_2} + \sqrt{m_1 m_2})/2$ by α , β , γ respectively. ii), If $\ell m_1 \equiv 1$, $\ell m_2 \equiv 2$, 3 mod 4, then $\{1, \alpha, 2\beta - 1, \gamma\}$ is an integral basis

of K and the field discriminant $d(K) = 16 \ell^2 m_1^2 m_2^2$ holds. For $\xi_1 = \alpha - (2\beta - 1) + 2\gamma$ we can compute Ind $\xi_1 \equiv \ell m_i^2 \equiv 1 \mod 2$. If $(\ell - m_2)m_i \not\equiv 0 \mod 3$, then Ind $\xi_i \not\equiv 0 \mod 3$ follows. If $m_1 \equiv 0 \mod 3$, then for $\xi_2 = \alpha + (2\beta - 1)$ we have $\operatorname{Ind} \xi_2 \equiv \ell^2 m_2$ $\not\equiv 0 \mod 3$. If $\ell - m_2 \equiv 0 \mod 3$, then $\ell m_2 \not\equiv 0 \mod 3$. We can restrict $m_1 \not\equiv 0 \mod 3$. In the case of $\ell - m_2 \equiv 0 \mod 9$, we have $\ell - 4m_2 \not\equiv 0 \mod 9$. Then Ind $\xi_1 \not\equiv 0 \mod 9$. In the case of $\ell - m_2$ $\equiv \pm 3 \mod 9$, for $\xi_3 = \alpha + (2\beta - 1) + \chi$ we get Ind ξ_3 $\equiv |(\ell - m_2)m_1^2| \equiv \pm 3 \mod 9$. Thus we obtain e = 0 and $e' \leq 1$. ii)₂ if $\ell m_i \equiv 3$, $\ell m_2 \equiv 2 \mod 4$, then $\{1, 2\alpha - 1, 2\beta - 1, \delta'\}$ is an integral basis and $d(K) = 64 \ell^2 m_1^2 m_2^2$. By $\ell \equiv 1 \mod 2$, $\ell-m$, $\equiv 2 \mod 4$ for ξ , $= \chi'$ we have Ind ξ , $\equiv 1 \mod 2$. Next if $(\ell - m_1)m_2 \not\equiv 0 \mod 3$, then Ind $\xi_1 \not\equiv 0 \mod 3$ holds. If $m_2 \equiv 0$ mod 3, then for $\xi_2 = (2\alpha - 1) + (2\beta - 1)$ we have Ind ξ_2 = $|(4\ell)^2 (4m_2 - m_1)| \neq 0 \mod 3$. If $\ell - m_1 \equiv 0 \mod 9$, then $\ell m_1 \neq 0$ mod 3. We can restrict $m_2 \not\equiv 0 \mod 3$. For $\xi_3 = 2(2\beta - 1) + \chi$ Ind $\xi_3 \equiv |(-m_2)(25\ell - m_1)(25m_2)| \equiv \pm 3 \mod 9$ holds. If $\ell - m_1$ $\equiv \pm 3 \mod 9$, then Ind $\xi_1 \equiv \pm 3 \mod 9$. Therefore we have e = 0 and $e' \le 1$. ii)₃ If $\ell m_1 \equiv \ell m_2 \equiv 1 \mod 4$, then $\{1, \alpha, \beta, \alpha\beta \pm ((\ell-1)/4)(2\ell-2\beta+1)\}$ for $\ell \equiv m_1 \equiv m_2 \equiv 1 \mod 4$ and $\{1, \alpha, \beta, \alpha\beta + (1/2) \mp ((\ell-1)/4)(2\ell-2\beta+1)\}$ for $\ell \equiv m_1 \equiv m_2 \equiv 3 \mod 4$ are integral bases, where the sign is positive if and only if $m_1 < 0$ and $m_2 < 0$. For any integer ξ in K we have Ind $\xi \equiv 0 \mod 2$. Moreover in the case of $m_1 - m_2$ $\equiv 4 \mod 8$ (resp. $\equiv 0 \mod 8$), for $\xi_1 = \alpha + \beta$ (resp. $2\alpha + \beta$) we get Ind $\xi_1 \equiv 4 \mod 8$. If $\ell(m_1 - m_2) \not\equiv 0 \mod 3$, then Ind ξ_1 \neq 0 mod 3. We denote by δ the fourth numbers of the integral bases. If $\ell \equiv 0$ and $m_1 - m_2 \not\equiv 0 \mod 3$, then for $\xi_2 = \lambda + \beta + 2\delta$

we have $\operatorname{Ind} \xi_2 \equiv |\operatorname{m}, \operatorname{m}_2(\operatorname{m}, -\operatorname{m}_2)| \neq 0 \mod 3$. If $\ell \neq 0$ and $\operatorname{m}_1 - \operatorname{m}_2 \equiv 0 \mod 9$, then $\operatorname{m}_1 \operatorname{m}_2 \neq 0 \mod 3$ holds. If for $\xi_3 = 2 \mathcal{K} + \beta$ Ind $\xi_3 = |4\ell^2(\operatorname{m}_2 - 4\operatorname{m}_1)| \equiv 0 \mod 9$, then we have $3\operatorname{m}_1 \equiv 0 \mod 9$. This is a contradiction. If $\ell \neq 0 \mod 3$ and $\operatorname{m}_1 - \operatorname{m}_2 \equiv \pm 3 \mod 9$, then $\operatorname{Ind} \xi_1 \equiv \pm 3 \mod 9$. Next if $\ell \equiv 0 \mod 3$ and $\operatorname{m}_1 - \operatorname{m}_2 \equiv \pm 3 \mod 9$, then $\operatorname{Ind} \xi_2 \equiv \pm 3 \mod 9$. Finally if $\ell \equiv 0 \mod 3$ and $\operatorname{m}_1 - \operatorname{m}_2 \equiv 0 \mod 9$, then for $\xi_4 = \beta + 2\delta$ we have $\operatorname{Ind} \xi_4 \equiv \pm 3 \mod 9$. The estimates of ii) $_{\ell \sim 3}$ imply $1 \leq e \leq 2$ and $e' \leq 1$. Therefore we have proved Lemma 1.

3. Results. Works related to the problem of Hasse are found in [1], [4], [5] and the references mentioned in [7]. From [6] and [7] we have

Theorem 1. There exist infinitely many non-cyclic but abelian (resp. exist cyclic) biquadratic fields over Q whose integer rings have a power basis.

In our case by Lemma 1 the index m(K) is not larger than 12. In fact it follows

Theorem 2. There exist infinitely many such abelian biquadratic fields K over Q that the index is equal to 12 (resp. 6) and that neither $\{1, \alpha, \alpha^2, \beta\}$ nor $\{1, \alpha, \beta, \alpha^3\}$ (resp. $\{1, \alpha, \beta, \alpha^3\}$) for any α , β in K forms (resp. does not form) an integral basis of K.

The method of a proof of this theorem is the same as in [6].

i) The cyclic case. Let n be the conductor of the field K.

We choose $n = a^2 + 72^2$, $a \equiv 5 \mod 12$ (resp. $n = a^2 + 12^2$, $a \equiv 1 \mod 12$). Since the set $\{1, \gamma, \gamma', \gamma''\}$ with the Gauss period γ makes an integral basis of K, we may put $\xi = x\gamma + y\gamma' + z\gamma''$ for any integer ξ in K. Then we obtain $\operatorname{Ind} \xi = |\operatorname{cN} \alpha_{\eta}|$ where α_{η} is the same number of $\operatorname{Q}(\sqrt{n})$ as in the previous section. By virtue of $\lambda = a + 72i$ and

$$N\alpha_{n} \equiv \begin{cases} (x-z)^{2} y^{2} - (xy + yz + zx)^{2} \mod 3 \\ 2(x+y+z)(x+z)y - (x-y)(z-y)xz \mod 4 \end{cases}$$
 (resp.

$$\lambda = a + 12i$$
 and $N\alpha_{\eta} \equiv \begin{cases} (x - z)^2 y^2 - (xy + yz + zx)^2 \mod 3 \\ 0 \mod 2 \end{cases}$)

we have Ind $\xi \equiv 0 \mod 12$ (resp. Ind $\xi \equiv 0 \mod 6$ and Ind $\eta \equiv 2 \mod 4$). Then by Lemma 1 we get m(K) = 12 (resp. m(K) = 6).

Moreover by
$$\chi(2)=1$$
 (resp. $\begin{cases} \chi(2)=-1 \\ \chi(3)=1 \end{cases}$) we can see

$$6^{j}(\gamma)^{2} \equiv 6^{j}(\gamma) \mod 2$$
 (resp. $\begin{cases} 6^{j}(\gamma)^{2} \equiv 6^{j+2}(\gamma) \mod 2 \\ 6^{j}(\gamma)^{3} \equiv 6^{j}(\gamma) \mod 3 \end{cases}$). Since

Ind ξ is equal to the absolute value of the determinant of the transformation matrix for $\{1, \xi, \xi^2, \xi^3\}$ with respect to an integral basis $\{1, \gamma, \gamma', \gamma''\}$, we can see that any three rows in the matrix are linearly dependent modulo 2 (resp. the second and the fourth rows are so modulo 3). Then none of $\{1, \alpha, \alpha^2, \beta\}$ nor $\{1, \alpha, \beta, \alpha^3\}$ (resp. $\{1, \alpha, \beta, \alpha^3\}$) for all integers α , β can make (resp. can not make) a Z-basis of \mathcal{O}_K . Finally our parametrization satisfies the next lemma.

Lemma 2[6]. For a > 0, b, $c \in Z$, $a \equiv b$, $c \equiv 1 \mod 2$, set $n(t) = at^2 + bt + c.$

Let the congruences $n(t) \equiv 0 \mod q^2$ have at most two solutions

for every prime q within $1 \le t \le q^2$. Then the number n(t) is square-free for infinitely many $t \in Z$.

ii) The non-cyclic case. For a field $K = Q(\sqrt{\ell m_1}, \sqrt{\ell m_2})$ assume $\ell m_1 \equiv \ell m_2 \equiv 1 \mod 24$. Then using Lemma 1 we have m(K) = 12. Next we choose $\ell m_1 \equiv \ell m_2 \equiv 1 \mod 3$, $\ell \equiv 5 \mod 8$ and $m_2 \equiv 1 \mod 16$. Then we can see $\text{Ind} \S \equiv 0 \mod 6$ for any integer \S in K. Also for $\S_0 = ((1 + \sqrt{\ell m_1})/2) + ((1 + \sqrt{\ell m_1}) \times (1 + \sqrt{\ell m_2})/4) + ((\ell-1)/4)\sqrt{m_1 m_2}$ it follows $\text{Ind} \S_0 \equiv 2 \mod 4$. Thus we obtain m(K) = 6. Under this parametrization we can perform the same argument as in the case i). Therefore we obtain Theorem 2.

Remark 1. Among the fields K with even conductor there does not exist any K which satisfies the properties in Theorem 2.

Theorem 3. There exist infinitely many non-cyclic but abelian biquadratic fields K which have the index 1 and still whose minimum indices are greater than N for any given integer N. Consequently the integer rings $\mathcal{O}_{\mathcal{K}}$ have not a power basis.

Proof. We consider the field $K_{\ell} = \mathbb{Q}(\sqrt{\ell m_1}, \sqrt{\ell m_2})$ with $\ell m_1 \equiv 1$, $\ell m_2 \equiv -1 \mod 12$. Then from Lemma 1 the index $m(K_{\ell})$ is odd. Under the same notations as in the proof ii), of Lemma 1 for a number $\xi = x\alpha + y\beta + z\gamma$ we obtain $\operatorname{Ind} \xi = \left| (x^2\ell - z^2m_2)(z^2m_1 - (2y + z)^2\ell)(x^2m_1 - (2y + z)^2m_2) \right|/4$. Thus it holds that $\operatorname{Ind}(\alpha + \beta) \not\equiv 0 \mod 3$. Then $m(K_{\ell}) = 1$ holds. In an imaginary case we select $0 > m_1 \equiv 1$, $0 < -m_2 \equiv 1$, $0 < \ell \equiv 1$ mod 12. Then $\operatorname{Ind} \xi > \ell$ holds for any primitive element ξ in $\mathcal{O}_{K_{\ell}}$.

In a real case set $0 < \ell \equiv -1 \mod 12$. We estimate the factor $I = x^2 m_1 - (2y + z)^2 m_2$ of $Ind \S$. For any integer N > 0 we can find the following primes $p_i \equiv -1$, $q_i \equiv 1 \mod 12$ and $p_i \neq \ell$ for $1 \le i \le N$. Put $m_f = p_f$ and $m_2 = q_f$ such that $\left(\frac{x^2 p_f}{q_f}\right) = \left(\frac{p_f}{q_f}\right) \neq \left(\frac{1}{q_f}\right)$, where $\binom{*}{p}$ denotes the Legendre symbol. Then $I \ne \pm 1$. Next for a prime $q_2 > q_f$, there exists an integer a_2 with $\left(\frac{a_2}{q_2}\right) \neq \left(\frac{2}{q_2}\right)$. We select p_2 such that $p_2 \equiv \left\{\begin{array}{c} p_f \mod q_f \\ a_2 \mod q_2 \end{array}\right\}$. Reset $m_f = p_2$, $m_2 = q_f q_2$, then $I = \pm 1$, ± 2 . Successively we can choose primes p_N , q_N such that $p_N \equiv \left\{\begin{array}{c} p_{N-1} \mod q_f \cdots q_{N-1} \\ a_N \mod q_N \end{array}\right\}$ with $q_N > q_{N-1}$ and $\left(\frac{a_N}{q_N}\right) \neq \left(\frac{N}{q_N}\right)$. For $m_f \equiv p_N$, $m_2 = q_f \cdots q_N$ define the biquadratic field $K_N = Q(\sqrt{\ell m_f}, \sqrt{\ell m_2})$, then it holds that $\mathfrak{M}(K_N) > N$. Therefore we have proved Theorem 3.

References

- [1] K. Győry, On discriminants and indices of integers of an algebraic number field, J. Reine Angew. Math. 324(1981), 114 126.
- [2] M. Hall, Indices in cubic fields, Bull. Amer. Math. Soc. 43 (1937), 104 108.
- [3] H. Hasse, Arithmetische Bestimmung von Grundeinheit und Klassenzahl in zyklischen und biquadratischen Zahlkörpern, Abh. Deutsch. Akad. Wiss. Berlin, Math. -Nat. Kl. 2(1950), 3 95 (= Math. Abhandlungen Bd. 3, 289 379, Berlin New York, 1975).

- [4] I. Kátai; B. Kovács, Kanonische Zahlsysteme in der Theorie der quadratischen algebraischen Zahlen, Acta Sci. Math. (Szeged), 42(1980),99 107.
- [5] B. Kovács, Canonical number systems in algebraic number fields, Acta Math. Acad. Sci. Hungar. 37(1981), 159 164.
- [6] T. Nakahara, On cyclic biquadratic fields related to a problem of Hasse, Mh. Math. 94(1982), 125 132.
- [7] T. Nakahara, On a problem of Hasse, RIMS Kōkyūroku, 456(1982), 152 157.
- [8] E. von Żyliński, Zur Theorie der ausserwesentlichen Diskriminantenteiler algebraischer Körper, Math. Ann. 73(1913), 273 - 274.

Department of Mathematics Faculty of Science and Engineering Saga University Saga 840, Japan