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1. Introduction

Recently, we introduced one-dimensional alternating simple multihead
finite automata (ASPMHFAs) in [4], and gave several properties of these
autométa; This paper investigates several properties of two-dimensional
alternating simple multihead finite automaton (2ASPMHFA), which can be
considered as a natural extension of an ASPMHFA to two—dimensions.

Section 2 gives terminolo;ies and notations necessary for this paper.
Section 3 investigates a relationship between the accepting powers of 2
ASPMHFAs and non-alternating versions. Section 4 shows that four-way 2
ASPMHFAs are equivalent to ordinary two-dimensional alternating multihead
four-way finite automata. In Section 5, we give some properties of 2

ASPMHFAs with only universal states.

2. Preliminaries

Definition 2.1. Let Z be a finite set .of symbols. A two—-dimensional

tape over I is a two-dimensional rectangular array of elements of I. The
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set of all two-dimensional tapes over I is denoted by 2(2)+. Given a
tape x 62(2)+, we let 21(x) be the number of rows of x and Kz(x) be the
number of columns of x. If lsisﬂl(x) and lstQz(x), we let x(i,j) denote
the symbol in x with coordinates (i,j). Furthermore, we define
x[(1,5),1",3N 1,

only when lSiSi'Sﬁl(x) and lSjsj'SRQ(x), as the two-dimensional tape z
satisfying the following:

() Zl(z)=i'—i+l and 12(2)=j'—j+l;

(2) for each k, r[lskskl(z), lSrSRZ(z)], z(k,r)=x(k+i-1,r+i-1).
(We call x[(i,j),(i',j')] the "[(i,j),(i',j"') ]-segment of x'".)
The reader is referred to [1,2] for formal definitions of a two-

dimensional multihead finite automaton (2MHFA). A two-dimensional simple

multihead finite automaton (2SPMHFA) is a 2MHFA with the restriction that
one head (called the "reading head") can sense input symbols while the
others (called the "counting heads'") can only detect the endmarker "#'".
When the heads of 2MHFA (2SPMHFA) are allowed to sense the presence of
other heads on the same input position, we call such 2MHFA (2SPMHFA) a "

sensing" 2MHFA (2SPMHFA).

A "four-way' 2MHFA (2SPMHFA) is a 2MHFA (2SPMHFA) whose all heads can

move in four directions, left, right, up, and down. A "three-way' 2MHFA

(2SPMHFA) is a 2MHFA (2SPMHFA) whose all heads can move left, right, and
down, but not up. In addition with these, we introduce the following two
2SPMHFA's in accordance with the variety of the moves of reading head and

counting heads. A "semi-four-way" 2SPMHFA 1is a 2SPMHFA whose counting

heads cannot move up.(Note that the reading head can move in four

directions.) A "semi-three-way" 2SPMHFA is a 2SPMHFA whose reading head

cannot move up.(Note that the counting heads can move in four directions.)
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When an input tape x is presented to the 2MHFA (2SPMHFA) M, M starts in
its initial state with each head on the upper left-hand corner of x. M
accepts the input tape x if and only if it enters an accepting state at
some time after each head reached the bottom boundary symbol f#.

Alternating 2MHFA (2AMHFA) and alternating 2SPMHFA (2ASPMHFA) are

alternating versions of 2MHFA and 2SPMHFA, respectively. That is, 2AMHFA

(2ASPMHFA) is the same as an 2MHFA (2SPMHFA) except that the state set is
devided into twordisjoint sets, the set of universal states, and the set
of existential states. Of course, each alternating automaton has the
specified set of accepting states, which is a subset of the state set.

A step of a 2AMHFA (2ASPMHFA) M consists of reading a symbol from the
input tape by each head, moving the heads in specified directions (note
that any of the heads can remain stationary during a move), and entering
a new state, in accordance with the transition function. If one of heads
of M falls off the input tabe, then M can make no futher move.

Definition 2.2, A configuration of a two-dimensional (sensing)

alternating simple k-head finite automaton M is an element of
E. ’ ¥
2(2)—’— X CM,

. 2.k . .
where CMfo((NU{O}) ) (where Q 1is the set of states of the finite
control of M and N denotes the set of all positive integers). The first
component x of a configuration c=(x,(q,(iR,jR),(il,jl),(iz,jz),...,(ik_l,
jk_l)))¢represents the input tape. The second component (q,(il,jl),(i
)""’(lk—l’Jk—l)) (ECM) of ¢ represents the state of the finite control,
the position of reading head and the positions of k-1 counting heads,

respectively. An element of Cy is called "semi-configuration of M". If q

is the state associated with ¢, then ¢ is said to be universal

o

2’j2

[y

{ We note that 0<i imS,Ql(x)+1, Osz, j'ms,Q,z(x)+l (1<m=zk-1).

R’
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(existential, accepting) configuration if q is a universal (existential,

accepting) state. The initial configuration of M on x is

Ly(0)= (% (g5 (1,1, (1,1, (1L,1D)),

~—
k

where 4 is the initial state of the finite control of M.

Definition 2.3. Given a two-dimensional (sensing) alternating simple

multihead finite automaton M, we write c~c' and say that c¢' is a

successor of ¢ if configuration ¢' follows from configuration c in one

step, according to the transition function of M. A computation path of M

on input x is a sequence cg- ¢+ ¢, (n20), where cO=IM(x). A

computation tree of M is a finite, nonempty 1labeled tree with the

properties

(1) each node T of the tree is labeled with a configuration, (m),

(2) if ™ is an internal node (a non-leaf) of the tree, %(7) is universal
and{c | &m) - c}={cl,cz;...,ck}, then T has exactly k children P> Py
,...,pk such that l(pi)=ci,

(3) if 7 is an internal node of the tree and (m) is existential, then
7 has exactly one child p such that 2(m)r 2(p).

A computation tree of M on x is a computation tree of M whose root is

labeled with IM(x). An accepting computation tree of M on x is a

computation tree of M on x whose leaves are all labeled with accepting
configurations. We say that M accepts x if there is an accepting
computation tree of M on x.

For some MHFA (SPMHFA) M, let T(M) be the set of tapes accepted by M.
Deterministic 2MHFA (2SPMHFA) and nondeterministic 2MHFA (2SPMHFA) are
special cases of alternating versions. That is, a nondeterministic 2MHFA

(2SPMHFA) is a 2AMHFA (2ASPMHFA) which has no wuniversal states, and a
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deterministic 2MHFA (2SPMHFA) is a 2AMHFA (2ASPMHFA) whose configurations
each have at most one successor.

In this paper, to represent the several kinds of 2SPMHFAs (resp. 2MHFAs,
sensing 2MHFAs) systematically, we use the notation XY2—kHZ‘(resp. X2-
kHZ, XSN2-kHZ), k21, where,

(1) Xe{D,N,A,U},

D : deterministic

N : nondeterministic

‘A : alternating

U : alternating automaton with only universal states,
(2) Ye{SP,SNSP},

SP : simple
SNSP : sensing simple,

(3) 2- : two-dimensional,

(4) kH : k-head (the number of heads are of k),

(5) ze{A,SA,STRA,TRA},

A : four-way

SA : semi-four-way
STRA : semi-three-way
TRA : three-way
(Of course, "SA" and "STRA" are used only for 2SPMHFA.).

For example,

DSP2-kHA : two-dimensional deterministic simple k-head four-way finite
automaton
USN2-kHSTRA : two-dimensional sensing alternating k-head semi-three-way
finite automaton with only universal states,

Furthermore, for each Xe¢{D,N,A,U}, Ye{SP,SNSP}, k>1, Ze{A,SA,STRA,TRA},
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and Z'€{A,TRA},
L[XY2-kHZ]={T | T=T(M) for some XY2-kHZ M1},
LI[X2-kHZ' ]={T | T=T(M) for some X2-kHZ' M},
LIXSN2-kHZ' ]={T | T=T(M) for some XSN2-kHZ' M},

In this paper, we shall concentrate on investigating the properties of 2
MHFA and 2SPMHFA whose input tapes are restricted to square ones. To
represent these, we use the notations XYZ—kHZS, X2-kHZ's, and XSN2-kHZ'S
for each Xe{D,N,A,U}, Ye{SP,SNSP}, k>1, Ze{A,SA,STRA,TRA}, and Z'€{A,TRA}
. For example, an ASP2-kHA® denotes two-dimensional alternating simple k-
head four-way' finite automaton whose input tapes are restricted to the
square  ones. For each Xe{D,N,A,U}, Ye{SP,SNSP}, k>1, Ze{A,SA,STRA,TRA},
and Z'e {A,TRA},

Z[XY2-kHZ®]={T | T=T(M) for some XY2-kHz%},

ZL[X2-kHZ'$]={T | T=T(M) for some X2-kHZ'S},

L[XSN2-kHZ'S]={T | T=T(M) for some XSN2-kHZ'S}..

3. A Relationship between Alternating and Non-alternating Automata

This section investigates a relationship between the accepting powers of
two-dimensional alternating simple multihead three-way (or semi~three-

way) finite automata and non-alternating versionms.

Theorem  3.1. There exists a set in &f[UZ—lHTRAS], but not in ;Ef&f

[NSNSP2-kHSTRA®].
Proof. Let T,={xc{0,1}?¥ | (fn22) [2, 0)=0,(®)=m & x[(1,1), (1,m) =x[(2,1

),(2,m)]]}. The set T, is accepted by U2-1HTRA® M which acts as follows.

1
Given an input x (Ql(x)=22(x)=m22), M universally (i.e., in universal

states) tries to check that for each i (1<ism) x(1,i)=x(2,i). That is, on

first row and di-th column of x (l<i<m), M enters a universal state to
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choose one of two further actionms. One action is to pick up the symbol
x(1,1), to move down with the symbol in the finite control, to compare
the stored symbol with the symbol x(2,i), and to enter an accepting state
if both symbols are identical. The other action is to continue to move
right one tape . cell (in order to pick up the next symbol x(1,i+l) and
compare it with the symbql_x(2,1+1)). It will be ‘obvious T(M)=T; . The

proof of Tlﬁr>E/Jf[NSNSP2—kHSTRAS] is given in the proof of Theorem 1 in
<fces !

[3]. , . : Q.E.D.

Theorem 3.2. There exists a set in <Z[N2-1HTRA®], but not in \<\ﬂ-<{°oﬁ

[USNSP2-kHSTRAS].

— 3
Proof. Let T1 be the set described in Theorem 3.1. Then we show that Tle
gf[N2—1HTRAS}}231;23[USNSP2—kHSTRAS]. It 1is easily seen that Ti is

accepted by N2-1HTRAS. Then we show that iaftézfgf[USNSPZ-kHSTRAS].
Suppose that there is a USNSP2-kHSTRA® M, k21, accepting T;. Let r be the
numbers of state (of the finite control) of M. For each m>2, let
V(m)={x€{0,l}(2)+ ](Hm22)[21(x)=22(x)=m] & x[(1,1),(1,m) ]=x[(2,1),(2,m)]
& x[(3,1), (mm]ef0} ¥ o
For each x in V(m), 1let S(x) and C(x) be sets of semi-configurations of
M defined as follows.

S(X)={(q’(2’jR)’(il’jl)’(iz’jz)"'”(i )) | there exists a

k-1"Jk-1
computation path of M on x, IM(x)rf (x,(q,(l,jé),(ii,ji),(ié,jé),..

SCHIE NI D IS C NCHE R IO IR I I CUNE IO TP ¢! M)

k-1"Tk-1
(that iS, (Xs (q’(z’jR)’(il’jl)’(iZ’jz)"”"(ik—l’vjk—l))) is V a
computation of M just after the point where the reading head

reached the second row of x)},

{ For each set T, T denotes the complement of T.
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C(x)={oe S(x) |when, starting with the configuration (x,0), M proceeds
to read the segment x[(2,1),(m,m)], there exists a sequence of
steps of M in which never enters an accepting state}.

(Note that, for each x in V(m), C(x) is not empty, since x is-not in T&,

and so not accepted by M.) Then the following proposition must hold.

Proposition 3.1. For any two different tapes x,y in V(m), C(x) nC(y)=d,

where ¢ denotes the empty set.

[For otherwise, suppose that x#y (x,ye V(m)), C(x) nC(y)#é, and Oc C(x)n
C(y). Consider the tape z (with Ql(z)=22(z)=m) satisfying the following
(1) and (ii).

(1) z[(1,1), (1,m)J=x[(1,1),(1,m)];

(ii) =z[(2,1), (m,m)]=y[(2,1), (m,m)].

From (i) above and the assumption that oe¢C(x), it follows that there
exists a computation path of M on z, IM(z) & (z,0). Further, from (ii)
above and the assumption that (7;C(y), it follows that when, starting
with the configuration (z,g5), M proceeds to read the segment z[(2,1), (m,
m) ], there exists a sequence of steps of M in which M never enters an
accepting state. This means .that z 1is not accepted by M. This

contradicts the fact that z is h1T1=T(M).] |

Clearly, ]V(nﬁ,tinz and p(m) gr(m+2)(m+2)2(k_l),b where p(m) denétes the
number of possible semi-configurations of M just after the input head
reached the second rows of tapes in V(m). For large m, we have lV(m)1>
p(m). Therefore, it follows that for large m, there must be two different
words x, y in V(m) such that C(x) nC(y)##. This contradicts Proposition 3

.1.  Thus, Tié :E:Ef[USNSPZ—kHSTRAS]. This completes the proof of the

theorem. Q.E.D.

§ For any set 8§, ISI denotes the number of elements of S.
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As a corollary of Theorems 3.1 and 3.2, we can get

Corollary 3.1. For each k>1, each Ye{SP,SNSP}, and each Ze<{TRA,STRA},

(1) 2ZIDY2-kHz®] S ZINY2-kHZ® ] & LIAY2-kHZ® ],
(2) 2[py2-kuz® 1S ZIuv2-kuz®] G L[Av2-kHZ® ],
(3) l}é.ﬁ[DYZ-rHZS] = \}Y{wﬂmz—rﬁzs] = ‘s\ri.,i[AYz-ers] ,

S S S
(4) S XIDY2-rHZ ] & év{:z‘j[UYZ—er 1S :Y{‘.zf[AYZ—rHZ 1,

1€Y o0

(5) dt{NYZ_kHZS] is incomparable with Jﬁ[UYZ—kHZS], and

(6) ;;:ff[NYZ—rHZS] is incomparable with ;;éjﬁ[UYZ—rHZS].

4., Simple versus Non-simple Two-dimensional Alternating Multihead

Automata

The main purpose of this section 1is to show that four-way 2ASPMHFAs are
equivalent to four-way 2AMHFAs. By using the same technique as in the

proof of Lemma 2.1 in [5], we can show that the following lemma holds.

Lemma 4.1. For each k>1 and Ze{A,SA,STRA,TRA},

L[ASP2-kHZ5] =] ASNSP2-kHZ®].

4

We can show by using Lemma 4.1 that for each k21, Jﬁ[ASPZ—kHAS] is equal

to L[A2-kHAS].

Theorem 4.1. For each k>1,
ZIASP2-KHAS ]= 2] A2-KkHAS ] .

Proof. To prove this, by Lemma 4.1 above, it is sufficient to show that
Z[A2-kHA®] S L[ASNSP2-kHAS ], Let M, be an A2-kHA®, and let HyoHyy oo By
be the input head of Ml. We construct an ASNSP2-kHA® M2 which accepts
T(Ml). Let R be the reading head of M , and C2,C3,...,Ck be the counting
heads of M,. Suppose that an input tape x is presented to M,. By letting

R simulate the action of Hy and by letting Ci (2<i<k) simulate the

-9 -



245

action of Hi’ M2 simulates one step of Ml on x as follows.

(1) M2 existentially guesses the symbol read by each Ci (2<i<k). (Of
course, the symbol read by R does not have to Be guessed.)

(ii) M2 then enters a universal ‘state to choose one of the4folloﬁing
actions.

(a) Directly simulate one step of M; on x by using the symbol guessed
above and the symbol read by R, and’then continue to simulate\the next
step of M1 on X. |

(b) Check whether the guess in (i) was éorrect by moving R to the
position of Ci (25i<k) and by reading the symbol under Ci' (This action

is possible because of the sensing function of M_.) Enter an accepting

2
state if and only if the guess was correct.

It will be obvious that M2 exactly accepts the set T(Ml). Q.E.D.

It is unknown whether or not Z['ASPZ—kHTRAS]= Z,[AZ—kHTRAS]', for each k21
, but in the case of thfee—way 2ASPMHFAs with only ﬁniversal states, we

can get the following results.

Corollary 4.1. For each k22,

(1) ZL[USP2-kHTRAS] & X[U2-kHTRA®], and

(2) ‘x[USNSPZ—kHTRAS] < ZL[USN2-kHTRAS].

Proof. Let Tl be the set described in the proof of Theorem 3.1. As shown
in the proof of Theorem 3.2, T&él>zigﬁ[USNSP2—kHSTRASj. On the other

hand, it is easily seen that Tleif[UZ—ZHTRAS] (in fact, Tl

D2-2HTRA®). From these facts, it follows that the corollary holds. Q.E.D.

is accepted by

5. Some Properties of 2ASPMHFA with only Universal States

In this section, we give some properties of 2ASPMHFAs with only universal

states (2USPMHFA). We first investigate the relationship among the
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accepting powers of 2USPMHFAs with different move directions of heads.

Theorem 5.1. For each k21 and each Ye{SP,SNSP},
(1) L[UY2-kHTRA®] & Z[UY2-kHSA®],
(2) ‘};éooﬁ[UYZ—rHTRAS] < é\{.:f,[UYZ-rHSAS 1,
(3) L[UY2-kHSTRAS] € Z[UY2-kHA®], and
(4) o/ ZLIUY2-THSTRA®] & ‘}\;{;f,[UYZ—rHAS].

Proof. Let Tl be the set described in Theorem 3.1. To prove the theorem,
it is sufficient to show that Tje &2[D2-1HA®]- o’ ZIUSNSP2-KHSTRA®]. It
is easily seen that Ti€ Z[D2-1HAS]. On the other hand, it is shown in
the proof of Theorem 3.2 that Ti& \,/Jf[USNSPZ—kHSTRAS]. This completes

£f<e0

the proof of the theorem. Q.E.D.

It is unknown whether or not eﬁ[UYZ—kHTRAS]Ex[UYZ—kHSTRAS] and JZ[UY2-

kHSAS ] & Z[UY2-kHA®] for each Ye{SP,SNSP} and each k>I1.
We next examine hierarchies based on the number of éounting heads.

Theorem 5.2. For each Ye{SP,SNSP}, k>2, and each Ze{STRA,TRA},
2Iuy2-kuz®] & L[UY2- (k+1)HZz%].
Proof. For each r2l and each m (=r), let

R_(m)={xe{0,1} 7

|(21(x)=1) & (L,(x)=m) & (x has exactly r "1"s)} ,
and for each r=l, let .
A= (xe{0,11 D% |@ns2) [1, (=1, (0= -

-—{ € . I 2 l X —Rz(x)—m] & X[(lQI)’(l,m)]—x[(291)’(2’m)

JeR_ (m) }.

To prove the theorem, it is sufficient to show that for each k>2, A(2k)e
ZIDSP2- (k+1)HTRA®]- Z[USNSP2-kHSTRA®]. We omit the proof of A{2k)e L
[DSP2-(k+1)HTRA®], since it is similar to the proof of Theorem 3 in [3].
Now suppose that there is a USNSP2-kHSTRA M accepting A(2k). Then, by

using counting arguments similar to those in the proofs of Theorem 3.1
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(of this paper) and Theorem 3 in [3], we can find a tape x in A(2k) such
that there is a sequence of steps of M on x in which M never enters an
accepting state (thus x is not accepted by M). This 1is a contradiction.

This completes the proof of the theorem. ' Q.E.D.

6. Conclusions

In addition to the above results, we have got several properties about
the classes of the sets recognized by leaf-size bounded 2ASPMHFAs. Leaf-
size [6], in a sense; reflects the minimal number of processors which run
in parallel iﬁ recognizing a given input. These results will be reported
elsewhere.

We conclude this paper by giving several interesting open problems.

(1) For each k21, 2[ASP2-kHTRA®]= Z[A2-kHTRA®] ?

(2) For each k22, Z[ASP2-kHTRA®]S Z[ASP2-kHSTRAS] & L[ASP2-kHAS] 2

(3) For each Ye{SP,SNSP}, eéch k>1, and each Ze{A,SA,STRA,TRA}, 2L[AY2-

kHZ® ] & LIAY2-(k+1)HZ®] 2
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