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A relation between the size of term and the number

of reduction steps in lambda calculus computations

§%1;J: ﬁ& )” 435_4_53 (Sachio Hirokawa)

1. Introduction

If a term has a normal form, there are many ways to obtain
its normal form. There could be many reduction paths starting
from the given term to its normal form. Then the length varies
according to the paths and so does the size of the paths. We
understand the size of a path to be the maximum size of the terms
in the path. It is considered as the memory size needed by the
computation (to obtain the normal form, i.e. the value of the
input term).

The time optimal reduction stragies are studied in [4], [6],
and an efficient implementatién method of reduction is shown in
[1]. As for the size; some works has been done in [3] and [51],
but they are concerning to the combinatory reduction éystems and
the formulation of the problem is differrent from the one in this
paper. This paper studies a relation, which is stated precisely
in the next section, between the length and the size of reduction
paths.

The motivation of the problem comes from the fact [2] that
we cannot optimize both the length and the size at the same time

in general. The term (Axy. pxx(yI))((Ax.pxx)A)I is such an
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example [2], where the size of A is supposed to be very large. In

fact, the fastest computation of the term requires much more

memory size than any other computation. (See the reduction graph
of the term in Figure 1.1) We might recognize this fact due to a

kind of "time-space tradeoff" in lambda calculus computations.

Figure 1.1 (31 %&)

In the paper the author gives a solution to a problem, set
by T. Adachi, whether there exists a term which actually has the
time-space tradeoff in its reduction procéss. In other words,
whether there exists a term satisfying the condition such that
the faster a computation of the term, the more memory it
regquires. The main theorem shows that only the trivial terms
satisfy the condition. Here "trivial" means that the length of
~reduction of the term is constant and independent on the choice
of the reduction path.

The geﬁeral notions and terminology are referred to [2].

2. Formulation of the problem in lambda calculus

In this section, we give a formulation of time-space
tradeoff problem in lambda calculus computations. And we also

give the precise definitions specific to this paper.

Definition 2.1 The size |M|of X -term M is defined inductively as
follows: |x| = 1, |Qxa)| = |a|l +4, [(a B)| = |a| + |B| + 2.

The size of a term is the number of symbols in the term
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including parenthesis and lambda. Note that the size of any

redex, say ((Ax.M)N), is larger than 7.

Definition 2.2 Let G':MO ==>M; -=> ... - M, be a reduction

path. Then the length of 0 is n and denoted by |g|. The size of

the path is the maximum size of the terms in the path represented

by |a| .

Definition 2.3 Given a term M, the set of all reduction paths of
M to its normal form is represented by R(M). If M has no normal
form, the set R(M) is empty.

Sometimes we call a path in R(M) normalizing path.

Definition 2.4 A term M is said to be TST if its reduction paths
satisfy the following condition:

(rsT) if || < |p| then [P| < [&] for all , in R(M).

We study this condition as a formulation oﬁ time-space
tradeoff in lambda calculus computations. This condition can be
read that if we want to get faster algorithm we have to have more -
momory size. Or it can be read that if one reduction is faster.

than anothg; one, then the efficiéncy %s achieved only by the

larger memory size.

Example 2.1 It is not the case that Any term satisfies the
condition whenever it has a normal fornn'For example, consider
the term M = KI(w3yw3), where K=3xy.x, I = AX.x and w3 =AX.XXX.

Figure 2.1 is the reduction graph of the term.




Figure 2.1 (31 %&)

It is easy to see that for any n in N there exists a normalizing
reduction longer than n. And the size of the reduction increases

as the length becomes longer. So the condition is not satisfied.

Example 2.2 We construct the terms Mn inductively, by

MO = P

Mp+1 (Ax.M xx)W,

where W= x.xx. Then we can see that M, is a TST term as follows.
Take an arbitrary path X in R(M) and consider the redexes
contracted through the reduction. Every such a redex is the
unique residual of a redex in M. Thefefore Card(R(M))=n and we

have = n. Hence M, satisfies the condition TST. See Figure 2.2

for the case of n ¢ 3. e

However, these examples are trivial ones. In fact every path of
M, has the same length (and the same size). Thus the condition
TST was fulfilled trivially.

Then a question arises naturally. Is there any example in
which time-space tradeoff really occurs, i.e., which satisfies
the condition TST non—triviélly ? The answer.is "No", and it is

proved in section 4.
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3. Structure of the reduction graph f TST term

Bl

At the beginning we analyse the structure of the reduction

graph of TST term.

Theorem 3.1 There is no cycle in the reduction graph of a TST

term, if the term has a normal form.

Proof Let M be a TST term and suppose that there is a reduction
o Sy

cycle in the graph. Let it be oo :b4—3>> N-->> N-->> L , where

|¥] > 1 and L is the normal form of M. Then consider the

reduction B=0g+ ¥ + ¥ +X;. We have [B| = || + [¥]| > ],

and ]pl = |ot|. These contradict to TST Q.E.D.

As for theorem 3.2 below, note that even if a term has a
normal form, it is not necessarily that every reduction path
starting from the term 1is of finite length. There could be an

infinite reduction of the term in generai.

Theoremk3.2 If a TST term has a normal, then the length of the-

normalizing path is uniformly bounded by some constant.

Proof Suppose tat the theorem is not true for a TST term M. Then

for each non-negative integer n there is a normalizing path [

longer than n. Since every n has no cycle, by theorem 3.1, the

reduction consists of more than n distinct terms. Therefore

n

sup { IﬁrJ | n=20,1,...} =co. Then take a shortest normalizing

pathcl. For some large n, we have |d] < |§IJ and |a] < |Ph|'
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These contradict to the condition TST for M. Q.E.D.

As we see later in section 4, the length of the normalizing

paths is not only uniformly bounded but also constant.

Theorem 3.3 If a TST term has a normal form, then there is no
infinite reduction path of the term.
Proof Suppose that a TST term M hés an infinite reduction

M = My —=> M} -=> My ==> ... ==> My -=> ...,
and a normal form N. By the Church-Rosser theorem, every M, is
reducible to N by some reduction [. Then the reduction My -->>

M_ followed by is a normalizing path longer than n. This

n n

contradits to the uniformly bondedness of the length. Q.E.D.

- Lemma 3.4 Let M be a TST term having a normal form and o , B be
reductions in the reduction graph of M. If both reductions. start

from the same term and terminate at the other same term, then

we have laf < [pl =£=>|p|'<|d|.

Proof Let P and Q be the initial and the terminal point of the
reductions respectively and N be a normal form of M. Then there
~are reductions ¢-and @ such that ¢ :M -->> P and f:Q -->> N.

Consider the reductions C10= T+ X+ P and' P0= G+ pP+¥P in
R(M). Then we have [Ig| - [Bol = [a| - |g]- By the condition

TST for, andﬁ) ,the theorem holds. Q.E.D.
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4. Main result

In this section the main result (théorem 4.3) is proved for
lambda terms. It says that only the trivial terms are TST.Here,
"trivial" means that the length of the reductions (i.e., the
computation time) is constant and is independent on the éhoice of
the reduction method. It includes the case that the term has no

normal form.

Lemma 4.1 Let M be a TST term having a normal form, and letqg, P
be coinitial one step reductions in the reduction graph of the
TSTterm M.Then both sides of the elementary diagramof and

are of length 2.

Proof Let P be the initial point of 0 and P , and let Q be
the terminating point of the elementary diagram. Let 0 = CT/P ’
4

P = P/o- and let Al' Az be the redexes contracted by Gand f

respectively. (See Figure 4.1.)

Figure 4.1 (B0 %&)
Without loss of generality we can assume that[)z lies left of
Al in P. Then the residual of[Xz relative to O is
unique. Therefore | P'| = 1.
Now it suffices to show that )(Tw = 1. First suppose that
|Gﬁ = 0. Then we have |p| =1 < |g+¢] = 2. Since M is TST, we
have |¢| > |o + f'|. However, we have another inequality:

Ipl = max (2], |@|} ¢ maxt|R], lol, [py]} = |0+ P |.



These lead to a contadiction. Therefore | 71>

Next suppose that |o|22. Then P has the form C[ (Ax.A)B] for
some context C[ ], where (Ax.A)B =4, andAl is in B. Then A has
 the free occurrences of x more than twice. Let m (32) be the

number of the free occurrences of x in A. Since | p+g7| >3 >

| c +p°] =2, we have | ¢ +p°| < |P+ 07|, by TST. Therefore
we have the following inequalities: |P| < |Py], |Q| < |P;|. On
the other hand we can evaluate |P| , |P;| and Ko}

directly as follows:

|p| = |cl(ax.n)B]|] = |a] + |B] + 6 +k,
21| = Jclx.p)B'1| = |A] + |B’] + 6 + k,
lo] = |clalx:=B"11|= |a] - m + n|B| +k,

where k is a constant and B” is obtained from B by the

contraction of . By |p| < |py] , we have |B| < |B7|. By
|ol < |Py|, we have (m-1)|B°| <m + 6. Sincem > 2, |B"| <
(m +6)/(m-1) =1+ 7/(m-1) . Therefore |B| ¢ 7. However, B

contains a redex. 7, so |B| > 7. A contradiction. Therefore |g|

= 1. Q.E.D.

Theorem 4.2 Let M be a TST term, and let N be a term reducible
from M. If there is a normalizing path of N with length k, then
the length of every normalizing reduction path of N to its normal

form is k.

Proof By induction on k.
Base Step: k=0.

Then N is in normal form. So the theorem holds trivially.



316

Inductio Step: (See Figure 4.2.)

By the assumption of the theorem, there is a reduction

of N to its normal form L such that |g| = k+1. Let it be of the

: Ta -0 T Ta_
following form @ :N --> Ny -->> L. Let ©T:N --> N, -=> L be an

0
arbitrary path of N to L. Then by lemma 4.1, both sides N -=-> Ny
T To Ta :

--> N3 and N --> N, --> N3 of the elementary diagram of%; and

Ty are of length 2. Therefore |¢|= |gy| = 1. By the Church-Rosser

theorem, there is a reduction f: N3 -->> L. By induction
hypothesis for Ny, we have |{j + p| = k. Therefore |P| = k - 1.
Thus we have |Gy + | = k. Then by induction hypothesis for N,,
we have |T| = k. Thus [t| = |t +T;| = k+1. . Q.E.D.

Recall that a normalizing path is a reduction path starting

from a given term and terminating at its normal form.

Theorem 4.3 (Main theorem) A term is TST if and only if every

normalizing path has the same length.

Proof "If-part" is trival. When the term has no normal form, the
‘set of all normalizing paths is empty. Then the theorem is
trivial. So we can assume that the term has a normal form. Note
that every normalizing path starts from the given term and
terminates at its normal form. Therefore they are of the same

length by theorem 4.2. Q.E.D.



5. Combinatory reduction system

" In this section we consider the problem in combinatory

reduction system|[ ]. The size of a term is defined as follows.

Definition 5.1 |M|] = 1 if M is a basic combinator,

[(MmN)|] = M| + |N| + 2.
Other definitions in the previous sections,including the TST
term, are applied to combinatory reduction system wiﬁhout any

modification.

—— i ——— - -

Table 5.1 (%n%%)

As the basic combinators we have e.g., the ones in table
5.1. In the table, every combinator is classified into two types.
For every combinator of each type, the right hand side of the
reduction rule has the following property.

type I : Every argument occﬁrs on at most one occasion.

type II : There exists some argument which occurs more than

two times. .
.The last culumn of the table shows the increase of the size of
the term by the reduction.

If we read the proof of lemma 5.1, below, we can see thatv
the restriction of the basic combinators to the ones in the table
is not necessary. For example, the following condition for the
reduction rules is sufficient. Every basic combinators of type II

does not decrease the size of the term.

10



First we prove the lemma 4.1 for the combinatory reduction

system.

Lemma 5.1 Let M be a TST term of a combinatory reductin system
and let 0T, p be coinitial one step reductions in the reduction
graph of the term. Then both sides of the elementary diagram of

G and P are of length 2.

Proof See Figure Figure 4.1. The proof is almost same except the
last paragraph. So it suffices to derive a contradiction form the

’

assumption that |o’| » 2. Suppose that |&

> 2. Thend, 1is type
II. Since 9P  is the reduction of the reéidual of A 2, it does
not decrease the size. Thus we have |[P;| < |Q| . Therefore the
following inequality holds:

| ¢+ p°| =max( [p] ., |®1] . lol }
max{ [P| , |Qf }

sl e+ o .
While we have another inequality le+a’] < |ag+p”] by the
condition TST and the inequality | ¢+ P | < | p+3a7]|

contradiction. Therefore |¢’| =1 . Q.E.D.

 Theorem 5.2 A term in combinatory reduction system is TST if and

only if every normalizing path has the same length.

Proof By lemma 5.1, we can prove the theorem similarly to theorem

4.3. Q.E.D.

11
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: Figure L.2
type combinator reduction rule . increase -of
the sizé .
K KLM ~ -3 L . -(uMu+ s)
I IL -3 . L ' -3
I 'B BLMN -  L(MN) -3
CLMN -5 LNM -3 )
SLMN ->  LN(MN) Ml -1
W WLM . -3 LMM . kM- 1
II J JLMNo -3  Lu(LoN) . | ALK -1
o | eLmno -» L(MO)(NO) | _MOW -1
v | vimno -3 L(mN)(M0) | clMU- 1
_Table 5.1
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