goooboooogn
O 5220 1984 0 131-145

| e
Cas
[V

A HASHING METHOD OF FINDING THE MAXIMA OF A SET OF VECTORS

Masami Machii and Yoshihide Igarashi

HTH . B% - hBtE EE

Deparment of Computer Science

Gunma University, Kiryu 376, Japan

1. Introduction

One of the fundamental problems in computational geometry is that of
finding the maxima of a set of vectors in d-dimensional space. This problem
is closely related to that of finding the convex hull 6f a polygon which is
also fundamental in computational geometry [2][3]. The solutions to these
problems can be applied to some‘problems in mathematical programming or in
multi-attribute database systems.

The vector distribution model which we éonsider in this paper is as
follows: Let U

U . and U, be totally ordered sets, respectively.

2> 0" d

Let V be a set of d-dimensional vectors (d-vectors for short) in the Carte-

1’

sian product le U2X e X'Ud. For any vector v in V let xi(v) denote
the i-th component of v. A partial ordering < is defined on V in a way
that for u, vin V, u g v if and only if xi(u) 5 xi(v) for all i = 1,.

d, where <. is the total ordering on Ui' A relation < is defined on V in a
way that for u, v in V, u < v if and only if xi(u) <i xi(v) for all i = 1,
« « .« ,d, where a <i b means that a 3 b and a # b on total Qrdered set Ui'
As in the early literature on finding maxima in a vector set we use a model
‘with some restrictions from a mathematically tractable reason [2][4]. One

restriction is that for each vector the magnitude of one component is inde-

pendent of the magnitude of other components. The second restriction

-1 -



13

implies that for the given set of n d-vectors the magnifude of each vector
is an integer in the range 1 through n. In order to estimate the expected
number of maxima in a vector set or to estimate the expected running time
of an algorithm on this kind of problems, a precise specification of vector
distribution is required. Bentley et al assumed a further restriction in
{2] that each set of n d-vectors corresponds to one of (n!)d assignments.
They estimated the expected number of maxima in é set of n d-vectors that
is randomly chosen as one of (n!)d assignments [2]. Using this result they
show an algorithm in linear expected running time of n for finding the set
of maxima of a set of the same restricted model [2]. However, we do not
assume the last restriction in this paper. That is, we do not assume that
for any u and v in the vector set xi(u) # xi(v) for all i. When we say a
set of n d-vectors in this paper, it implies a set of n d-vectors randomly
chosen from {1, . . . , n}d.
For v in d-space V, v is defined to be a maximal element (or maximum
for short) of V if there does not exist u in V such that u > v and u # v.
For v in d-space V, v is defined to be a weak-maximal element (or weak-
maximum for short ) of V if there does not exists u in V such that u > v.
For the d-space we shall prepare md linear lists (or appropriate data
structures such as AVL trees or B-trees) called hashing cells representing
sets of d-vectors, where m is an appropriate integer. A Each hashing cell

is denoted by C(il, .+ . ,1.), where for each j (1 <3is d) ij is an integer

d
from {1, . . . ,m}. For a set of hashing cells we can define maxima and weak-
maxima in the same way as for maxima and weak-maxima of a set of vectors.

That 1is, C(il’ « + « ,1) is a maximum (or weak-maximum) of S if and only if

d
(11, e e . ,1d) is a maximum (or weak-maximum) of {(kl, . . . ,kd) | C(kl,

... ,kd) is in S}.

We design a hashing algorithm for finding all the maxima in a given



133

set of n d-vectors chosen from {1, . . . ,n}d. The expected running time
of the algorithm is O(n). The worst case running time of the algorithm is
O(dn(log2 n)d_z) which is better than the worst case running tiﬁekO(n (
log, n)d—l) of the linear expected time algorithm by Bentley et al [2].
That is, our fast expected running time algorithm has also a respectable

worst case performance.

2. Finding Weak-Maximal Cells

We prepare md hashing cells for implementing our algorithm. Each
vector of a given vector set is ditributed to its corresponding hashing cell.
Then we consider the set of hashing cells that are "not nill" (i.e., hashing
cells that contain at least one vector). We first design an algorithm for
finding all the weak-maximal hashing cells (weak-maximal cells for short) of
the set of '"not nill" hashing cells.

Algorithm 1 -(Finding all weak-maximal cells for d = 2),

We prepare m2 hashing cells C(i, j) 1 ¢'i g m, 1 m).

begin

1. distribute all vectors to their corresponding hashing cells (i.e.,

A

3

A

vector (i, j) is put into C(Lim/nJ, [jm/nJ), where [aJ>is the smallest
‘positive integer not less than a); ’ '
for each (i, j) in {1, . . ., m}z if C(i, j) is empty,then the cell

is marked '"nill" and otherwise, the cell is marked "not nill'';

2. SMAX:= §;
3. for j:=1 step 1 until m do
4.  if C(m,j) is "not nill" then SMAX:= SMAX u{C(m,j)};
5. M:= max{ j| C(m,j) is "not nill"};
6. for i:= m-1 step -1 until 1 do

- begin
7. P(i):= max{ k | C(i,k) is "not nill"};
8. for j:= M step 1 until P(i) do

begin

9. if C(i,j) is "not nill" then SMAX:= SMAX u {C(i,j)};



end;
10. M:= max{M, P(i)}
end;
11. return SMAX

end.

Theorem 1. The time complexity of Algorithm 1 is O(max {n, mz}), where
n is the number of vectors in a given 2-space and m2 isrfhe number of hashing
cells.

Proof. The running time to initialize m2 hashing cells is O(mz). We
may suppose that all the hashing cells are marked "nill" at the initialized
stage. Then line 1 of the algorithm takes O(n) time. The computing time
from line 2 to line 11 is O(m). The time complexity of the algorithm is,
therefore, O(max{n, mz}). . (1

For a given set of n 2-vectors, if we can initialize and mark "nill"
the m2 hashing cell in time O(m), then the above algorithm can be implemented
in time O(max{n, m}). For example, if the m2 hashing cells are initialized
in time O(m) by a parallel machine with m processors in some fashion, then
the above algorithm can be implemented in time O(max{m, n}). We, therefore,
have the next corollary.

Corollary 1. If we do not count the time to initialize m2 hashing cells,
including to mark "nill", then the time complexity of Algorithm 1 is O(max{

n, m}).

The technique that we used in Algorithm 1 can be extended to solve the
general problem of finding weak-maximal cells of a set of d-dimensional
hashing cells. To solve this general case we use an algorithm of the méxima
searching problem. Bentley devised an efficient algorithm for the maxima
searching problem by using the devide-and-conquer method [4]. The maxima search~

3 is the problem how we determine if a new vectof is a maximum of a vector set.

Although the result which we need here is on weak-maxima, the modification

-4 -



135

required by this change is straightforward.
Algorithm 2 (Finding all weak-maximal cells of a set of d-hashing cells).

procedure WMAXI(S, d);
1. T:={CWy, -« « i, m| CEy, - . .1, m) ds dn S}
2. T(m):={ C(i;, « « « ,i5,) [0(11, T T m) is in S};
3 if d = 3 then T2:= the set of weak-maximal cells of T(m) (we can
compute it by calling Algorithm 1) else T2:=WMAXI(T(m), d-1);
4. for j:= m-1 step -1 until 1 do

begin
5. T(j) := {C(11, . e ’1d—1) [ C(11, SRR T j) is in S};
for each C(11, e e e s ld-l) in T(j) do
begin
7. ii.C(ll, . e ’ld—l) is a weak-maximum of T2 u {C(il,. . e
ld—l)} then do
begin
7. | T1 := Tl u {C(ll, IR T i}
8. end :
end;
T2:= {C(il,- . -,ld_l) |C(il’ L] 'aid_l’j) is in Tl}
end;
9. WMAXI:= Tl
end;
begin (main program)
10. distribute all vectors of a given set to their corresponding hashing
‘cells (i.e., vector (il, . . ,id) is put into C(Lilm/nj, . e e,
Lidm/nj); .
11. for‘each (kl, . .. ,kd) in {1, . . . ,m}d, if C(kl, e . ’kd) is

empty, mark "nill", and otherwise 'not nill" the cell;
12. S:= the set of hashing cells that are marked "not nill'';
13. WMAXI(S, d)

end.
In general the set of hashing cells that are '"mot nill" does not satisfy
the restrictions of vactor distribution described in Section 1. However,

Bentley's multidimensional divide-and-~conquer technique can be applied to a



136

wide class of vector distribution models [4]. Bentley's algorithm for the
maxima searching problem can be applied With:a straightforward modifica-
tion to lime 7 of Algorithm.

Lemma 1. (Bentley [4]) Let n be the number of vectors in a given set
on d-space. Then there is an algorithm to determine if a new vector is a
maximum (or weak—ﬁaximum) of the set in time 0((log2 h)d_l). The prepro-
cessing running time cost for this algoriﬁhm is O(n (1og2 n)d-z).v

The next lemma is not difficult to be proven. The proof is left for
the reader as an exercise.

Lemma 2. The number of weak;méximal cells in any subset of the set of
md d-hashing cells is not greater than md - (m—l)d (i.e., O(dmd_1 )), and
this upper bound is optimal.

Concerning the weak-maxima searching problem of hashing cells we can
show that the running time cost is rather independent of the size of the
given hashing cells. The technique to show this fact is essentially the
same as the divide-and-conquer meﬁhod in [4]. We divide a segxof hashing
cells into two subsets according to values of a certain component that are
compared with the middle value of the considered range instead of dividing
into two subsets of the same size.

Lemma 3. Let m be the number of hashing ranges of each coordinate of
d-space (i.e., there are md hashing cells). Then there is an algorithm to deter-
mine if a new hashing cell is a weak-mamimum of a given set of hashing
cells in time 0((1og2 m)d_l). The preprocessing running time cost for this
algorithm is O(md(log2 md)d—z).

Proof. Our divide—and—conqper method is to choose a hyper-plane at the
middle of the range of the considered coordinate dividing‘the vector set into

two subsets A and B, where vectors in A locate on the left of the plane and

vectors in B locate on the right of the plane. The other parts of the

-6 -



137

algorithm is the same as the Bentley's one [4]. The preprocessing work
implies the construction of a multidimensional search tree described in [4].
Since the number of hashing cells in a d-space is at most md,”the upper
bound of the preprocessing work may be denoted by P(md, d):. Then We-haﬁe'
the following recurrence of preprocessing running time P(mt, k): -

. P(mt, k)

2P@/2 , k) + P(min{nt/2, o5 1}, k-1) + o(m%),

P(mt, 2) O(mt) and

P(q, k) = 0(1) for q-<1.

The solution to thisbrecurrence is P(mt, k) = O(mt(log2 mt)t_z) for

2

t > 2. Therefore, the preprocessing running time is O(md(log2 md)d_ ). .

v

The searching algorithm of a set of hashing cells is the same as the |
Bentley's method [4]. We suppose that the search tree is provided by the
preprocessing work. To test if a new hashing cell is a weak-maximum we first
determiné if it lies in the left-half cube A or the right-half cube B on a
specific coordinate. If it is in B, then we visit only the right-half
cube B. If it is in A, we first test if it is dominated by any hashing cell
in A, and if not then we check to see if the projection of the new cell to
the plane dividing ’thebcube into A and B is dominated by the>projection of
any hashing cell in B to the same plahe. When we denote the running time

cost by Q(m, d) we have the following recurrence:

Q(ta k) Q(t/za k) +‘Q(m’ k—l) + O(l)a

Q(t, 1) = 0(1) and Q(1, k) = 0.

The solution to the fecurrence is Q(m, d) =O((log2 m)d—l). We should notice

that the running time cost can be expressed as a function of only m and d. []
Theorem 2. The funning time cost of Algorithm 2 is O(max{n,nﬁ'd(logz(

d-3 4 d-2

md—l) , m (log2 m) 1.

Froof. The running time cost at line 10, line 11 and line 12 of the



138

ﬁain program is O(n) + O(md). The multidimensional search tree for the
test at line‘7 of procedure WMAXI is not completely constructed as pre-~
processing work. It is gradually constructed when new elements are inserted
into T2. That is, the multidimensional search tree which is used for the
test at line 7 is a dynamic datastructure in a sense. However, the method
of constructing gradually the multidimensional search tree is essentially the
same as the method of constructing the search tree in [4], and the total
running time cost for constructing the search tree is the same as the pre-
processing time described in Lemma 3., Thus it is o(md_l(logz(md"l))d—3)_

Let T(md, d ) be the upper bound of the running time cost of procedure
WMAXI(S, d) excluding the total running time cost of constructing the multi-
dimensional search tree of T2, where the number of elements of S is at most

md. The running time at line 1 and line 2 is O(md_l). The running time of

calling procedure WMAXI(T(m), d-1) at line 3 is expressed as 'I‘(md-'l

, d-1).
From Lemma 3 for each hashing cell in T(j) the search test at -line 7 takes
0((10g2 m)d-z). - Therefore, the running time from line 4 to line 8 exclu-
ding the running time updating the multidimensional search tree of T2 is

d d-2 . . . \ d-1 .
O(m (log2 m) ). From Lemma 2 the running time at line 9 is O0(dm Y ( if

we use an appropriate datastructure, this bound can be reduced). Thus we

have the following recurrence:

md—-l d-1,d-3,

t@d, a) = Tl a-1) + O(md(logz m)d'?‘)+o(md“1(1og2 n®1y473y | and

2
O(m~) from the proof of Theorem 1. Solving this recurrence

we have T(md, d) = O(max{md(log2 m)d_% md_%logzmdﬂl)d—3}). Hence we complete

'r(mz,' 2)

]

the proof. ‘ O

~

Corollary 2. If log2 m > dd—g, then the running time cost of Algorithm 2
is O(max{n, md(log2 m)d—z)}.
d+s

Corollary 3. If for some constant k > 0 and s > 0 km < n, then

the time complexity of Algorithm 1 is linear in the number of input vectors.

-8 -



139

From the last corollary if we choose, for example, m such that n= md+}

the time complexity of Algorithm 2 is O(n). The last corollary will be used
in the next section to show that a hashihg algorithm of finding the maxima
of a given vector set runs in linear expected time of the number of vectors
in the given set. We should note that the fact described in Corollary 3 can
be simply shown by a direct application of the Bentley's result in [4]. That
is, from the Bentley's result we can simply show that there is an algorithm
for finding the set of weak-maximal cells in time O(m.ax{n,.md(log2 md)d_z}).
Therefore, if dd‘-2 is not small, our result of Corollary 2 is stronger than the
direct result from the Bentley's result. However, this difference is minor.

Algorithm 2 and its time complexity analysis are motivated mainly from theo-

retical interests.

3. Finding Maximal Vectors

The main algorithm of this paper is to find all maxima of a given
d-vector set. The algorithm consists of four parts.

Algorithm 3 (Finding all maximal vectors).

(1) Prepare md hashing cells, distribute n vectors into their corre-
sponding cells, and mark each cell "nill" or "not nill" according
to the contents of the cells.

(2) Find all weak-maximal cells that are "not nill".

(3) For each weak-maximal cell, find all maximal vectors in the weak-
maximal cell. |

(4) Merge the maximal vectors of all weak-maximal cells, and construct

the set of all maximal vectors of the given set.
The computation for part 1 and part 2 of Algorithm 3 has been already
described in the previOus‘section. If the number of maximal vectors in a
weak—ma#imal cell is not greater than some fixed number, we solve part 3 of

the above algorithm by a conventional method, and otherwise, we solve it by



140

calling Algorithm 3 recursively. We now describe how we compute part 4
of Algorithm 3.
We extend thé definition of the hashing cell C(al,. . .,ad) as follows:
(1) If for each j (1 £ j < d) a, is an integer from {1, . . . ,m}, then
C(al’ .« . .,ad) is a hashing cell which has been already aefined.
(2) Let 7 be a special symbol which is not an integer. Suppose that
for each q (1 faqg m) C(al, . . "aj—l’ q"aj+1’ .. .,ad) has

been already defined. Then C(a "ad) is

1°° .’aj—l’ﬂ’aj’l“ 3 o

defined to be the composite of C(al,. . "aj—l’l’aj+1" . "ad)’ C(

a;, - - ”aj—l’ 2, aj+1,. . .,ad),. . .,C(al,. . "aj—l’m’aj+l"' .y

ad), where a, (1 <t <j-1 or j+l <t < d) is an integer from

{1, . . .,m} or =.
A composite of hashing cells is called a hashing space. Hereafter,
C(al’ . . .,ad) denotes a hashing space. We define Ekal, . . .,ad) to be ;he

set of maximal vectors of { v [ v is a vector distributed to any hashing cell

of hashing space C(al, .. . ,a,)}. Let PRO(j, (il, .« 1)) be a

d
(t-1)-vector obtained from (il, .. "it) by omitting the j—-th component.
That is, PRO(J, (i, . . . ,i)) = (i, - - . ST ij+1¥ .+ - »1) which
is a projection of the vector to a hyper-plane. If S is a set of vectors,
PRO(j, S) is defined to be {PRO(j, v) | v is in S}. We now are ready to
describe the main part of our algorithm.

Algorithm 4 (When Ekal, . ,ad) has been already computed for each
(al’ R ,ad) in {1, . . . ,m}d, compute the set of maximal vectors of the
given set of vectors). From the definition of a composite of hashing cells

C(my, m, . . . , T) is the set of maximal vectors of the given set of vectors.

procedure C(a .. m (eacha (1 gt disan

1, ° . -,aj’ '", .
integer from {1, . . . ,m});

- 10 -



141

1. v if j =d then return Ekal, . . ,ad);
2. for ki=m step -l until 1 do
3. EIE;, . . .,aj, k, Ty & o o, M)
4. := C(al, . . .,aj,m, Ty o o« oy M)}
5 Ml:= PRO(j+l, M);
6. M2:= @;
7. for k:= m-1 step -1 until 1 do

begin
8. for each v in Ekal,>. . .,aj, k, m, . . . , ®w) do
9. if PRO(j+l, v) is a maximum of M1 u {PRO(j+l,v)} then do
10. M:= M u {v};
11. . M2:= M2 u {PRO(j+1,v)}

| end

12. Ml:= ML u M2

end;
13 return M

end

;;;;n (main program)
14. C(m, Ty o v v, T

end.

For the search test at line 9 of Algorithm 4 we must provide an appro-
priate multidimensional search tree. We do not here describé the details of
the search‘tree. We leave it as an exercise for the reader. We roughly
estimate the preprocessing running time for constructing such a search tree
to show that Algorithm 3 runs in expected linear time. We first should. note
that the projection of any vector not in any weak-maximal cell is not inserted °
into MIl. Therefore, the vectors that we should consider in the construction
of the search tree is in a weak-maximal cell. From Lemma 2 the number of

weak maximal cells is O(dmd—l). The expected number of vectors in Ml is,

therefore, upper bounded by O(ncimd—l/md) = 0(dn/m). However, in the worst

case the number of vectors in:'Ml'is O(n). If we first construct an appropri-

- 11 -



142

atemultidimensional search tree of vectors in the maximal cells, vectors in
Ml can be expressed on the whole tree by making some marks on appropriate
nodes of the tree. From this observation we have the following lemma.
d+s

Lemma 4. Let n= O(m ") for some constant s > 0. Then the preproce-

ssing running time cost to construct an appropriate multidimensional serach
. . 1-€ .
tree for the test at line 9 of Algorithm 4 is O(n~ ~) for some e> 0 in the
d-2, .

expexted case, and O(n(log2 n) ) in the worst case.

Proof. From Lemma 1 and the observation descrived above the lemma,

the expected running time is O(dn /m (log2 (dn/m))d_z) < O(nl—e) for some

d-2
¢ > 0, and the worst case running time is O(n(log2 n) ). 1
d —_
Lemma 5. Suppose that for each (al, . . .,ad) in {1, . . .,m} C(al,
.o ,ad) has been already computed and that the multidimensional search

tree of vectors in the weak maximal cells has been already prepared. Then
the expected and the worst case running time costs of Algorithm 4 is O(d211
(log2 n)d-z/m) and O(dn(log2 n)d—Z), respectively.

Proof. All operations in Algorithm 4 are concerned with vectors in
weak-maximal cells. Since the algorithm is recursively called at line 2
and line 3, the actual operations on these lines are the same as the opera-
tions from line 4 to line 13. Therefore, the running time cost of the
algorithm can be evaluated by counting the number of operations for each
vector of weak-maximal cells.

For each vectors v in any weak-maximal cell the number of operations
concerning v is 0(d). Among these operations the search test at line 9 is
the most time consuming one. Since the dimension of PRO(j+l, v) at line 9
is d-1, from Lemma 1 each search test for v in a weak-maximal cell takes
O((log2 n)d—z). From Lemma 2 the expected number of vectors in the union
of weak-maximal cells is O(drlmd_l/md) = 0(dn /m). In the worst case this

number is n. Therefore, the expected running time cost and the worst case

- 12 -



143

running time cost of Algorithm 4 are O(dzn(log2 n)d_zlm) and 0(dn (

1og2 n)dfz), respectively. _ O

Theorem 3. Let n = O(md+s) for somé constant s > 0. Then the expected
.running time cost and the worst case running time cost of finding the maxima
of a set of n d-vectors from {1, . . .,n}d by Algorithm 3 are O(n) and
O(dzn(log2 n)d—z), respectivel?.

Proof. The computing time of part (1) and part (2) of Algorithm 3 is
O(n) from Theorem 2 since we suppose that n is'O(md+S) for some sr> 0. For
each weak-maximal cell C(al, .« . .,ad), if the number of vectors in C(al,

. . .,ad) is smaller than a fixed value, say h, then we compute Ekai, e ey
ad) by a conventional method, and otherwise, it is computed by calling
Algorithm 3 recursively. However, the depth of recursion is limited by t
such that n(d/m)t < h. This limitation is adopted to avoid the poor worst
case performance of the algorithm. We may choose t = 0(d) to satisfy the
inequality n(d/m)t <h. In avefage‘case the recursion depth t or less

than t is sufficient to compute the maxima of each weak-maximal cell. From
Lemma 5 the expected running time cost of Algorithm 4 is less than linear.
Therefore, the expected running time cost of Algorithm 4 with the runniﬁg
time cost of finding the maxima of each weak-maximal cell is still less
than linear. Hence the expected running time cost of Algorithm 3 is O(n).

If after the recursivé call of depth t theré are still some’ weak-
maximal cells at this leyel thét have more than h vectors, we apply the
Bentley's divide-and-conquer method of finding maxima [4] to these weak-
maximal cells. Since the worst case running time cost of the divide-and-
coquer method is O(n(log2 n)d—z) [4], by this switch from the hashing
method to the divide-and-conquer method the worst case running time cost of

Algorithm 3 becomes O(d2 n(log2 n)d—Z). | 0

- 13 ~



144

The hashing method which we have discussed in this paper is particu-
larly efficient when vectors are uniformly distributed in a fixed range.
It is a very natural question what m should be chosen for our hashing
algorithm. A small s may be recommended in many cases, where s is a posi-
tive constant specified in Lemma 4 or Theorem 3. For example, n = 0(md+1)
may be a good choice. In general d is very small compared with n or m.

We therefore may considered that d is a constant. Our hashing method

has a very fast average running time as well as a respectable worst case

performance.

- 14 -



[1]

[2]

[3]

[4]

(5]

(6]

(7]

(8]

[91]

(10]

145

Refernces

A.V.Aho, J.E.Hopcroft and J.D.Ullman, The Design and Analysis of
Computer Algofithms; Addison-Wesley, Reading, Mass., 1974.
J.L.Bentley, H.T.Kung, M. Schkolnick and C.D.Thompson, '"On the average
number of maxima in a set of vectors and applications", J.ACM, 25, 4,
PP-536-543 (1978).

J.L.Bentley and M.I.Shéﬁas, "Divide and conquer for linear expected
time ", Information Processing Processing Lett. 7, 2, pp.87-91 (1978).
J.L.Bentley, "Multidimensional divide-and-conquer', C.ACM, 23, 4, pp.
214-229 (1980).

H.T.kuﬁg, "On the computational complexity of finding the maxima of a
set of vectors, Proc. 15th Annual IEEE Symp. on Switching and Automata
Theory, pp.117-121, 1974.

H.T.Kung, F.Luccio and F.P.Preparata, "On finding the maxima of a set
of vectors", J.ACM, 22, 4, pp.469-476 (1975).

F.Luccio and F.P.Preparata, On finding the maxima of a set of vectors,
Istituto di Science dell'Informazione, Universita di Pisa, Italy, 1973.
M.H.Overmars, The Design of Dynamic Data Structures, Ph.D Thesis,
Department of Computer Science, University of Utrecht, Utrecht,
Netherlands, 1983.

L.A.Santalo, Encjcropedia of Mathematics and Its'Aﬁplicatiohs, Vol.l:
Integral Geometry and Geometric Probability, Addison-Wesley, Reading,
Mass., 1976.

F.F.Yao, On finding the maximal elements in a set of plane vectors,

Rep. UIUCDCS-R-74-667, Department of Computer Science, University of

Illinois, Urbana, Illinois, 1974.

- 15 -



