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Abstract A cellular interconnection network(CIN) is a regular array of
identical switching elements called cells and by which we realize various
graphical interconnection patterns among processors. This paper presents the
set-up and routing algorithms for a realization procedure of any graphs in
three dimensional CIN using'graph theoretical approach. The set-up algorithm
takes O(dn.log(dn)) time and 0(dn) space and the required area of the CIN is
0((dn)3/2), where d and n are the degree and the order of the given graph.
We exploit also a routing algorithm which can be performed in parallel by
self-setting method.

1. Introduction

Concerning with the VLSI algorithms, it has been shown that any graph can

be embedded in three dimensional medium using 0(n3/2)

(n2)(4,9,10).

volume though in two
dimensional case it needs 0 But the concrete realization
algorithm is not apparent there. On the other hand various interconnection

networks for VLSI based multi-processors have been proposed(ll) and their

switch setting algorithms are deviced(5’8).

We propose in this paper the three dimensional cellular network as such an
interconnection network among processors and design an efficient algorithm
to realize any given interconnection patterns. From this viewpoint, CIN
model is more powerful than other models and we also emphasize that the
routing algorithm can be executed by self-routing in the meaning of Benes
network(S). In Section 2 we describe the formal definitions on this model
and some related fundamental results. In Section 3 we show an efficient

algorithm to embed any graphs in CIN using graph thecretical approach.



2. Forma1 Framework and Preliminary Results

2.1. Basic definitions

An undirected graph (or simple graph) G is a pair (V,E), where V is the
set of nodes and E = {{u,v} u # v, u,v € V1}is the set of edges. If E is
replaced with an ordered pair A ={ (u,v); u # v, u,v €V}, then G = (V,A) is
called a directed graph (or simple digraph). Any such pair (u,v) is call an
arc. Esbecia]]y the graph of the k-dimensional lattice is denoted by Ck =
(Ck,Sk), where Ck is the k-fold Cartesign product of 1nteger set I, i.e., I
and Sk ='{(v,v+si); v eV, S: = (0,..,1,0,..,0), i=1,..,k}. In this paper
we only deal with the case k = 3.

2.2. CIN System
The CIN system is a parallelepiped array of two kinds of cells, one is the

processing cell called the active cell (AT-cell) which is located in the
first layer, and the other is the switching cell (SW-cell). »

By setting the switches of the SW-cells suitably for any given graphs we
can realize them homeomorphically in the CIN system. The rough sketch of CIN
system is illustrated in Fig.l, where its graphs structure is £3 = (13,53).
Hereafter we denote it simply € = (C,S) if no confusion arises and a CIN of
m x n AT-cells is denoted €(m x n) if necessary.

3 Dimensional Self -Routing
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B Fig.1. CIN System.
2.3. Realization in CIN ,
We shall discuss the realization algorithm under the following conditions.
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1) Each cell can only be interconnected with its direct neighbor cells.

2) Duplicated use of the same port is not allowed (no overlapping among
the interconnections is allowed).

3) Crossiﬁgs among interconnections are allowed only at the SW-cells.

Definition 1 An embedding (f,g) of G = (V,E) into € = (C,S) is a mapping
defined as follows:
1) f is an injection from V x {l,...,d}¥nto C x{ 1,..,p} called the
cell-port assignment, where d and p are the degree of G and the number

of ports of AT-cell respectively,
2) g maps E into the path of C such that every pair of such paths is edge
disjoint.
The procedufe to determine a embedding mapping (f,g) is called the set-up
algorithm and the realization procedure of the interconnections in CIN using
‘the data processed by the set-up prbcedure is called the routing algorithm.

3. Realization Algorithm

3.1. Decision of cell-port assignment ,
We assume that the degree d of the graphs to be embedded in CIN is

arbitrary. There are some different organizations for AT-cells and its
structure affects the efficiency of the realization (area complexity).
Examples of AT-cells embedding degree d graphs are illustrated in Fig.2,
where o and x denote the out-port and in-port respectively.
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Fig.2. Several examp1es of AT-cell organization.
The cell-port assignment consists of the following procedures:
1) Direction assignment: Transform the given graphs to the directed graphs
by assigning directions to each edge. ‘



2) Cell assignment: Define the mapping fl from V to C.
3) Port assignment: Define the mapping f2 fromv x{1,..,d} to
fl(v) x{1,...,p}for any v.

Proposition 1 Let G be an arbitrary graph of degree d and of order n. Then

G can be transformed to a directed graph G such that if d is even, then the
outdegree and indegree of each node are both d/2, and if d is odd, then one
of them of each node is (d+1)/2 and the other is (d-1)/2. The algorithm
transforms in O(dn) time and 0(dn) space.

(2)

a graph into open and closed paths, so each node of odd degree is end of no

Proof: We use the euler partition algorithm which partition the edges of

open paths. According to the direction of eulerian trial, we assign a
direction to each edge of G. @

The cell-port assignment is essential to establish an efficient embedding,
but it depends on the characteristics of the given graphs. In general we
define the mapping f = (fl fz) by the following procedure.
a) Define an injection f, from V into C = {(x,y,0); 05 x,yg m}
where m = nl/z.

b) Define an injection f, from V x {1,..,d}into C x{1,..,p Yas follows;
(1) fz(u,i) is an out-port of fl(u) if (u,i) is an out-arc of u,
(1) fz(u,i) is an in-port of fl(u) if (u,i) is an in-arc of u.

The cell-port assignment mapping f is the composition of fl and f2, i.e.,
(f1 fz) defined by (fl,fz)(u,i) = (fl(u),fz(u,i)) for any (u,i).

3.2. Bipartite graph representation
We assume here that CIN consists of p x q AT-cells in the first 1ayer and

each AT-cell has s x t ports
Bipartite graph construction

1) Partitioning each AT-cell into s x t smaller segments, we associate
the points rj and c; to the j-th row and the i-th column,
lejgtxag, lg ig s xp, respectively as illustrated in Fig.3.

2) For a given graph G = (V,E) we transform it to a directed graph
G = (V,A). We assume that the cell-port assignment mapping f = (fl,fz)
has ilready been given. Then the (multi)graph Gg = (W,B) corresponding
to G = (V,A) under f = (fl,fz) is defined as follows;
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W={{r‘.}U{C1.}; ls jstxg, lsigsxp?
B ={{rj,C1. k f(u,a) ¢ ris Flvsb) € Coy (usy) €Al
where a,b mean some labels for edges.
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Fig.3. Bipartite graph representation of G.
Proposition 2 The graph GB = (W,B) is a bipartite graph of order sp + tq
and of degree at most max("s/2'.p,"t/2.q).(The size of Gy is the same to G)
Proof: From the construction of GB’ the edges exist only from row node to
column node. Hence GB is a bipartite graph. The order is equal the total
number of row nodes and column nodes. Since the number of out-port (in-port)

of each row and each column of AT-cell are at most 's/Z2' and ft/2°
respectively, the total number of edges connected to out-port (in-port) of
each row and column of the first layer are at most 's/2'.p and "t/27.q

respectively. e

3.3. Layer assignment algorithm

An edge-coloring of a graph G is an assignmént of colors to its edges )
that no two adjacent edges are assigned the same color. Generally the
problem of edge-coloring belongs to the class of NP-complete problems, but
for the class of bipartite graphs the more efficient algorithms are
available. : ’ \

(3)

that the minimum number of required colors is equal to the degree of the

We use the modified a]gorithm'of color-by-partition and it 1is noted

bipartite graph.



Lemma 1 Modified color-by-partition algorithm finds a minimum coloring, in
time O(!V?21091VI) and space - O(1El + IVl), where |V! and IEl denote the
order and size of GB respectively. SR : ’ '

Procedure co]or-by—partition(3): Comment G is a bipartite graph, all of
whose edges are uncolored. A minimum coloring of G is found;
let D be the maximum degree in G;
if D = 1 then color all edges in G, using a new color
else
begin
divide G into edge-disjoint subgraphs G1 and G2 having

maximum degree D1 and DZ’ where Dl’DZ < 'D/2" and G1 has
no more edges than G2 (euler partition ));

color-by-partition (Gl);

remove the edges of r colors from Gl and add them to GZ’
Mog(D/2)'_ .

where v = 2 95

euler color(z)(GZ); Comment now the coloring of G1 and Gy
give a D-coloring or D+l-coloring of Gj;
if G is not D-colored ‘
then
begin
make all edges of some color B uncolored;

for all uncolored edges e do augment(3)(e);
end . :
end
end color-by-partition;
As we show in the following part, the embedding of graphs can be
established by corresponding each color "b" with the b-th layer.

3.4. Routing procedure

We discuss in this section that how shall we construct the routing mapping
g. For each edge adjacent with node rj assigned the color "b", we realize
its connection using b-th layer as illustrated in Fig.4.
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Lemma 2 Let GB be any bipartite graph. Then GB can be realized in € Without
overlapping by the routing patterns of Fig.4.
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Fig.4. The routing patterns in CIN.
Theorem 1 An arbitrary graph G of degree d and of order n can be realized
in CIN using at most D = max("s/2'.p,"t/27.q) layers.
Proof: For G, the bipartite graph Gy is of degree D = max("s/2'.p,"t/2'.q)
and of order V = s.p + t.q by Proposition 2. Hence GB can be D colorable.
This implies that GB can be embedded using D layers. @

Example 1 The degree of the derived bipartite graphs corresponding the
AT-cells (a), (b), (c) and (d) of Fig.2 are given as (sm)/2, (sm)/4, m and
(sm)/2 respectively. The required area of CIN etc are also given in Table 1.

Table 1.
Cell type a b c d
4 4, Sm
Colors(tayers) zm al m 5m
Area of one ATcell d d d? d
Area of one layer dm? dm? m? dm?2
i a3 d? 2 )3
Required SW-cell L'm g m3 d?m3 UET'"
S= '76‘_‘
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3.5. Minimal layer realization

From the results of previous section, the number of required layers
depends on the organization of AT-cell. In order to establish a minimal
layer realization, we have to construct the bipartite graph of minimal
degree. As we can observe Table 1, an interesting AT-cell is the one of (d)
in Fig.2, which is designed using the property of the Latin squares.

A Latin square 15 a matrix having integers as 1its components such that
each distinct integer occurs exactly once in each row and each column of it.
F?;Zde51gn1ng an AT-cell of d-ports, we use a s x s Latin square, where s =

Roughly speaking we assign the ports of even number to the out-arcs and
the odd ones to the in-arcs. If the number of out-arcs(or din-arcs) of
certain nodes exceeds d/2, then an extra port not used is to be assigned
further(Fig.5). It is noted that the number of out-ports(or 1n g$rts) in
each column or each row of the matrix is at most s/2, where s = d
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®| A o x
.3 [&1 ‘3 x‘ .q x‘ x2
d=3 d=4
s=2 s=2 d=5 d=6 d:;
(G) (b) s=3 s=3 S=
(c) (d) (e)
x1 .2 3 .“ x1 .2 3 .l«
x 1 .2 ’3 . 1 .2 .3 2 3 .4 x! AZ 3 .lu x\
2 .3 x‘ AZ .3 x'l 3 .4 x1 2 3 ‘4 x‘ 2
.3 x\ xz .3 x‘ xZ .4 xl 2 x3 .L ‘1 2 x3
d=8 d=9 d=10 d="1
s=3 s=3 s=& 5?4
(1) (g9) (h) (i)

Fig.5. The AT-cell organization based on Latin square.
Theorem 2 (Main theorem) An arbitrary graph G of degree d and of order n
can be realized in CIN using D = (1/2)(dn)l/2 layers and (1/2)(dn)3/2 SW-
cells. The realization algorithm runs in 0(dn.log dn) time and O(dn) area.

Proof: From the construction of standard AT- ce]] we have
s =t = l/,p=q= nl/z_
Hence the order, the size and the degree of the derived bipartite graph

are given as follows;



IV = 2(dn)Y2, |E| = (dn)/2 and |D] = (1/2)(dn)Y/2,

By applying these relations to Theorem 1 and Lemma 1, we obtain the

results. @
Example 2 Realize the graph in Fig.6 (a) in C. , T T )
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Fig.6. For example 3.
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4. Conclusion ‘

As a VLSI based models of interconnection network we proposed the CIN and
showed that any graphical interconnection patterns among processors can be
realized effectively in it. It seems hopeful to construct some multi-
processing system or data flow computing system using interconnection
network like CIN(ll). Further a reconfigurable or programmable array based
on this model may be one 6f the attractive research areas(6’12). Using this
approach a lot of interesting hardware algorithm realizations have been
proposed(1’7’13).
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