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An extention of Girsanov type formula
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§0. Introduction.

(A). In this note, we aim to solve the next initial value
problem (0.1) by a stochastic method, which is an extention of the

Girsanov type formula employed in [71]:

@

(0.1,a) -—%(t,x) = (A + B)W(t,x), t >0, x € RY,

(0.1,b)  W(O,x) = f(x).

Where

- ¢-1y9°1 d 2429

with a natural number q and with a complex number £ such as

Re p > 0. AnNd

b (x) (2%

B = ZIa|§2q 0s ax

where ba(x) are complex valued functions in a certain class



119

30(Rd), in which an initial function f(x) 1is also included, and a
= (al,...,ad) are multi indices, denoting lal = Zszl @, and

« Xy
(8/9x)° = nk<a/ax Y .

k

Let A-process be a “Harkov process' tied t

@

Ut ) = A ult,x), t >0, x e RY,

(0.2) 1

@

i.e., the density of fhe "transition probability” for the process is
taken to be the fundamental solution of (0.2).

OUr policy is to study A-process as an analogue to the Brownian
motion, which was proposed by Gel’fand and Yaglom [31 first. But
on the way researching A-process in that direction, a éreat
difficuity arises from the fact tha{ its transition probability is
in general a signed measure even if o 1is positive ( cf. [4,5] ).
Namely if a natural meésure of A-process sﬁould be realized in a
path space, then the measure would be of unbounded variation. This
is much different from the case of the Brouwnian motion.

In spite of that difficulty, some mathematicians studied
stochastic analysis of A-process from that point of view. UWhen d =
1, Krylov E5]kproved the Feynman—-Kac formula for A-process, and
Hochberg [4] accomplished systematic research including a definition
of "stochastic integrals" of A-process. Basing on Hochberg’s
stochastic integrals, Berger and Sloan [1] obtained a Girsanov type
formula for constant coefficients, and Motoo [6] extended that
for variable coefficients in a class.

When d 2 2, Berger and Sloan [2] also defined stochastic



12y

integrals by translating Hochberg’s ones into the multidimensional
case, and they proved Girsanov type formula for constant
coefficents. But their results are partial, becasue a variety of
their stochastic integrals is not sufficient if q 2 2 and d 2 2.
In L7], we present a different definition of stochastic integrals
from Berger and Sloan’s, where the former includes the latter,
Hochberg’s, and the usual ones for the Brownian motion as special
cases, respectively. Basing on {hose stochastic integrals, we could
construct a Girsanov type formula for variable coefficients in a

d

certain class 7 (R%.

(B). Each stochastic integral in [7] has been chafacterized

d of the order under 29-1. Here

by a differential operator in R
we shall define '"singular stochastic integrals", to which the
differential operators of the orders under 2q correspond. If such
singular stachéstic integrals were once established, then the
Girsanov type formula, employed in [73, will enable us to solve
0.1). |

We realize the above conjecture belong the following program:
With §2, we begin the consideration of eg-process, that is a Markov

process tied to the next parabolic equation of the order higher than

(0.2):

[~3)
[

(0.3)

_ _44P-1 d g 2P

[+7]

t

t > 0’ X € Rd’

~Wwhere & 1is a positive number and p 1is a natural number such that
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p > q. We define the stochastic integrals of e—process in a same
way as in t?].

In §3, we let & tend to zero for (0.3). Then, with a
suitable choice of integrands, the stochastic integrals of e—-proces:
converge to the singular stochastic integrals of A-process, wWwhile
the differential operafurs of the orders under 2p-1 correspond to
those singular stochastic integré]s. Where the sense of the
convergence is taken to be a little wider than “the weak sense’,
proposed in [73.

The content of 8§84 is the Girsanov type formula. If the
corresponding differential operators to the singular stochastic
integrals are of the orders under 2q, and if the coefficients
b, (x> for lal = 29 are not "large" in comparison with Re o, ther
the Girsanov density with the singular stochastic integrals is
obtained by successive approximation. UWe assert that our Girsanov
type formula solves the “martinga]e problem" for (A + B).

In §5, we specify the stochastic solution of (0.1), by using
the above-obtained Girsanov type formula. Uniqueness and regularity

aof the stochastic solution are known from this specific form.

1. Description of notions.

d

Let JtK(R ) x 2 0 be the space of complex valued measures u

d

|

on RY with Bal_ = [+ 16DF diul¢) <o FPRYD  are the space
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of all Fourier transformations f(x) = f exp{i<é, x>} dﬂf(f) of af
in J%x(Rd), here and on <£,x> 1is the inner product in Rd, and we
define IH'II'c = “MF"x' J%x(Rd) are commutative Banach algebras witt

norms |l "x under convolution. Define JZQ(Rd) = ﬂx>0¢%x(Rd)‘ and

Fm(Rd) = ruzo ?N(Rd), while the latter contains the Schwartz class

4 » constants, sin X+ COS Xy and etc..

Certain "stochastic notions' of A-process and those of
e—-process are defined in the same way as in [73. We briefly state
‘them. The path space L[ 1is the set of all continuous functions

w(s) = (wl(.),...,ud(.)): [O,=) - Rd. We say that a function f{w)

on ( 1is a tame function, if f(w) 1is a Borel function of a finite
number observations, that is
»)

flw) = flult ), es,u(t

1 N

for a Borel function f on Rde. Moreover if § 1is of ?x(Rde)

( respectively polynomial ), then we say that f(w) 1is a Zf ( resp.

polynomial ) tame function. The Fourier transformation of the

fundamental solution ps(t,x) faor (0.3) is
_ 2p ¢ 29
exp{ Zk(e fk +p fk ) t3,

and pe(t,x) is of the Schwarz class ¥ in x for each positive

t. The expectation Ei[?(u)] of a tame function f(w) =

Flutt e utt ) 0 <ty £&oov$ by is defined by the next, if the

1
right hand side exists:



£ _ (1) (N € _ (n)_ _(n-1)
.0 Errad = [onf ey ™M et —t Ly y )

xf(y(l),...,y(N)),

(0)

]

where to =0 and vy x+ We enjoy the Markov property of

e—-process, that is: For f in FO(Rde), g 1in ?O(Rde ), and O

-S-'Sl _<__oo.§ SN§t1 _S_"'é tNa,
£
(1.2) EXE'F(U(S].),--O,U(SN>) giu(tl),.n,w(tN»))]

= Eitf{u(sl>,...,u(sN)> Ei Lt )y e e ulty )10,

(sN 1

We say that a sequence of tame functions {fn} converges in

— 3 3 8 1 m
the e-weak sense, if 11mn_,m Ex[fn gl exists for any »? tame

function g and any x.

J = (Jl,...,Jd) is a multi index of a stochastic integral if

Jk k =1,¢¢0e,d are natural numbers such that
(1.3,1) 2p 2 Jk 2 1, k = 1,ve0,d,
(1.3,1i1) [J] = Zk Jk 2 2p¢d - 1) + 1.

For A-process, the expectation EXEF(u)], the Markov property,

the weak sense convergence, and etc. are also defined in the same

manner as just described ¢ see [7] ). The next simple remark states



the relation of the both processes: For a ?0 or a polynomial tame

, . € —
function f(w), 11m5_,0 EXEF(u)J = EXEF(u)].

§2. The stochasiic integrals of £-process.

(AY., We fix a positive number T throughout the article. For
a large natura] number M, let &6 = T/M, Sy = mT/M m=0,1,600,

M-1, and let
Guk(sm) = uk(sm+1) - wk(sm), k = 1,¢00,ds

For a multi index J as in (1.3), we define

J
J d k
k=1 (Bwk(sm)) ,

(2.1) GBuls )7 = ( d-1

) Il

1
5

where we set, for Jk 2p,

J

k
(6uk(sm))

i

0P e 2p 5.

Theorem 2.1. For M and t € [0,T1, let S = S{M,T) be an

integer such that ST/M <t < (S + DT/M. Let alx), a (x) n =
1,¢¢.4,N be functions in ?Q(Rd), and let J, J(n) n=1,...,N be
multi indices as in (1.3). Then the following sequences of tame

functions converge e-weakly for each ¢ > 0, as M = o
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) J
Zm=0 a(u(sm)) (6u(sm)) ,
m,—1 m -1
S 1 N—-1 N J{n)
Zm1=N—1 Zm2=N-2f"ZmN=0 (Hn=1 an(u(smn)) (5u(smn)) ).

Definition 2.2, We call the above weak limits the stochastic

integrals of e-process, and the next symbolical notations are used

respectively:

| e—fé atw(s)) (dw(s)),

))J(N)

t s 3
_ J1) 1 J2) j N-1
€ jo(dw(sl)) JO (du(s2)) o (du(sN

xal(u(sl)) az(u(s2))...aN(u(sN)).

(B, We define an ordered partition g,'uhich divides the set

{1,+¢e.,d3 into two subsets (Ql,éz) = ¢ such as:

R
pen

n
o
A

-

i

(2.2,i) ¢ = ¢  if and only if & 1,2.

(2.2,11) @r may be empty for r =1 or 2.
The summation with respect to all such §’'s is denoted by Zge

For a multi index J of a stochastic integral and an ordered

partition ¢, a constant 2(J,2) 1is defined by



( (2p) ! (29) !
(nk6§1 2p - Jk)!)(nkeéz (Zq - Jk)!)’
(2.3) 1(J,8) = if J <29 for k<3,
\ o, otherwise.

As in [7], the stochastic integrals of e—process correspaond to

the differential operators in Rd.

Corollary 2.3. (i) Let g be a ?Q tame function, that is

(170N

g = 9P k™ with T = ww) r=1,000R and 02y,
Uy & ¢+v» L up £ 7. Then
Timg,o £ ESee-[ 1" atus)) (dwis» Ty g3
pled, l+qld 1+d |2, I[&,]
(55 20,0 (-1 1 2 e Vs % BB atwiy
2p-J 2q9-1]
R 2 k R 8 k
X({er(} (ZP=R’ (r)) }{eré (zrz - —'ﬁ,\—)) 3+9) 1,
1 ax 2 ax
k k
= < for UR/_I é t < UR"o
pléd l+qle l+d 12,1 18,1
Tp 1) <D T P
2p-J : 29-]
e 3 k 2 k,.
<ELL atutt) (g G Mg G ¥+1) 93,

(ii) The stochastic integrals of e-process are Markovian.



§3. The singular stochastic integrals.

(A, From now on, we consider only multi indices a = (al,...,
ay) such as lal < 29. For a multi index a, we define a multi
index of the stochastic integral, J(a) = (J

(a),soe,d ,(x)), by

1 d

(301) Jk(a) = 2P - ak; k = 1’n00,d0

We consider a new partiotion ¢, that is slightly different
from aforesaid ¢ in (2.2). ¢ is an ordered partition which

divides the set {1,...,d} into two subsets (2,,8,) =§¢ such as:

(i) ¢ =¢° if and only if & =97 r=1,2.

(i1) QZ is not empty.

The summation with respect to all such ®¢’s 1is denoted by ZQ.

For each a and ¢, T(x,¥) 1is the set of multi indices a”

such that
(3.2) a& = a for k e @

= oy + 2(p - q) for k e @2.
In fact, I'ta,@) consists of a element, at most.
Let measures Ua’ indexed by a for lal £ 29, be given in
(g)

JLO(RR),'and we define new measures #a B’ of u%o(Rd), indexed by «
’

and B, as follows:

_‘IO_



0 if 181 2 lal and if 8 # a,

(3.3) 2% =<9 y U@, (- prd if 8 =a,
a’B - a

d . -1 .
= Ty Tgearp,gf et 1B 1B,

p(d+[®. 1)+ql® | 2,1 [9,]
x (=1) 1 2 c 1 o 2 u(a),],
2 3N
\ | if 181 < lal.

Where 2(J{a),d) 1is given by (2.3) with &, = {1,.¢4,d> and &, =

1 2

®. (3.3) is well defined, because (3.2) demands that

1871 = 181 + 2(p = @)1 2 18] + 2(p - Q).
, (e) , 0,.d .
lLet functiaons ba(x) and a, B(x) in #°(R”) be the Fourier
]

transformations of the above-mentioned measures v, and a;eé
9

respectively, that is:

(3.4) b (x) = f expli<t®, x> dv (£9)
[# ¢ X
() _ B (e),.B
aa,B(X) = I exp{§<§ Sy X3 dﬂa’B(f Y,

where ¢%  and fB, points in Rd, are indexed by a« and 8.
{B). Now we let & tend to zero for the stochastic integrals

-11-
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of e-prcess.

Theorem 3.1. Let multi indices of stochastic integrals J(8)

be given by (3.1), and let ?O(Rd) functions aéaé(x) be given by
’

(3.4). Then, for a ?0 tame function g{w), the nexts converge as ¢

-+ 0
iB ESrce-[8 alfhcuis)) (awsn?®y guny,
2 T Ei[{e—fé(du(sl))J(B(l))...jZN—l(dw(sN))J(B(N))
xa;ii)’ﬂ(l)(u(sl)) PN ;ﬁ&)’B(N)(w(SN))} g{w)J.
Moreover the convergences are of | “0 sense for each t.

Definition 3.2. We call the above limits the singular

stochastic integrals of A-process, which are the functionals over

the space of ?0 tame functions. Symbolica]]y‘Ue denote them by

-t I(a)
s JO ba(u(s)) (dwi(s)) s

t (1) - (N)
s-J (du(sl))l(a .. f N-1 quis, oyl )

0 0 N

xb (1)(w(51)) v esXb (N)(U(SN))’
«Q S a

where I(a) = (I.{a)seee, ()) 1is defined by

1 d

-12-
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Ik(a) 2q - @, k = 1,..,d.

(C). We state the correspondence of the singular stochastic

integrals to the differential operators in Rd.

Corollary 3.3 (i) Let g(w) be a ?m tame function, that is

g = g(x(l),...,x(R)) with x(r) = w(ur) r=1,...,R and O = Ug

$uy £ eve Lup £ T Then

. 1 _(t+ I(a)
]1m6*0 3 Ex[{s Jt ba(u(s)) (dw(s)) } glw) ]
(E.L b_(w(t)) @, <R 8 %Ky gy (w3
X a k “r=R" 3 (r)
®k
= 9 for upe 4 St < upe
E Cb (w(t)) (I (—Q—)ak)l) g(w)] for ug £t
| X« k axk R=2 "

(i1) The singular stochastic integfals of A-process are

Markovian.

Remark 3.4. The next statement follows from Corollary 3.3,

combined with Theorem 5.3 in [7]: Set J(a) = (Jl(a),...,Jd(a)) by

Jy@ =23 -a, k=1,..,d, and Tet b_ be in 7 (RN, Let

k
J(a)

-Jé ba(u(s))(du(s)) be a stochastic integral defined in [7], for

-13-



131

A-process. If lal £ 29 - 1, then that coincides with a singular

Ie) in the weak sense,

stochastic integral s—jé b, (W()) (dw(s))
except multiplication of a constant. On‘the other hand, the latter
may exist for lal = 29, while the former does not exist for the

case.

Remark 3.5. For the weak existence of the singular stochastic

integral, we need not assume that |lal { 29. Thus if we replace
that assumption by lal < 2p-1, then we may define singular
stochastic integré]s, whose corresponding differential operators are
of the orders under 2p-1. But integrands ba and a tame function

g should be taken in 7 (R and so, now.

§84. The Girsanov type formula with

the singular stochastic integrals.

(AY. We define Girsanov density with the singular stochastic
integrals, in a different way from that in [7]J. Our method is

successive approximation, proposed in [6]. Set

* =

b**

Lemma 4.1. - For any large number C,

-14-
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Il ISN—1 LNy

0 (dwis

lE.C{(Z )

a(l)

t

xb {(W{s,))esse b
a(l) 1

a(N)(w(sN))} g(u(u))]“o

b* 1 N

£ "ﬂguo (—ﬁs—z * T ) C

29 exp{(C b**)2q Tzq}.

- Owing to this lemma, we may assert that:

d), suppose

Theorem 4.2.  For functions b (x) in 7O (R

*
4.1) b "ba"0 < Re p.

= zlal=2q

Then, for a ?0 tame function g,

(1
® I ')
(4.2) Sy_o = e E

)
la {171 <24 laN 1 <24

t
Ex[{s-'fo(du(s1

(N,

I({a b

S —
X..oXI N l(dU(S

0 ))

(1)(u(sl)) eve b

(74 @

)Y} g(w)]

N ) (Wisy

converges in | "0 sense.

Definition 4.3. We call the above weak 1imit Girsanov density

and denote it by Z(t,w), that is

(ca.2>} = E [Z(t,w) 9w,

(C)s We see the Markov property of Z(t,w).

-15-
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Lemma 4.4. For functions f and g 1in 30(Rd),

EXEZ(t,w) flw(t)) Eu CZCu,w) gl(wlul)) 1]

(t)

= EXEZ(t+u,w) FUlt)) gluwlt+u)) .

Next, we shall decide the corresponding differential operatbr

to Z(t,w). Let ?1’2q be the set of functions g(t,x), (t,x) €

[0,TIxRY, such that:

(4.3,1) g(t,x) € ?2q(Rd) for each t, and

Tim_, lgt(s,.) - g(t,.)ﬂzq = Q!

(4.3,i1) For each t, there is a function gt(t,x) € ?O(Rd) such as

Q(S,o) - g(t,.)“
s -t "0

'Hms_,,t Hgt(t,.) - gt(s,.)ﬂo = 0,

Lemma 4.5. For a function g(t,x) in ?1’2q.

1

]imu+t T -1 EXEZ(u,u) glu,wlul)) - Z(t,w) g(t,w(t))]

= EL2¢tw (Gr + A+ BYa) (1,u(t))]

_16,_
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Remark 4.6. Lemma 4.5 and a little modification of Corollary

3.4 are sufficient to state that: Z(t,w) weakly solves the next
stochastic difFereniia] equation,

2w = 1+ 2 00 s—Jé b, (W(s)) Z(s,u) (duts)y @),

(C). Here we assert that the "martingale problem"” for (A + B
is solved by a system of the ekpectations {Ex[.], X € Rd} =
{EXEZ(.,U) «J, X € Rd} on the space of ?0 tame functions. For
functions £ and g in FO(RY), define

t t
EXE(JO flw(s)) ds) guwlu))l = JO EXEF(u(S))‘g(u(u))] ds

t
(= JO Ex[Z(s,u) fFlwi(s)) glw(u))] ds ).

This definition immediately follows from Definition 3.3, that is tc
define jg f(wis)) ds by the singular stochastic integral for
lal = 0 (see (2.1), or Remark 3.5 of this note and Remark 3.3 (i)
of [71).

Theorem 4.7 Let f(w) = fluw(t

1),...,u(tN)) be an arbitrary

?0 tame function and let t <t Lu n= 1,¢¢¢4yN for t, u e

[0,T1. Then, for any function g of ?1’2q,

u
Ext{g(u,u(u)) - IO (%T + A + Blgls,w(s)) ds} f(w]

t N
= B [{g(t,u(t) - Jo (%T + A+ Bals,w(s)) ds) fewd.

-17-



§5. The stochastic solution.

30,0

(AY. Let be the set of all functions wu(t,x) (t,x) €

d

[0,TIxR such as:

(5.1,i)  ult,x) € FO°(RY)Y  for each t.

(5.1,i1) lim‘___’_,t fuct,.) - u(s,.)"o =0 for each t.

Definition 5.1. A function W(t,x) of 7°'0 is a wide sens
(n)

spolution of (O.1), if there is a sequence of sets {UW (t,x),

£ 00, b 00 lal ¢ 293 in FERFPIRDx L xF2IRY such as:

(i) For each n, U(n) is a classical solution of (0.1) with
_ o) _ . (m
f=f and b, = b, lal < 24q.
a> £ s ¢ and b™ s b (lal ¢ 29) in I I sense

as n - =, and (4.1) holds for each b;").

(n)

(iii) limn SUPier0,T] W (ty.) = U(t,.)"o = 0.

We define a stochastic solution W(t,x) of (0.1) for ba(x) =

J exp{i<t®, x> dua(fa) and f(x) = j exp{i<€,x>} duF(C) by
(5.2 Wit,x) = EXEZ(t,u) flw(t)) 1]

- . _ 249
= fduf(C) exp{i<€,x> P Zk Qk t3 +

-18-
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(1 (N

® ‘ (74 x
(24 174 x 17,4

t Sy (1 (N)
xjodsl... f N 1ds exp{i<g+£* .. 482 s X>2

0 N
alm

N d . k _ 29 _
xC oy Moy G H () exp{- 2 (H (n))"" (s _,~ s )3 ]

d _ 29
XEHk=1 exp{- ¢ (Hk(N+1)) EINER )y

n-1 ‘"’ 0
where H (n) =¢ +5__, ¢ with the convention such as 2 _,{ 3

= 0,

Thearem 5.2. If b and f are in 79RY), and if (4.1)

holds, then (5.2) is well-defined and W(t,x) 1is a wide sense
solution of (0.1). Moreover, a solution of (0.1) is unique in the

class of wide sense solutions.

Remark 5.3. (4.1) is a sufficient condition, under which

(A + B) 1is a strongly elliptic operator.

(B). The/regularity of the stochastic solution is derived from

the explicit form (5.2):

Corollary 5.4. Assume that (4.1) holds. 1If ba and f are

in #®RY, then Wit,x) is of FRY in x for each t.

Moreover if x = 2q, then W(t,x) 1is a classical solution of (0.1).

-19-
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Let 7 be a number such that 0 < 7 <1, and define

1

1 -7
(1T =77 té .

Q@) = o177 (1 - o)”

. s . . . ’ . - *
By a simple computation, we easily see that m1n0$9$1 Q(8) = Qe”)

> 1, where O < 8% < vVe/(V/e+1) 1is a non-negative solution of

- (1 - T 1 - a2 2
(1 =708 - cp=y (L -8 0.

7 8%

Corollary 5.5. Let b_(x)'s and f(x) be in 7°rY), and

let 7 be a fixed number such that 0 < 7 < 1.

(i) Assume that

‘ *
Z|a|=2q "bauo Q(8™) < Re p.

Then W, D { = for any t > O.

297
(1) If all ba(x)’s are of ?G(Rd) for a positive number 6§,
and if

*
Zlaxzzq "ba"6 Q™) < Re‘ﬂ,

then HW(t, ol {® for any t > O.

2q97+6
(iii) If the assumption of (i) holds for & 2 29(1 - 7), then

W(t,x) 1is a classical solution of (0.1).

-20-
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