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ABSTRACT: Two major abstract data manipulation models,: the relational.
calculus and relational algebra, were proposed in relation to Relational
Model. However, these are known to be not powerful enough for dealing
with advanced applications that require various complicated operations
in various value sets. Also it is known that these are not suitable for
describing traditional data processing applications. In this paper two
gxtensions of the alpha expression, a pair of a relational calculus.
and a target list, are proposed. One is a extension that enables us to
use various operators (including aggregate operators) in various Qalue
'set in defining the relational calculus and target list. The second
extension is introduction of imaginary tuples that enables us easy de-
scription and effective implémentation of traditional data processing

applications.

KEYWORDS AND PHRASES: alpha expression, alpha operation, aggregate
function, database, data manipulation, function of tuples, imaginary
tuples, relational calculus, target list, tuple-generating function,

tuple-selecting function.

INTRODUCTION

Data manipulation model has almost the same importance to the data struc-
ture model. Nevertheless the former has not been so well studied as the
latter.
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As for the relational model, Codd proposed two major abstract data
manipulation models; the relational calculus which is proposed in relation
to the Alpha sublanguage [Codd 1971], and the relational algebra which was
proven to be relationally complete with respect to the relational calculus
[Codd 1972]. However, no major enhancements have been made on these two
models though these are not powerful enough for some advanced applications.

This paper presents an abstract data manipulation model which is an
extension of the alpha expression that is a pair of a target list and a
relational calculus. Codd's alpha expression is a special case of the ab-
stract data manipulation model presented here. This model is much more
convenient for describing various data manipulations in a wider application
area.

2. DATA PROCESSING AS A SET OPERATION

Data processing, in general, can be regarded as an operation that trans-
forms m given input into m' outputs. The unit of inputs and outputs is a
tuple and several tuples are co]Tective)y treated as an input relation or
output relation. The input relation can be placed on punched cards, paper
tapes, magnetic tapes, magnetic disks or remote terminals connected to the
host computer via a communication network. The output relation can also be
placed on punched cards, paper tapes, printer sheets, magnetic tapes, mag-
netic disks or remote terminals. Let R]’RZ""’Rm be m input relations,
and Ri,Ré;...,R&.’be m' output relations. Each relation may be composed of
only one tuple or more than one tuple. Then the data processing can be
regarded as a transformation

r(R],RZ,,.;,Rm)=(R{,Ré,...,Rﬁ,).
- If we disregard the processing performance to achieve this trans-
formation, it can obviously be decomposed into m' transformations of the
form '

Tk(R1’R2""’Rm)=Ri (k=1,2,...,m")
This implies that the essentials of data processing is m-ary set operations.
Let us next consider to formally describe such a set operation. Generally
a transformation /

T(R],Rz,...,Rm)=R
can be defined by _

R={f'(X-| sXgs e e ,Xm) |9(X] ’XZ"_' . ,Xm)},
where g is a logical function of the form
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with X /R being a range term that becomes true if the tuple var1ab1e Xy
is substituted by a tuple tk in Rk, and false otherwise. The function g’ is
an arbitrary logical funct1on,def1ned on R]szx Rm. It may include some
other range terms xk/Ré or their denial ~xk/RQ conjunctively conbined with
other terms. (It may also include other tuple variables than x1,x2,...,xm
which are bound in g' by some means.) The function g is used for selecting
ordered sets of tuples qualified for g' from R]szx...me and called a
tuple-selecting function (TSF). 4

On the other hand the function f is a ordered set of n functions of
tuple variables X;,X,,...,X ~where n is the number of attributes in the
output relation. It is used for generating a tuple in the output relation
from each ordered set of tuples selected by the TSF 4. The function/f is
called a tuple-generating function (TGF).

For example, let R and Rot be two input relations. The relation

emp
R has three attributes emp-no, salary and ot-rate, while ROt has two

ai?gibutes emp-no and overtime. A relation R a with four attributes emp-
no, salary, ot-charge and net-pay can be defined by the TSF
g(x],xz)zx]/R
and the TGF _
f(x],xz)z(emp-no(x]),salary(x]),ot-charge(x],xz),net-pay(x],x2))

emprz/RotAgmp-no(x])=émp-no(x2)

where
ot-charge(x],xz)zot-rate(x1)xovertime(xz),
net—pay(x],x2)55a1ary(x])+ot-charge(x],xz),
if it is assumed that every tuple in Rem has a corresponding tuple (a
tuple with the same emp-no value) in Rot'
Let us call an operation
a[f?g](R],RZ,...,Rm)={f(x],x2,...,xm)]g(x],xz,...,xm)}
an alpha operation with alpha expression f:g after Codd's Alpha sub-
Tanguage. An alpha expression in Alpha sublanguage is a pair composed of
a relational calculus and a target list. We are considering a wider class
of alpha expressions. The relational calculus and target list are respec-
tively special TSFs and TGFs. Let us next consider how these TSFs and TGFs
must be defined in a formal way.

3. FUNCTION OF TUPLES

There are various ways of defining TSFs and TGFs; however, we will start
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at defining function of tuples which become the basis of describing TSFs
and TGFs. Function of tuples (FOTs) are functions
¢:R]XR2X',' .><Rm—>V¢

where R]’RZ""’Rm are m relations and V¢ is an arbitrary value set. The

above FOT ¢ is said to be of span m. As a special case the span m can be
0.
FOTs are defined by FOT1 through FOT6 described below.

(FOT1) For an arbitrary constant C, ¢( )=C is an FOT of span 0 (with no
tuple variables).

(FOT2) For an attribute Ak’ ¢(x)EAk(x) is a function of tuples of span 1
(with a single tuple variable x). If the attribute A, is undefined for
the relation R over which x is ranged, then the Ak(x) value is assumed
to be Q (undefined).

(FOT3) A range term ¢(x)=x/R is an FOT of span 1. Its value becomes true
when x is substituted by a tuple belonging to R, and false otherwise.
Given a relation instance R, the values of functions defined by FOT2

and FOT3 can be directly evaluated. Conversely, only the FOTs defined by

FOTT through FOT3 can be directly evaluated provided that a relation in-

stance R is given. In this sense the FQOTs defined by FOT1 through FOT3 are

collectively called basic FOTs (BFOTs). |
Let z be an ordered set of tuple variables (X]’XZ""’Xm)' Let us
assume that it is possible to write ¢(x],x2,...,xm) simply as ¢(z). Also

let us denote {X1’X2""’Xm} by z.

(FOT4) Let ¢k(zk) (k=1,2,...,m) be an FOT whose range is a value set Vi
and V. is an arbitrary value set. If an operator

Y -
is defined over these value sets, then the function w(¢],¢2,...,¢ )

m
defined by

P(0750p50 w50 ) (2)20(01(27)509(25) 5. 50 (2. )
is an FOT. Here z= Ezjik. The span of this FOT is the cardinality of

z.

Provided that BFOTs are typed, that is, BFOTs are classfied into sev-
eral groups according to their ranges, operators defined over various
value sets can be extended to the operators that conbine FOTs to form new
FOTs. Let @k be the set of FOTs with the range Vk‘ Then an operator

w:V]xVZX.;.XVm+V

w:V]XVZX...XVm+Vw

is extended to the operator
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where & 1is a set of FOTs with the range Vw. Usually the same notation
is used for both y and y. If an infix notation is used, parentheses must
be introduced to specify the operator precedence.

It is not necessary to restrict attributes to those with simple value
sets. The attribute can be of structured type like fixed or variable length
arrays, sets (power set elements), graphs, records (Cartesian product el-
ements) and repeating groups (elements of a power set of a Cartesian prod-
uct). Variuos operators-are defined in these value sets. The operators y
can not only be common operators like arithmetic, logical and relational
operators defined in simple sets, but also be various complicated oper-
ators like addition and inner product (vectors), addition, multiplication,
determinant and eigenvalue (matrices), pop, push and top (stacks), en-
queue and dequeue (queues), union, intersection, difference, belongs to,
included in and intersect (power set members), concatenation and partial
match (graphs) defined in compound value sets. All these operators can be
extended to the operators ¢ defined in the corresponding sets of FOTs. To
cope with a wider class of applications that require such complicated op-
erators, it is not advisable to impose the first normal form transformation
on the relation schema.

(FOT5) Let ¢](x],x2,...,x ,X_) be an FOT of the form

o Xme] b
¢](x],x2,...,xm,xm+],...,xp)

:x]/R]sz/RZA...Axm/RmA¢‘(x],xz,...,xm,xm+],.--,Xp)
where ¢' is an FOT whose range is the truth value set (logical FOT)
which does not contain any range terms regarding tuple variables
xm+],xm+2,...,xp. For tuple variables X sXgseensXns o' may cohtain’
range terms xk/Rﬁ or their denial ~xk/R& conjunctively conbined to
o?her terms. Let ¢2(x],x2,...,xm,xp+1,...,xq) be an FOT whose range
is V. If an aggregate function V is defined in the value set V, that
is, if

V:UT::]V =V,
then §[¢]]¢2 defined by
(VLoq10,)(2)
| zv[¢1(x],xz,..:,xm,xm+],.;.,xp)J¢2(x],x2,...,xm,xp+],...,xq)
is an EOT whose r?nge is V. Here Z={Xm+1’Xm+2""’Xp}U{Xp+1’Xp+2""’Xq}'
The right hand side of the above definition means that the ¢2(t],t2,
.,tm,xp+],...,x ) values are aggregated for the ordered sets (t],tz,...,

q
[

k



16

t.) of tuples qualified for ¢;(t;,t,,...,t

X4 s X2 - —p+],xp+2,.
sets are empty, z=p and v[¢1}¢2 becomes constant function.

Let o be the set of FOTs that satisfy conditions imposed on the ol

m’xm+1""’xp)‘ Either or both

,xp} and {x ..,xq} can be an empty set. If the both

defined above, and @V with the set of FOTs whose range is V. Then ¥V is an
operator

Vo X020 )
Usually the same notation is used for representing V and V.

Tuple variables x],xz,{..,xm are said to be bound in the scope of the
aggregate operator V, while tuple variables in z are said to be free in
the scope of V.

There are various aggregate operators defined on various value sets.
The aggregate operator I, II, max, min, average and standard deviation are
defined on the set of numbers. The aggregate operator I corresponds to the
arithmetic operator +, while I corresponds to x. In a similar way, it is
possible to introduce an aggregate operator /\ corresponding to A and \/
corresponding to v in the truth value set. These two operators are dif-
ferent from others in the point that the range of ) is the truth value
set as well as that of ¢y - It is easy to see that

N\Dx/Ra¢q 16,2/ \[x/R1(9424,)
and
\/[X/R/\Cb] ]¢25\/[X/R](¢]/\¢2) .

In particular, /\[x/R]¢ is written as (¥x/R)¢, while \/[x/R]¢ as
(HX/R)¢. The tuple variable x is said to be quantified by the universal
quantifier v or by the existential quantifier E. Obviously quantified
variables are bound variables. This is an interpretation of quantifications
as aggrerate functions, In database environment where relations are com-
posed of a finite number of tuples, such an interpretation often becomes
useful [Kobayashi 1984].

(FOT6) Only functions defined by FOT1 through FOT5 are FOTs.
Now we are ready to define TSFs and TGFs.
(TSF) A TSF is an FOT of the form
g(X] oy ,xm)‘zx]/R]/\Xz/RzA, ] ‘Axm/Rme(x} SOTRRY ,Xm) .
where ¢ is an FOT whose range is the truth value set. Tuple variables
X15Xps.--sX  are free in ¢, that is, they are not bound in the scope
of any aggregate operators used in defining ¢. The FOT ¢ may contain
range terms xk/R& or their denial~xk/Ré for free variables X if
these are conbined conjunctively to other terms. It may also contain
6
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other tuple variables than X1 sXps et s X which are bound in the scope
of some aggregate operators used in defining ¢.

As TSFs of a special type, we may consider TSFs with no free variables.
Such a TSF becomes constant true or false according to the state of rela-
tions over which tuple variables are bound. Such TSFs are regarded as rules
imposed on database relations. These rules may be used as integrity con-
straints against which database updates must be validated, or as axioms
to be used in deductive question answering.

(TGF) A TGF is an FOT of the form
7(2)2(8,(2)18,(2), 50, (2)),
where ¢1’¢2""’¢n are FOTs. |

A TGF 1is an ordered set of n FOTs. Given an ordered set z of tuples,
it is used to generate a tuple with n attributes.

Let S(FS,@S,GS) be a set of TSFs generated from a set Fs of BFOTs using
a set o of operators according to a generative grammar Gs’ and G(Fg,@g,Gg)
be the set of TGFs generated from a set Fg of BFOTs using a set @g of oper-
ators according to a generative grammar Gg. The sets S and G can be regarded

as representing the total data processing capability possessed by a given
system. In this section a very wide class of TSFs and that of TGFs have been
presented; however, in most cases (data models and database management SysF
tems) only TSFs and TGFs of a restricted form are dealt with.

In information algebra [CODASYL 1962], an alpha operation is called
a bundling operation. A TSF and a TGF were respectively called a bundling
function and a function of bundles. As FS and Fg, FOTs defined by FOT1
through FOT3 were used. However, only a very Timited number of operators
were used, and the grammars GS and Gg were defined in a very conventional
manner.

As mentioned previously in Relational Model, a TSF and a TGF were
respectively called a relational calculus and a target list. As Fs’ FOTs
defined by FOT1 through FOT3 were used. However, as operators in @S, only
six relational operators and universal and existential quantifiers were
used. The grammar Gs was almost the same to that mentioned in this section.
On the other hand, only FOTs defined by FOT2 were used as Fg, and & was

g9
an empty set. The grammar Gg was a very restricted one accordingly.

To accord with a wider class of applications including advanced en-
gineering applications, it is very desirable to deal with the alpha oper-
ations with extended alpha expressions described here.

7
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4. IMAGINARY TUPLES

The alpha operation so far defined is very powerful to describe data pro-
cessing applications in general. However, it still has a fatal disadvan-
‘tage when its being used to describe traditional business data processing
application.

Let us reconsider the example presented in section 2. There were two
input relations R and Rot’ for which it is assumed that every tuple in

emp

Remp has its corresponding tuple in Rot’ that is, for every tuple t1 in

Remp there exist one (and only one) tuple t, in R, for which emp—no(t])
=emp-no(t2). However in practical applications, there can be a tuple in
Remp for which no corresponding tuples exist in Rot’ and also there can

be a tuple in Rot for which no corresponding tuples exist in Remp’ (The
latter may be an erroneous case.)

Selecting a tuple in R with a corresponding tuple in R_,_ can be
emp ot
made by spec1fy1ng the TSF ;
g]( ],xz):x]/Remprz/RotAemp-no(x])=emp-no(x2).
The TGF for this case is
f](x],xz)z(emp-no(x]),sa]ary(x]),ot-charge(x],xz),net—pay(x],xz),)
where
ot—charge(x1,xz)Eot-rate(x])xovertime(xz)
and
net-pay(x],xz)Esalary(x])+ot-charge(x],xz).
Selecting a tuple in Remp with no corresponding tuple in Rot can be made
by specifying the TGF
gp(x1)2X1 /R (sz/Rot)emp—no(x])¢emp'”0(xg)~
The TGF for th1s case is
fé( )= (emp-no(x ]),sa]ary(x]),O,sa]ary(x1),).
Finally se]ect1ng a tuple in ROt with no corresponding tuple in Remp can
be made by specifying the TGF:
g3(x2)Exz/RotA(Vx]/Remp)emp-no(x])¢emp-no(x2).
The TGF for this case is
fé(xz)z(emp—no(xz),,,,error).

To create R . properly it is necessary to execute a program like
pay ;
begin R1’=a[f3:91](Remp’Rot);

Rzz—a[fz 92]( )a
Ry:=alfy: 93] t;’

R .-U(R 3

end;
pay
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where u is the operation making a union of three re1atjons_R],R2 and R3.
The union operation itself must be described in a procedural conbination
of several alpha operations [Kobayashi 1983]. In general, given n input

relations, it is necessary to execute 2" alpha operations and a union

operation that conbines 2"_1 intermediate results.

Such a program has two major problems. First it is not easy to de-
scribe a proper TSF and a TGF for each of 2" 1 (complete or partial) matches.
In fact, it is necessary to introduce one or more quantified variables.
Secondly the above program, if executed as it were, includes many dupli-
cate operations. It is known that, if Remp and ROt are organized in the
sequence of emp-no values, the desired processing can be achieved by a
single sequential collation with no redundant operations.

To resolve this difficulty it is desirable to devise some means by
which the whole operation can be described (nonprocedurally) by a sinble
alpha operation, which also enables an easy application of sequential
collation. This is achieved by introducing imaginary tuples defined below.

An imaginary tuple i to be attached to relation Rk is defined by the
following three conditions:

(IT1) g(t],tz,...,tk_],1,tk+],...,tm) becomes true if and only if
( X /Rt otgs sty _1aXiotyyqaeeest )
is false but if for appropriate tuple tk which‘is not currently con-
tdined in Rk’
g(tystys- sty otpotiagseot)
becomes true.

(IT2) g(i,i,...,i) is always false. That is, at least one tuple must be
an existing tuple.
(IT3) There is an FOT f' of span m-1 such that

f'(x],x2,...,xk_],xk+1,...,x )=F(x ]’x2""’xk-]’i’xk+1”"’Xm)'

Let us denote Rku{i} by ﬁk' Then the above example can be achieved
by the program

begin R -a[f g](R
where

emp’ ot) end;
g(x],xz)zx]/ﬁemprz/ﬁotAemp—no(x])=emp-no(x
f}(x]axz) (if x]ziszxi)
f(x],xz)z fé(x]) (if x]ziAx2=i)
fé(xz) (if x]=1Ax2xi)
with j}, fé and fé being those defined previously.
It is not necessary to add imaginary tuples to all input relations.

5
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For example, if a tuple in Rot has always a corresponding tuple in Rem

then the program can be
ay::a[fﬁg](Remp,Rot) end;

p,

begin Rp

where
g(x],x2)zx]/Remprz/ﬁotAemp—no(x])=emp—no(x2)

fﬁ(x],xz) (1f x,=1)

fé(x]) (if x2=1)

The outer join introduced by Codd [Codd 1979] is a special alpha operation

in which both of two input relations contain an imaginary tuple.

Fxqs%5)=

5. CONCLUSION

The alpha operation (specified by a pair of relational calculus and a
target list) in the Alpha sublanguage was an outstanding data manipulation
model proposed in relation to the Relational Model. However, since the
alpha expression in the Alpha sublanguage was of a restricted form, it
can hardly describe ‘advanced applications which require complicated data
manipulating operations. Also since the Alpha sublanquage was designed
to describe rather simple applications for casual users, it is not suit-
able for dealing with traditional data processing applications.

In this paper, it is shown that the first difficulty can be resolved
by extending the syntax of defining alpha expressions. In particular,

FOT4 and FOT5 that enables us to use various operations already defined
in variuos value sets in defining FOTs is a very powerful extension for
advanced applications. This policy was partially enbodied in an experi-
mental database management system FORIMS [Kohri 1975].

The second difficulty can be resolved by introducing imaginary tuples.
This function can be easily integrated in the query optimization algorisms
[Kobayashi 1981]. It is possible to extend the relational algebra to make
it relationally complete with respect to the extended alpha operation
[Kobayashi 1983]. Also a summary operation can be formally defined by
using aggregate operations defined by FOT5. Regarding quantifiers as ag-
gregate operators is useful to develop an optimal mechanism for validating
database updates [Kobayashi 1984].
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