DDDDDDD]_TFU]

0 5200 19840 170-179

ENVIRONMENT PROBLEMS IN FORMULA MANIPULATION SYSTEMS

7 ko B =t XH

Tateaki Sasaki*~ and Fumio Motoyoshi**)

%) The Institute of Physical and Chemical Research
Wako-shi, Saitama 351, Japan

%%) Electrotechnical Laboratory, Ministry of ITI
Niihari-gun, Ibaraki 305, Japan

ABSTRACT
In formula manipulation systems, evaluation of the symbol (i.e.,, updating the value
expression of the symbol), simplification of the expression, and reordering of the
symbols in the expression are basic processes to pel_‘form. When the system performs
‘these proc;esses automatically, which is necessary in application—oriented systems,
the system must check the environment of the expression. Checking the environment
is rather expensive if performed elementarily, hence we call automatic symbol
evaluation, reordering and simplification the environment problems, In this paper,
we introduce an environment number to each of the evaluation, simplification and
ordering environments and propose a method for controlling each environment simply

as well as efficiently.

Key words and phrases: formula manipulation system, environment problem,
evaluation, simplification, reordering.

171

§1. Introduction

The term "environment"” 1is used in several different meahings in computer
science, ' In this paper, we propose new concepts of environment in the context of
formula manipulation by computer. The new concepts have some similarity to the
environment concept in Lisp [1], but not the same, Our environments are concerned
with the evaluation of symbols, simplification of" expressions, and reordering of
symbols in an expression,

As we will explain in §2, the environments in formula manipulation systems are
changed by the user consciously or unconsciously as the calculation proceeds, The
formula manipulation system must check the changes of environments if the system
supports the symbol evaluation, simplification, and reordering automatically, which
is necessary in application—oriented systems., Checking the changes of environments
is, however, rather expensive if performed élementarily, as we will explain in §2.
We, therefore, call the automatic environment control the environment problem in
formula manipulation systems, |

In 83 ~ 5, we give a solution to each environment problem by introducing an
environment number for each - of the evaluati,on,v simplification, and ordering
environments, The introduction and usage of the environment numbers are very

simple and almost the same for all the three environment problems,

§2. Environment problems in formula manipulation

Before explaining the concepts of environment in formula manipulation, let us
explain the basic process of formula manipulation by computer., We may divide the
process of fofmula manipulation into the following five steps: 1) input, 2) symbol
evaluation, 3)' computation (in a narrow sense), 4) simplification, and 5) output,

We explain the second, third, and fourth steps by an example:

172

1 START

2 A = sx%x2 ;

3: B := tx%x2 ;

4: S 1= X¥%k2+y%k%k2
5: t = X%k%x2—yx%k2 ;
6 RULE x%%3 —> 0 ;
7 C := A+B ;

The 6th line defines a left—to-right rewrite rule, Consider the processing in the
Tth line., When the "A+B" is input, the values of the symbols A and B are evaluated

first as follows (symbol evaluation step):

2 4

A ==> st =—> xPyD)? = x! + oxBy? + ¥l

B ==>_t2 ==> (xz—yz)2 = x4 - 2xzy2 + y4.
Second, the values of A and B are added (computation step):
A+ B ==> 92+ 2y4.
Third, the rewrite rule is applied to the above result (simplification step):

Ly 2y4 ==> 2y5

2x
This is the final expression of A+B and it is assigned to C.

As the above example shows, we assume in this paper that, except for symbols
used as independent variables or function names etc.,, any user—defined expression
to be saved in the system is assigned to another symbol and saved in the VALUE cell
of the symbol. |

Now, we explain the environment problems by referring to the above example, By
the evaluat'ion of symbol s we mean updating the value of s. If s has no value then
the evaluation of s gives the s itself, If s has a value, which is the case that s
represents a dependent variable, then every dependent variable in the value expres-
sion is evaluated and substituted by its value, as the above example shows, For a
given expression, it is unclear which variables in the expression have values and
which variables do not unless we make some check, The simplest method of the check
is to scan the expression and investigate every variable contained in it, which is

rather expensive if the scanning 1is performed for every variable in the input.

Note that, in many cases, all the variables in an expression are independent

173

variables, and the check is unnecessary in such cases. The evaluation environment
problem is to find an efficient method of controlling the evaluation environment,

By a vsimp]ification rule we mean a left—to-right rewrite rule as illustrated by
the sixth line in the above example, In order to simplify an expression by a rule,
it is necessary to scan the expression so as to find terms matching with the
rewrite pattern in the rule, Pattern matching is a relati\;ely expénsive procedure,
Furthermore, scanning the expres;ion is repeated until no term matching with any
rewrite pattern is found. Hence, the simplification is usually quite expensive,
and it is very desirable to find an efficient method of controlling the simplifica-
tion environment, This is the simplification environment problem.

Many of the formula manipulation systems constructed so far contain some devices
to avoid unnecessary checks for evaluation and simplification, For example, in
REDUCE [21, a flag of two states (TRUE or FALSE) is attached to the expression
showing whether or not the evaluation and simplification environments are changed_.
MACSYMA [3] also has a similar device. An idea we ﬁropose in fhis paper is a more
advanced one,

In most formula manipulation systems, all the symbols in any expression are
uniquely ordered and the internal representation of the expression is constructed
on the basis of this ordering. When the ordering of the symbols has been changed,
the ordering must be adjusted to the current orderihg before the computation:
expressions in different orderings are not able to be manipulated correctly by most
arithmetic procedures. Therefore, if the system allows the user to change the
ordering of the symbols, which is very common in formula manipulation systems, the
syster;'x must check the ordering. An elementary method of checking the ordering is
to scan the expression and investigate compatibility with the current ordering.
However, scanning every expression before computation is wastefull, and the
ordering environment problem is to find an efficient method of controlling the

ordering environment,

e
-1
PN

Note that not every system suffers from the environment problems in the above
sense, For example, in MACSYMA [3], the simplification is controlled by the user
and the system needs not check the simplification environment., In REDUCE [2], the
symbol reordering is allowed only in the output expression and not in the internal

representation. Hence, there is no ordering environment problem in REDUCE.

§3. Evaluation environment number and its usage

The evaluation environment number (eval-env number) we propose in this paper is
an integer specifying the eval-env uniquely. When an expression is assigned to a
symbol s as its value, we . attach the current eval-env number to the value
expression, Then, by referring to the evél—en}v number attached to an expression,
we easily know in whicH eval-env the value expression was evaluated, The details

are as follows:

Definition. and usage of the eval-env number

1) At the beginning of the computation: EVAL ENV := (;
2) When the éva]~env is changed: EVAL ENV := EVAL ENV + 1 ;
Here the eval-env is changed in the following cases:
(a) when the value of the variable is changed (introduction of new independent
variables does not change the eval-env),
(b) when commands concerning to the evaluation method are issued (for example,
commands for delayed evaluation or unevaluation),
3) Attach the current EVAL ENV to the evaluated value when it is saved into the
VALUE cell of a symbol s;
4) When the value of a symbol s is evaluated, the pair of the current EVAL ENV
and the evaluated value is saved into the SAVE VALUE cell of s;
5) When we evaluate the symbol s, we first read out the content of the"‘SAVE__VALUE

cell of s and if the saved value was evaluated in the current eval-env then

175

return the value, otherwise we read out the content of the VALUE cell of s and
evaluate it., (We introduce the SAVE VALUE cell because not all the evaluated
values. are saved into the VALUE cell))

We illustrate the usage of the eval-env number by an example:

1: START ; /% EVAL ENV = (%/
2 A = s%xx2 ; . :
3 B = t%x2 ;

4 C := Ax%x2+A*B+B%xx2 ;

5: s := x+1 ; /% EVAL ENV = 1 %/
6 t o= y+2 ; /% EVAL ENV = 2 %/
7 C = Ax*x2+A*B+Bx*x2 ; /% EVAL ENV = 3 %/

In the 4th line of. this example, the values of A and B (i.e., 52 and t2) need not

be evaluated because A and B are introduced in the zeroth eval-env and the 4th line
is in the same eval-env. On the other hand, in the 7th line, the values of A and B
must be evaluated because the eval-env number here is 2 (the eval—énv number
increases to 3 at when the C is reassigned). Note that, in the 7th line, each of
the symbols A and B is appearing {wice but it is essentially evaluated only once

" because of the use of SAVE VALUE.

8§4. Simplification environment number and its usage

We divide the rewrite rules into two classes, single—function rewrite rules and
others (i.e., multi~factor/term rewrite rules). Here, by the single—function
rewrite ruie we mean that the left hand side of the rule is a -single function of
power one, For example,

sin(x+y) —> sin(x)*cos(y) + cos(x)*sin(y),

F(xxx2+y%x%x2) —> G(x)%%x2 + G(y)%xx%x2,

F(sin(x)*xcos(x)) —> sin(G(x)) + cos(G(x))
are single—function rewrite rules, and

sin(x)*xcos(x) —> sin(2%x)/2,

sin(x) + cos(x) —> SQRT(2)*sin(x + #pi 4)

are multi—factor/term rewrite rules,

176

The single—function rewrite rules are advantageous to process in that, if each
function in the input has been simplified, we need not apply the single—function
rewrite rules any more until new rewrite rules are defined. This is because that
the argument of the function is never mixed with other expressions. We must, of
course, apply the single—function rewrite rules again if new rewrite rules are
defined, Note that, the advantageous nature mentioned above does not hold for
other rewrite rules, For example, we must apply the rule

sin(x)%%2 —> (1—cos(2%x))/2
to expressions which are obtained by multiplying ekpressions containing sin(x).

The simplification environment number (simp-env number) we propose in this paper
applies to only the single—function rewrite rules, hence our solution to ;che
simp—env problem is partial. We comment, however, that most simplification rules
in application programs are single—function rewrite rules. In actual implementa-
tion of the simplification by rewrite rules, we had better classify the rules into .

more details, . Then, we can perform the simplification more efficiently.

Definition and usage of the simp—env number

1) At the beginning of the computation: ‘SIMP**ENV =0 ;

2) When the simp-env is changed: SIMP ENV := SIMP ENV + 1 ;
Herelthe simp-env . is changed in the following cases:
(a) when new simplification rules are defined,
(b) when commands concerning to the simplification method are issued (for

example, commands for delayed simplification or unsimplification).

3) When the simplified expression is saved into the VALUE cell or SAVE VALUE
cell, attach the current SIMP ENV to it;

4) When the function in the input is evaluated, apply the single—fuqction rewrite
rules to it;

5) When the value expression is read out from the VALUE cell or SAVE VALUE cell,

i77

apply the single—function rewrite rules only when the value was simplified in
a simp—env which is different from the current one;
6) The simplification rules other than the single—function rewrite rules are

applied after each computation step,

We illustrate the usage of the simp-env number by an example:

I

1: START ; /% SIMP_ENV
2: FOR ALL x,y RULE /% SIMP_ENV =
sin(x)%xx2 —> 1—cos(X)%xx2 ,
sin(x+y) —> sin{(x)xcos{y) + cos(xX)xsin(y) ;

0 x/
1 x/

3: A := sin(u+v)®xx2 ;
4: B := cos{ut+v)xx2 ;
5: C := AxB ;

In the 3rd and 4th lines, the single-function rewrite rule is applied when the
functions sin(u+v) and cos(u+v) are evaluated, and another rewrite rule is applied
after the computation of sin(u+v)®*2 and cos(u+v)x*2, On the other hand, in the
5th line, only the rule for sin(x)%%x2 is applied to the result of A%B and we need

not apply the single-function rewrite rule, .

§5. Ordering environment number and its usage

In this paper, byv"A >, B" we mean that symbol A is of higher ordér than symbol
B. In order to control the ordering environment (ord-env) simply, we specify the
method of symbol ordering as follows: We assume that two commands ORDER and
UNORDER change the ord-env, The ORDER command is used as
ORDER S1,82,...,8n;
causing the new ordering
S1 >, S2 >, ... > Sn >, any other symbols,
This usage is common in most systems. The UNORDER command is used as
UNORDER ;
clearing the current ord-env and recalling the previous ord-env. This usage is

rather peculiar but advantageous to control the ord-env efficiently as we will see

[

below,

Reordering symbols in formula manipulation is required mostly in the following
cases: (1) some universal ordering is required which is different from the default
one, (2) a local ordering is necessafy in a formula manipulation procedure, and (3)
a special ordering is wanted in the output expression. Among these cases, the
reordering is essentially unnecessary in the case 1 because we may specify the
universal ordering at the beginning of the computation. In the case 3,,there is no
ord—env problem because the reordered expression to be output is not used for later
computation, Hence, mostly the case 2 is essential forvthe ord-env broblem, In
the case 2, it is quite desirable to recall the previous ord-env when the procedure
finishes, Thus, with the above—mentioned usage of the UNORDER command, we can

avoid the reordering -drastically in actual formula manipulation,

Definition and usage of the ord-env number

1) At the beginning of the computation: ORD ENV := MAX ORD ENV := (;

2) Preserve the history of the ord-env as a list of
(ORD_ENV . ordering rule);

3) When the ORDER command is input:
ORD ENV := MAX_ORD;ENV := MAX ORD ENV + 1 ;

4) When‘the UNORDER command is input, recall the previous ord-env from the
history list and ORD_ENV := previous ORD ENV ;

5) When an expression is_ evaluated and saved into the VALUE cell or SAVE VALUE
cell, attach the current ORD ENV to the expression, When the expression is
reevaluated, reorder the expression only when the ORD ENV attached to it is

different from the current ORD ENV,

We illustrate the usage of the ord-env number by an “example:

179

1: START ; /% ORD ENV = (%/
2: ORDER X,Y,Z ; /% ORD ENV = 1 %/
3: A = X+Y ;
4: B = Y+Z ;
5: ORDER Z,Y ; /% ORD _ENV = 2 %/
6: C := AxB ;
7: UNORDER ; /% ORD ENV = 1 %/
8: C := AxB ;
§: UNORDER ; /% ORD ENV = 0 %/

The ordering is X >, Y >, Z at the 2nd line, Z >, Y >, X at the 5th line, and X >,
Y >, Z at the 7th line. In the éth line, reordering of the valués of A and B are
necessary before the computation because they are defined in the first ord-env and
the current ord-env number is 2. ‘On the other hand, in the 8th line, the values of
A and B need not be reordered (note that the values of A and B in the 8th line are

the same as those defined in the 3rd and 4th lines, respectively).

86. Concluding remarks.

The methods proposed in this paper are not complete in that the wasteful
environment check is not completely eliminated. Better methods of controlling the
environments are desirable, in particular, ‘for the simplificatl;on environment, Our
methods are, however, extremely simple and still are quite efficient, kKWé havé
implemented our methods on the formula manipulation system GAL which we are

developing now.

References

{11 J. Moses, "The function of FUNCTION in LISP or why the FUNARG problem should be
called the environment problem", SIGSAM Bulletin, 15, pp. 13-27 (1970).

[2] A C. Hearn, "REDUCE user's manual”, Version 3.0, The Rand Corporation, 1983.

[3] The MATHLARB Group, "MACSYMA Reference manual”, 9th Version, Laboratory for

Computer Science, MIT, 1977.

10

