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On the indices and integral bases of abelian biquadratic fields

By ’
Toru Nakahara

1. Introdﬁcﬁion. Let k _be a@ algebraic numbef field‘over
the rationals Q witﬁ finite’deéreg. Zb andr.(DK denote the ring
of fational integers and the integer ringrof K respectively. If
Ok = Zfdl‘ for some number d. in K, it is caliéd that Ok has
a power basis. For a number \§ ’in OK we denote by ‘Ind g |
the group index l(Ck: z[E]) if ¥ is a primitive element of K
and O otherwise. Then the index m(K) of any field K is
defined by g.c.d. {Ind§ 5 E€ OK}. The minimum index ™WM(K) of
any K 1is defiﬁed by min {Ind?z H 76 OK, Q(?]) = K} . In§&2?2 we
shall give an estimate of the index m(K) without using the
decomposition theory of primes when K is any abelian biquadratic
field. In &3 we shall investigate some relations between m(K)
and an integral basis related to a problem of Hasse and construct
such a field K that the minimum index MW(K) 1is greater than

any given integer N applying a method of M. Hall[2].

2. An estimate of fhe indices. By [8] it is well known that
if a prime p divides the index m(K), then p is smaller than
the degreé [k : Ql.

In our situation we obtain more precisely the next lemma.

Lemma 1., For any abelian biquadratic field K over Q it

holds that if the number 2°%3¢ exactly divides the index m(K),
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then e < 2 and e' g 1. Especially if the discriminant d(K)
of a field K is even, then e = 0,

Proof. i) The cyclic cases. Let X be a biquadratic character
with odd conductor n determined by the biquadratic residue
symbol. k, denotes the n-th cyclotomic field Q(g&,), herein
g,= exp(2xi/n). Let G be the Galois group of k,/Q. The gfoup
<X > 1is a cyclic subgroup with order 4 of the character group
of G. Let K denote the subfield of k, corresponding to
the kernel H of X . Then we have K = Q(7) with the Gauss

period 7 =x§6H;:. We fix an element ¢ in G such that

X(6¢) = i, and denote 0 (8), 6*(%), 6%2) by ;', ‘g", %'”
respectively for % in K.

First we consider the case of odd conductor n. Since the set
{1, 7, 7', 7"} makes an integral basis of K, it is enough
for computation of the Ind £ to choose ¥ = x7 + y?{' + z?(" for
Z in K. Llet n = /m be square-free for odd integers != a* + 4b°,
m where any prime factor of ? s congruent to 1 modulo 4 and
A=a+2bi=1mod 2(1 = i). Then by using the Gauss sum
T =%ﬂ((x)§f attached to X and the Jacobi sum TO)* /T(X?)

we obtain Ind% = VId(Z)/d(K)] = | cNKy|, where dp= (cm + dVf)/2,
c=((x=2)7 —y)b=(x=-2z)ya, d=((x=-y+2) =X-1) x
((x = 2)* + y*)m)/2. Herein d(%), N mean the discriminant of

a number ¥ , the norm with respect to Q(Y7)/Q respectively.

i), If /=1mod 8 and b =0, 4 mod 8 (resp. b=+ 2. mod 8),
then for & = 27+ 7' - ?" (resp. ?7_-_!-_7' from X( - 1) =={ b

]
m= 1 mod 4
) we have Indg =4 mod 8. i), If (ESmod 8,
= = 1 mod 4 '
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then for £ =7+7'~-7"'" we get Ind 3= 1 mod 2. 1i), If
m=0mod 3 and a =0 mod 3 (resp. a %0 mod 3), then we
choose % =7 (resp. 7 +7%'). Thus we have Ind g # 0 mod 3.
i), If m#0mod 3 and a =0 mod 3, then b# 0 mod 3 and
for ¥ =7 4Noy= b*|1 = 24( = 1)m| mod 9 holds. When 1-2X( - 1)m
=0 mod 9, we reset % = 27+ 37'. - Then 4Noy= b2|1 - 8X( '-bl)m|
#0 mod 9. 1i); The case of m#¥ 0 and a# 0 mod 3. For ¥ =7
if &*Nan= |4b’m? = (1 = X( - l)m)zﬂ =0 mod 9 holds, then we
reset % = 27+ 7', If 42 N » Elld)’m2 - (=%( - l)m)zﬁl =0
mod 9, then we have 1 — 2%( = 1)m= O mod 9 from (/, 3) = 1.
Then we take again %= 37+ 27''. If &*Ndy=|4b’m* = (7 = X( = 1)
m)"€| = 0 mod 9, then 1 +X( — 1)m =0 mod 9 must hold. This is
a contradiction. By i),.; we have e g2 and e' g 1.

Next we estimate the case of even conductor. At first we

w

consider the case of X = X, X, %m , n=16/m, /m= 1 mod 2,

pX~=1/2 (x*-1)/8
i are the even and the odd

where )((:)(x) = (-1)
biquadratic characterswith conductor 16 for # =0 and 1
respectiyvely, and % , %rm are the biquadratic, the quadratic
characters with conduétors / , m respectively. ‘From Z((n/2) + 1)
. 2 ((m/2)+1)x
= -1, it follows that 7'' = 67(7) = %’Z,, | =—§Z:
= —7. However it is known that {1,‘ 7, 7', V'F/Z} is an integral
basis of K, where d(K) = fn? and f = 8/ 1is the conductor of
Q(Y8e) [3]‘. Then for % = x7+ yy' + 2(Y£/2) we obtain Ind § =
IcNt(f|,  where Ay = em + d(VE/2), c = - 2xy(a = b) + (x* = y*) x
(a + 2b), d = 2z* = X( - 1)(x* + y’;)m. For 3, =7, we have
Ind 3, = |a + 2b/m*|(a + 2b)’ = 2f| =1 mod 2. If a+ 2b= + 3mod 9
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and m#% 0 mod 3, then Ind%¥ =+ 3 mod 9. If a + 2b =+ 3 mod ¢
(resp. # 0 mod 3) and m =0 mod 3, then for 3, = 7 + V£/2)
we get Ind%, = |a + 2b||[(a + 2b)*m* — 82| =+ 3 mod 9 (resp.
#ZOmod 3). If a+2b=0mod 9 and m= 0 mod 3, then a - 2b
#0 mod 3 holds. Thus for g, = 7+ 7'+ (YE/2) we have 1Ind %,
= 2|a - 2b|{ # 0 mod 3. In the case of (a + 2b)m # 0 mod 3,

we have Ind3, Z#0 mod 3 for a #-Db mod 3, and put ¥ = 7+ ’(',
then Indg =+ 3mod 9 for a==-bmod 3. If a+ 2b=0mod 9
and mz#* 0 mod 3, then we have Ind'g";"—:O mod 9. Therefore we
obtain e =0 and e' < 1. Secondly we treat the case of
7("7(@'/’% n =/m, m=0mod 2. In this case the set

{1, 7 7', ’7"} is also not an integral basis of K. But

{1, 7 7', (1 + Vf_)/2} is an integrai basis, where d(K) = fnz,-,
£ =¢[3]. Then for z = x7+y7" + 2(1 + V7)/2 we have Ind%

= |cNoy|, where Af= cm + dVE, c = = xya + (x* -= y*)2b,

d = (x*+ yz)(m/2)r - X( - 1)z*, For g, =7+ ’7' + (1 + Q)/Z

we get Indgf =1 mod 2. Put %, = 4(+ 7'. If abm #0 mod 3,
then Ind%,# 0 mod 3. We choose ., =7, §“= 7 + (1 +¥P)/2.
If a =0 mod 3, then from bséO mod 3 we have Ind§3“£ + 3

mod 9 for m#£O mod 3 and Ind% #O mod 3 for m =0 mod 3.
If b =0 mod 3,‘ then from a #0 mod 3 we obtain Ind%, #0
mod 3 for m#Omod 3 and Ind% =+ 3 mod 9 for m =0 mod 3.
Thus we have e = 0 and e’ < 1.

ii) The non-cyclic cases. Without loss of generality we can
set K = Q(\?m,, V?m;), where /m,m, is a square-free integer
and{> C©. For brevity we denote (1 + YZm,)/2, (1 + V/m,)/2
({¢m, + Ym,m,)/2 by « s B Y respectivély. ii), If /m,s 1,
[sz 2, 3 mod 4, then {1, od, 23— 1, ()/} is an integral basis
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of K and the field discriminant d(K) = 16 fszmj holds. For

§, =d = (2p= 1) + 2/ we can compute Ind %, = /m? =1 mod 2.

1£f (¢ - m,)m, 0 mod 3, then Ind 2, #0 mod 3 follows. If

m, = 0 mod 3, then for %, =A + (28 -~ 1) we have Ind%, = {)z-mz
#O0mod 3. If / - m,= 0 mod 3, then émzio mod 3. We can
restrict m, 20 mod 3. In the case of /- m,= O mod 9, we have

{ - tm, 20 mod 9. Then Ind ¥, 20 mod 9. In the case of / — m,
+ 3mod 9, for Z, =o+ (2/3- 1) + ¥ we get Ind %,

|(f - m,)m;| = + 3 mod 9. Thus we obtain e =0 and e' < 1.

if {m= 3, m,= 2 mod 4, then {1, 24 -1, 28-1, &}

ii),
is an integral basis and d(K) = 648'm’m?*., By /= 1 mod 2,

/~m =2mod 4 for %, =) we have Ind ¥, =1 mod 2. Next if
(/-m)m,#£0mod 3, then Ind%, # 0 mod 3 holds. If m,= O
mod 3, then for %, = (24 —-1) + (28~ 1) we have Ind %,

= | (40) (4m, = m,)| 0 mod 3. If l=m,= 0 mod 9, then Zm, Z0
mod 3. We can restrict m,# O mod 3. For 3,=2(28-1) + v
Ind%, = | ( - m,)(25¢ - m,)(25m;)| = + 3 mod 9 holds. If ¢ - m,
=+ 3mod 9, then Ind% = + 3 mod 9. Therefore we have

e=0 and e' g l. ii); If ¢m= /m, = 1 mod 4, then

{1, oy By £p T ((F=1)/6)(2¢= 21+ 1)} for !Em,:—:—‘ m= 1 mod &
and {1, &, 3, ap+ (1/2) F (({ - 1)/4)(2F = 28+ 1) } for

/=m = my, = 3 mod 4 are integral bases, where the sign is
positive if and only if m, <0 and m, < 0. For any integer 3

in K we have IndZ = 0 mod 2. Moreover in the case of m, — m,
= 4 mod 8 (resp. =0 mod 8), for %, =da + 3 (resp. 24 +/3)

we get Ind £, = 4 mod 8., If J(m, - m,) £#0 mod 3, then 1Ind %,

# 0 mod 3. We denote by & the fourth numbers of the integral

bases. If /=0 and m, —m,% 0 mod 3, then for ¥, =K+ 5+ 28

-5 -



96

we have Ind%, =|mm,(m - m2)| #£0mod 3. If Z#0 and |
m, —m, =0mod 9, then mm, %0 mod 3 holds. If for ¥, = 20 +/]3
Ind %, = Il;ez(m‘z — 4m,)| = 0 mod 9, then we have 3m,= 0 mod 9.
This is a contradiction., If / # 0 mod 3 and m, —m, =+ 3 mod 9,
then Indg = + 3 mod 9. Next if ! =0 mod 3 and m, ~m,= + 3
mod 9, then Ind gz =+ 3 mod 9. Finally if / =0 mod 3 and

m ~m, =0 mod 9, then for £ =4+ 28 we have Ind § =+ 3

mod 9. The estimates of ii) , imply 1 <e<? and e' < 1.

Therefore we have proved Lemma 1.

3. Results., Works related to the problem of Hasse are found
in [1], [4], [5] and the references mentioned in [7]. From [6]

and [7] we have

Theorem 1. There exist infinitely many non-cyclic but abelian
(resp. exist cyclic) biquadratic fields over Q whose integer rings

have a power basis.

In our case by Lemma 1 the index m(K) is not larger than 12.

In fact it follows

Theorem 2. There exist infinitely many such abelian biquadratic
fields K over Q that the index is equal to 12 (resp. 6) and
that neither {1, oL, &, [3} nor {1, o, B, oés} (resp.

{1, o, B oG}) for any o, £ in K forms (resp. does not form)
an integral basis of K.
The method of a proof of this theorem is the ‘same as in [6].

i) The cyclic case. Let n be the conductor of the field K.
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We choose n = a*+ 72°, a= 5 mod 12 (resp. n = a* + 127,

a=1mod 12). Since the set {1, 7 7', 7("} with the Gauss

period 7 makes an integral basis of K, we may put ¥

= x7+ yvz' + zvz" for any integer ¥ in K. Then we obtain

Indg = |cN«(,| where «&x is the same number of Q(Yn) as in

the previous section. By virtue of A = a + 72i and
(x = 2)*y* = (xy + yz + zx)* mod 3

No(,,s{ ; } (resp.
2(x+y+2)(x+2)y—-(x=-y)(z~-y)xz mod 4

(x = 2)*y? = (xy + yz + zx)* mod 3} ‘

0 mod 2

we have Ind% =0 mod 12 (resp. Ind4=0mod 6 and Ind7 =2

A= a + 12i and Naz= {

mod 4). Then by Lemma 1 we get m(K) = 12 (resp. m(K) = 6).
xX(2) = -1
X(3) = 1
67‘(7)" 6*3"2(7) mod 2

. . } ). Since
@'1(7)3 = 67%(7) mod 3

Moreover by X(2) = 1 (resp. { } ) we can see

Il

6‘5(7)” = (T"Q) mod 2 | (resp. {

Ind £ is equal to the absolute value of the determinant of the
transformation matrix for {l, £, ¥°, ZB} with respect to

an integral basis {1, ’{, ’[', 7"}, we can see that any three
rows in the matrix are lihearly dependent modulo 2 (resp.

the second and the fourth rows are so modulo 3). Then none of

{ 1, o, oF, [3} nor {1, Ay B, 0(3} (resp. {1,0(, 2 063}) for all
integers o, /3 can make (resp. can not make) a 2-basis of OK.

Finally our parametrization satisfies the next lemma.

Lemma 2[6]. For a>0, b, c€ 2, a=b, c =1 mod 2, set
n(t) = at* + bt + c.

Let the congruences n(t) = 0 mod q®* have at most two solutions
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for every prime q within 1 < t < q®. Then the number n(t)

=

is square-free for infinitely many t € Z.

ii) The non-cyclic case. For a field K = Q(y7m,, Y7m,) assume
/m,= /m,= 1 mod 24. Then using Lemma 1 we have m(K) = 12.
Next we choose /m,s /m;:- 1 mod 3, ZE'S mod 8 and
m,= m,= 1 mod 16, Then we can see Ind%= O mod 6 for any
integer % in K. Also for z,= ((1L + VZm,)/2) + ((1 + V/m,) x
(1 + VZm;)/4) + (({-1)/4)Ymm, it follows Indg = 2 mod 4.
Thus we obtain m(K) = 6. Under this parametrization we can
perform the same argument as in the case i). Therefore we obtain

Theorem 2.

Remark 1. Among the fields K with even conductor there doeg

not exist any K which satisfies the properties in Theorem 2.

Theorem 3. There exist infinitely many non-cyclic but abelian
biquadratic fields K which have the index 1 and still whose
minimum indices are greater than N for any given integer N.
Consequently the integer rkings OK have not a power basis..

Proof. We consider the field K, = Q(YZm,, V7/m;) with
{m,=1,¢m, =~ 1 mod 12. Then from Lemma 1 the index m(K,)
is odd. Under the same nbtations as in the proof i.i)1 of Lemma 1
for a number ¥ = x« + yp + z) we obtain
Ind 2= | (x¥ = 2°m,)(2*m—(2y + 2 0)(x*m, - 2y + z)zmz)|/4.

Thus it holds that Ind(® +3) £ 0 mod 3. Then m(Ke) = 1 holds.
In an imaginary case we select 0 >m, =1, 0<-m, =1, 0 < [ =1

mod 12. Then Ind £ > 2 holds for any primitive element % in @Ke'
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In a real case set 0 < / == 1mod 12. We estimate the factor
I =xm, - (2y +2Ym, of Ind¥. For any integer N > 0 we can
find the following primes p, = -1, q, = 1 mod 12 and p, # ?

for 1gigN., Put m,=p, and m,Z = q, such that

x*p, P, 1 * ;
—_ =’(-—> # |—|, where [ — | denotes the Legendre symbol.

q, q, q, P
Then 1 # + 1. Next for a prime q, > 9, there exists an integer
N a, 2 - p, mod q,
a, with |—]#(—] . We select p, such that D= .
~ q, q, ' a, mod q,

Reset m, =p , m, =q,q,, then I =+ 1, + 2. Successively we

Py, mod q,... q”_,}

can choose primes p , q, such that Py =
' N a, mod q,

ith a (2 4(Z). & = =
wit qQ, >q,., an ;— . . or m, Py » m2 q,.f. q)v
» N : :

define the biquadratic field K, = Q({/m,, ¥7m,), then it holds

that M(K,) > N. Therefore we have proved Theorem 3.
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