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STATE SPACE APPROACH TO SPECTRUM ESTIMATION

AT £ AL (KKE)

1. INTRODUCTION

. The estimation of the power spectrum is one of the central issues of
the t;me series analysis. Recently, a new parametrié method of spectrum
estimation has received much attention, which is‘based on thé‘optimum pre-
diction of the observed time series. This is called an AR (auto-regressive)
estimation or a ME (maximum entropy) estimation [1][2]. The AR estimation
is of particular interest because it allows a special type of circuit real-
ization called'léttice filter, which is suitable for LSI implementation [3]
[41.

In linear system theory, parametric spéctrum estimation is regarded as
a’p;rtial stochastic realization, which is a generalization of stochastic
realization of stationary time series. Though the theory of stochastic
realization has been well-established [5]v[7], relatively little is kﬁown
about ‘the partial stochastic realization [8][9]. An essential feature of
stochastic realization is that it specifies a circuit structure of the spec-
trum estimator by the state space representation. Therefo:e, partial
stochastic realization is particularly useful when the ciicuit implementa;
tion of a spectrum estimation is taken into account. Along this line, staté

space analysis of lattice filter has been discussed by Morf [10] énd Kailaﬁhi

and Porat [111.

In this paper, we shall investigate the state space realization oﬁ
spectrum estimator with the special emphasis on the circuit structﬁre de-
termined by its state space representation. Some state space properties of
AR estimator are discussed and an important characteristic feature of lat—
tice realization is established based on the properties of séaled Schwarz

' matrix. These results generalize‘those obtained in [10] and [11].

Throughout the paper, we use the following notations for the bi~dire
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tional power series p(z) = --- + p _z + P, + P2z + p2z2 + -

o)1 =p_ +p.z+ -+ +p 2"
Pizliyg = Py 7 Py b,z -

[p(z)]+ = [p(z)]: (polynomial part).
[p(z)]o = py- B
p()1_ = p(2)1°,.

2. PARTIAL STOCHASTIC REALIZATION
Consider a discrete-time stationary Gauss-Markov process {y(t)} which

is represented by a state space form

x(t + 1) = Fx(£) + gu(t) - (1a)
y(t) = hx(t) + vu(t), : (1b)
where u(t) is a scaler zero-mean white Gaussian process with E[uz(t)] = 0.

If the first n + 1 covariances of {y(t)} coincide with a prescribed sequence

cC = {C r Cyy =°*, C }I i-e-l
. - n
Ely(®y(t+ )] =c,, i=0,1, -, n, (2)

we call the state space form (1) a partial stochastic realization of c(n)-

Sometimes (1) is simply denoted by (h, F, g, v). Let

r(z) = h(zI - F)—lg\+ v ' (3)

be the transfer function of (1). The power spectrum of {y(t)} is given by
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5, (2) = r(z)r(z™h (4)

If C(n) is an estimated covariance sequence of a stationary process

{n(t)}, the consistency condition (2) allows us to regard {y(t)} as a good
model of {n(t)} provided that n is large enough. In that case, (4) becomes

‘a spectrum estimator of {n(t)}, which satisfies

™

¥L-J lr(ejw)]zejmkdm = C
=%

K’ k =0, +1, +n (5)

Construction of a partial stochastic realization is formulated through

a function f(z) = [r(z)r(z-l)]+-l/2[r(z)r(z-l)]o. Obviously,
r(z)r(z—l) = 2(z) + l(z-l).' ' 6)
Due to (5), 2(z) can be represented as
-1, 1 a1 -n ~(ntl),
yg(z ) = 5 C0 + Clz +‘ + an‘ + 0(z ). (7)

- ’ . -1 . L .
If 2(=z l) is a rational function, %(z ~) is usually referred to as a partial

realization of the Markov sequence,{cb/z, C., +--, cn}. In order to dis-

ll
tinguish from the partial stochastic realization, we call 2{(z) in (7) a
rational interpolation of the covariance sequence c®™ | 1f a rational in-

terpolation is associated with a partial realization, it must satisfy

2(e3) + 2™ > o, we [-m, 71, (8)

according to (6). This imposes a strong restriction on rational interpola«?
tion associated with a partial stochastic realization. ' A function 2(z) sat{

isfying (8) is called positive real. It is well-known that any positive




real 2(z) allows a factorization (6) for some x(z). Therefore, the con-
struction of a partial stochastic realization is equivalent to the con-
struction of a positive real rational interpolation of C(h).

The state space characterization of positive realness has already been
established [12] - [14]. We briefly sketch its outline for later use. The

key role is played by the state convariance matrix P = E[X(t)x(t)T], which

is the solution of the covariance equation

P - FPFT = ggT. . _ ‘ (9)

The matrix P depends on the particular realization and characterizes the

state-space properties of the partial stochastic realization. Let

T
b =FPh + gv, 24 = thhT + v2. (10)

A straightforward manipulation verifies that

9(z) = hizI - F) 'b + a (11)

satisfies (6) and is a rational interpolation. For a specified 2(z), r(z)

satisfying (6) is called a spectrum factor of 2(z). If we define

P - FPET b - FPhT_]

M(P) = (12)

L - rpnH T 24 - hPhTJ
we can write (9) and (10) as

r g 1 [gT v].
M(P) = v (13)
y ,

The state covariance matrix P satisfying (13) is a special solution of a



more general linear matrix inequality (ILMI)
M(P) > O. (14)

We call a solution P of (14) satisfying (13) for some g and v -a covariance
solution. A fundamental result on LMI is summarized as follows:

Lemma 1 [131[14]. A rational function 2(z) ih (11) is positive real
if aﬂd only if (14) is satisfied for some P > 0.- In that case, there exist
‘é finite number éf covariance solutions of (13), each of which corresponds
to a spectrum factor r(z) satisfying (6).

- It should be noted that if a state form of a rational interpolation is
given as in (11), the state-space realization of a particular spectrum fac-
tor is completely determined. The most interesting is the minimum phase
spectrum factor.

Lemma 2 [13]1[141. If (14) is solvable, then there exists the minimum

*
solution P which is obtained as the limit P_ of the following recursion

T T T, T
P, =FP, ;F + (b - FP, ;h')(b - FP,_,h") /(2d - hp, .

hT)

(15)

o
S
o

*
The spectrum factor corresponding to P is of minimum phase.

3. RATIONAL INTERPOLATION ASSOCIATED WITH
AR-TYPE SPECTRUM FACTORS

The purpose of this section is to derive a rational interpolation which
leads to the spectrum factor of AR (auto-regressive) type which is the most
popular parametric estimator of power spectrum. In what follows, we assume

Sy = 1 without loss of generality.



(n)

n . . ,
The sequence C ={1, ¢, ---, cn} has a stationary partial stochastic

1

realization, if and only if the associated Toeplitz matrix is positive def-

inite, i.e.,

% 1 777 %
Th= 1% % 7 Gpa] 7O (16)
.Fn -1 "77 S ]
n . 5 n
The necessity of (16) is obvious from E[(,z a,y(t+i))“1 = )} ¢, .ja.a. >0
o i=0 * i,j=0 1i-31%4%

T .. .
for any a = ( .. an) %+ 0. The sufficiency will be demonstrated by

a
% %1
actually constructing a realization, which is the main subject of this sec-
tion.

First, we shall give a brief account of the properties of the Szegd

orthogonal polynomials [15]. Let

CO Cl *-c Ck
1 €1 o 77 %1
¢ (z2) = ——det |  ..... )
k det Tk-l
k-1 k-2 ¢1
L 1 z .. zk B
¢O(z) = 1.

These polynomials are obtained by Gram-Schmidt orthogonalization procedure

of the basis {1, z, 22, ---} with respect to the inner product
-1 -1
<f(z), g(z)> = [£(z)g{z ") (T(z) + T(z ))]O (17)
P(z_l) = i—+ c z_l + --- +cz . (18)
2 1 n
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3o
«

Thus, ¢n(z) satisfies

<$ (z), z>=0, i=0,1, ---, n-1 (19)
n

<¢n(z) r Zn> (20)

I
a

for SOme number o, - The polynomials'{¢k(z)} can alternatively be defined

by the recursion

*
¢j+l(Z)‘ = z¢j(z) - kj+l¢j’ (z) o (21)
¢j+l(z) = —kj+lz¢j(2) + ¢j (z) (22)
*
¢0(z) = ¢0 (z) =1,
where kj = -¢j(0) and ¢j*(z) = z]¢j(z—l) is the reciprocal polynomial of
* » - - . - :
6;(2). Note that <¢_ (z), 27> = <zj¢j(z Ly, 23 = <, b5 (2)> = < (2), 1>
= 0. From (21)(22), 0.2 = <¢.(2), 23> = k<4, (z), 23> + (1 - k.2)<z6. _(z),
_ 33 3 3 i-1 .
z3> = (1 - k.2)<¢. (z), zj—l> = (1 - k.z)c.2 . Therefore, noting that
] j-1 , j o oi-1
2
00 = 1, we have
i . . .
s.2= 1 (1-x7%. (23)
3 -1 i

The parameters kj in (21) (22) play an essential role in stochastic realiza-

tion, and are referred to as the reflection coefficients associated with

C(n). It is known that (16) holds if and only if

lkjl <1. j=1, ---, n. » (24)

Also, it is well-known that {¢j(z)} are stable polynomials (their zeros are
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all inside the unit disc) if and only if (24) holds (see [16] for details).

Define the polynomials {wi(z)} by

-1
wi(z) = 2[¢i(z)T(z )]+

(25)
e e . -1, . -1 -2
From the definition, we can write wi(z) ;,2¢i(z)F(z )+ flz + f2z + .-
for some numbers fl' f2, .., From this, we conclude that
2(z) = wn(z)/2¢n(2) (26)
is a rational interpolation of the sequence C(n) = {1, Cie Tty cn}. We
. . v(n) N
shall examine the relation between {wi(z)} and {¢i(z)}. Let C = {1, c
---, gn} be the sequence of numbers which is defined by
o - noo— nNo— - -
S i S T 0(z (n+l)) (27)
-1 2 1 2 n
aT(z 7)
Note that gi is a linear function of (cl, .-, ci).
Lemma 3 The polynomials{wi(z)} are the Szegd orthogonal polynomials
' : o v (n) . R . . v (n)
associated with C . The reflection coefficients associated with C are

given by wj(O) =

with ™

—kj, where kj are the reflection coefficients associated

(Proof is found in Appendix.)

Due to Lemma 3, {wi(z)} satisfy the recursion

¥4 (2

*
zwj(z) + kj+le (2) (27)

*

* ‘
wj+l(z) = kj+lzwj(z) + wj (z) (28)

.
wo(z) = wo (z) = 1.
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‘ * *
Combining (27) (28) with (21) (22), we have wj+l(z)¢j+l(z) + ¢j+l(z)wj+l(z)

*
= z(1 - kjil)(wj*(z)¢j(z) + ¢j*(z)wj(z)). It follows that wn (z)¢n(z)

+ ¢ *(z)w (z) = 20 2zn. Therefore, we conclude that
n n n
-1 2
v (z) v (z ) c ,
St - — | . (29)
n'? e (27 ¢ (206 (z )
n n n

The right-hand side is the well-known spectrum estimator of AR type. This
relation shows that the rational interpolation (25) leads to the spectrum
factors

o zn-k

_ % _ -
rk(z) _‘¢n(2) ’ k 0, 1, , n. ‘ (30)

In the next section, we discuss a class of state-space realizations of (30).

4. SCALED SCHWARZ MATRIX
In this section, we discuss a class of system matrices which leads to
a specific class of state space realizations of AR spectrum factors (30).
This is a generalization of the stqte space generator introduced by Kailath
and Porat [1l}.

Let Fc be a companion matrix

0 0 ---0 —¢n
c
-9 0 ---1 —¢l |
corresponding to the orthogonal polynomial'¢n(z) =z + ¢1zn_l + ... + ¢n.

It is not difficult to see that Fc satisfies
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=0 ee , (31)

where Tn is defined in (16) and en = [0 --- 0 l]T (see [17] for the proof).

-1
Let ¢ be the matrix defined by

[05(2) 6,(z) ~=- 6 (2)] = [1z --- 2" 'Je. (32)

It is obvious that ¢ is upper triangular with all the diagonal elements

equal to 1. The matrix ¢ diagonalizes the Toeplitz matrix Tn—l' as is shown

by the relation

T & = I ' (33)
I = diag[co2 o 2 .. g .1 ‘ (34)

The relation (33) is well-known (e.g. [18]). An alternative proof based on

the orthogonality (19) (20) of @i(z) is found in Appendix.

Define
* . -
o= % ch¢z 172 , (35)
s . -1/2.T 1 . 1/2
The premultiplication by X ®” ‘and the postmultiplication by ¢Z of (31)
yield
* *
1- @EH)TF = k9% e, (36)
n nn ~

where we have used the relation (33) and the notation knc = V1 - kn . The
*
matrix F is the state space generator defined by Kailath and Porat [11]

in a different way. They derived its explicit form as

- 10 -



C C C C. C (o4
Fkl k1R Ky ¥y Ry kp ko o kiR
C C C C
k -k k, k kK, ks k%, k ok
* C . C C
F =|0 k, k%, ~k ¥, k ik
0 0 -
L ° n-1n 1-

« . .
The elements of F have the definite meaning. Let fji (=1, ---, i) be the

. * .
coefficients of representing ¢i_l(z) in terms of ¢O(z), ¢1(z), Tty ¢n_1(z)

i.e.,

* p ~ ~
¢i—l(Z) = flid)o(z) + f2i¢l(z) T ).

1'xi¢’1.'1—1(z

~

Obviously, fji =0 for j >1i+ 1.

*
Lemma 4 The elements fji of F are given by

O'i_l ~
£f.. = - kfl jzl' Tty iri‘_'ll s, n
ji o, i34
C .
el i ki . i=1, , n - 1.

(Proof will be found in Appendix.)
. : *
We slightly generalize F in order to allow the state scaling of the

realization. Let

L = dlag[p1 CPA pn], Py = 0. (38)

. -1 * . .
The scaled version F = L F L is explicitly written as

- 11 -
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- C C C C C [ T
k .ea
R W o T B T i TR W W S
1 ol Dl Dl
c c c c
0 T i TRt TR o
oy 12 Py 0,
c c c
k p k. .k ---k - ko
F = 0 2 72 -k2k3 . 273 n-l"nn (39)
Py 04
o 0 0 gk
n
I1f we choose pi = I k, , then (39) becomes
j=i
i3 k k k i
1 2 3 n
c, 2
ey ) kgky  mkpkg e Rk
F=1] 0 k.%)% k. k. --- -k.k (40)
2 2 3 2 n
L 0 0 0 U7 Thh-1 n|

This is the discrete-time Schwarz matrix which was discussed extensively by
Mansour [19] and Anderson, Jury and Mansour [20]. This form was also derived
by Morf [10] connected with the unnormalized lattice filter. We call the
form (39) a scaled Schwarz matrix. The most important characteristic feature
of the scaled Schwarz form is its nesting property. If we denote (39) by

as its principal submatrix.

Fn for emphasizing its size n, F  contains Fn 1
n -

More explicitly, Fn can be written as

- 12 -



_ c -
F n—lknpn e
n-1 o n-1"n-1
Fo= n-1"n-1. (41)
n o]
kn—lpn—l T _
o} n-1 - n-1"n
| n . -

This nesting property was éonsidered to be a defining property of the state
space generator (37) in [10]. We shall diécuss its implication in Section
6.

The scaled Schwarz form (39) has a number of interesting algebraic prop-
erties, some of which are stated below.

Lemma & The following relations hold (for F in (39)):

(1) ¢n(F) = 0
(i) det F = (—l)n—lkn
(i) 12 - FLOF = (k. 9% %e e T (42)
n n nn
(v) e Fe. =0, i=0,1, ---, n- 2.
n 1
T n-1
ey T ey = Py0,4/F
T i C
(v) e F e = ¢, i=0,1, , n.
(vi) If k_+% 0, then
- - 2
L2—FL 2FT=(k C/ko)FeeTFT (43)
n ' "n"n nn : :
T 0 i=3
(vii) e.T¢ (F) o (Fle, = | |
LA e 0 i
%P1 Pi =3

LN

(The proof will be found in Appendix.)
5. LATTICE REALIZATION
According to Lemma 5 (V),

1 T -1
2(z) = Tte F(zI - F) e (44)

- 13 -
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(n)

is a rational interpolation of C . A direct manipulation yields
T
2(z) = det(zI - F + 2elel F)/2+det(2I - F).

From the construction, det(zI - F) = ¢n(z). It is easily seen. from (39)

T
that the matrix F - 2elel F is obtained from F by replacing ki with —ki for

e TF is the scaled Schwarz matrix

each i. Therefore, from Lemma 3, F - Zel 1

ny
associated with the sequence C(n). Hence, det(zI - F + 2elelTF) = wn(z).
Thus the rational interpolation (44) is identical to (26). In this section,
we assume kn + 0 for the minimality of (44).

Now we shall derive the spectrum factor of 2(z) using LMI. In this

case, M(P) in (12) is written as

P - FPF' (I - FPFT)el" ,

e = elT(I - FP?T) 1 - elTFPFTelJ 2 ° “
We write the scaling factor oy in' (38) as -

Py = Ari T .Xn | | | - (a8
and define

p=atagn a2 A A a2 (47)
Since A = A12 AnzL'z, we have, from (43),

A - FART = Ok _S/k ) %Fe e T, | (a8)

n n nn

where A = kikz .- An—l'

Lemma 6 Under the assumption kn £ 0,

- 14 -



(T - F“}A(F—l)T)el = 0, i=0,1, ---, n - 1.

(The proof will be found in Appendix.)

Now we derive the state space realization of the spectrum factors cor-

responding to the rational interpolation (44).

Theorem 1 The LMI (45) has n+l covariance solutions which are given

by

P, = FiE T, i=0,1, ---, n. (49)

Each solution gives the state space realization

o] C
Ak Ak
0 T n _ n T -
cl = (el F, F, X .cen, X cl Fen) (50)
n n !
[o]
. . Ak .
!l = (e TF—(l—l)l F, __E_F—(l—l)e ’ O)I i= lr *t, 0, (51)
1 kn n

which corresponds respectively to the spectrum factor ri(z).
T T T
(Proof) Note that (I - FAF )el = (I - A+ A - FAF )el = (A - FAF )el.

Therefore, due to (48), we have

c
Fe e F .
Akn )2[ n [ e 'F el]
k e TFe
n 1 n

M(A) = (

This implies that J;O given by (50) is a spectrum factor according to Lemma .

Due to (48), P, - FP.FL = F *(A - FAFD (F )T = Ok S/x )2 e o T

i i n n nn

(F-(l—l))T. Also, due to Lemma 6, (I - FP_lFT)el = (I -A+A- FP.lFT)el =
(A - F-(l_l)A(F_(l_l))T)el =0, for i =1, ---, n. Therefore,

- 15 -



This implies that NC} in (51) gives a spectrum factor.

It remains to prove that each spectrum factor corresponds to ri(z),

-(i-1) T
e e
nn

rig - mehHEHT - k /% )%

tively. Since P. - P, =
respectively in i io1

F_(l_l))T > 0, we have P_ < Pl < ... < Pn. Therefore, PO is the minimal

( o <

solution. According to Lemma 1, it is obvious that QLP corresponds to the

. i, . . .
minimum phase factor ro(z). Assume that /,~ is a realization of ri(z), i.e.,

-lF-—(i-l)e
n

-lF—(J.—l)e
n

o] T -
en + z(lkn /kn)el F(zI f F)

it

(Aknc/kn)elTF(zI - F) ri(z). Then, due to Lemma 5 (vi) and (vi),
Ok _%/k Ye.TF(zI - F) T(F - 2I + zI)F ‘e
n n 1 : : n

1

o] T
(an /kn)el F(zI - F)

c T_-(i-1) -i c T .
= —(Akn /kn)el F F e = z()\kn /kn)el F

1

(zI —‘F)— F‘len. This implies that g4£i+l is a realization of z-lri(z) =

ri+l(z). Therefore, the assertion has been established. [
The block diagram of the realization QL.O with the scaling factors (46)

is shown in Fig. 1. This is the celebrated lattice filter with the scaling

factors Xi. The parametef A is used for the input scaling. If A, = A_ =

1 2
cee = kn—l = 1, it becomes the normalized lattice filter [11l]. If we choose
Ai = kic, i=1l, -+, n -1, then it becomes the unnormalized lattice filter

whose block diagram is shown in Fig. 2.

The rational interpolation (44) can be written in the dual form

1 T T -1_T , |
2(z) = 3t e (2L - F) 'F e - (52)
This leads to the dual IMI
X P - FUPF FU(I - Ple,
M) = | T > 0. (53)
Lél (I - P)F 1 - el Pel J

- 16 -



Under the same parametrization (46) of scaling factors, we can derive the
dual lattice filter in the analogous way to Theorem 1. We only state the
result without the proof.

Theorem 2. The LMI(53) has n+l covariance solutions which are given

by P, =P, 7, i=0,1, ---, n. Each solution gives the realization

A~ i T T, i :
- e.%, ¥, (F)len, 0, i=0,1, =--, n

&
1l
’7';7
[0}

&>
o]
i
-
Q
1]
"
ny
H
f!j‘ .
A
o}
0}
-
a
H
)
A
3
t
o)

~

which corresponds respectly to the spectrum factor wi(z) = cnzl/¢n(z).

- . . i 7 n-i

The realizations oC and o, represent the same spectrum factor
cnzn_l/¢n(z) with different state covariance matrices. It is interesting

. i .
to note that a version of ./~ given by

i”

_ c T_-(i-1)
QL = ((kn /kn)el F '

F, Fe -, 0) (54)
n

is a realization of the same spectrum factor onzn_l/¢n(z) but has the state
covariance A. The realization (54) is obtained from the rational interpola-

tion

Tp= (-1 (,r F) trle. .

1
2(z) = §'+ e, 1

The dual realization Qc,n has an analogous block diagram representatiorn
‘ o
as in Figs. 1 and 2, which is relatively complicated compared with o .
o

The realization o, representing the maximum phase factor has the simplest%

block diagram which is shown in Fig. 3.
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6.

NESTING PROPERTIES OF LATTICE REALIZATION

In the previous section, we derived a particular realization (50) of

n . . N
spectrum factor cnz /¢n(z) using the scaled Schwarz form.  In this section,

we consider the state-space implication of this realization.

the scaled Schwarz form (37) with the suffix n representing its size.

corresponds to the scaling factors pl = p2 = e = pn =1 in (39) and hence,
due to (42) and (43),
* * T
I- (F )TF = (k c)2e e (55)
n n n nn
* *T 2 * T *T
I-F (F ) =(kS/k)F ee (F ) (56)
n n n n n nn n
*
From the form of«Fn , we can write
*
F =VX (57)
n nn
T o
X = (58)
n o kJ
ni.
It follows, from (55) and the definition of knc, that VnVnT = I.
*
Consider the sequence of matrices {Fi_}, i=1, ---, n and the sequence
*
of unitary matrices {Ui}. From (41), {Fi } is nested, i.e.,
* ki ki+l *
F - F, e
* i ki 1 4
F. = i> 2, , D (59)
i+l c T . -
ki ey kK |,
where ei denotes the i-vector (0 --- O l)T. We shall show the condition on

the sequence {Ui} for which the unitary transformation

- 18 -
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Denote by Fn

This



F, = U.F. U, (60)
1 .

preserves the nesting property, i.e. Fi is represented as
F, *
F, = i—l 1 (61)

Lemma 7 The seguence {Ui} of unitary matrices preserves the nesting

o *
property of Fi in the transformation (60), if and only if, Ui+ is selected

1

in either of the following two ways

I'Ui 0
(1) U, = | (62)
Lo 1 :
: [u. o]
T
() v, =] " v.7., (63)
i+l LO lJ i+l

for each i =1, ---, n - 1.

(The proof will be found in Appendix.)

The above lemma shows that we have ot selections of {Ui}’ i=2+--n,
depending on the two selections (i) and (il) at each step i. This implies
that there are 2n-l sequences of {Fi} of the unitary transformations (60)
which are nested. If we always choose the option (i) at each i, we have the

.
original sequence {Fi }. Now we shall show that choosing the option (ii) at

* T
each i leads to the segquence {(Fi )"}. 1Indeed, direct calculation verifies
’ * * T hat
V2F2 V2 = (F2 ) . Assume tha
x * T
U.F, U,~ = (F, ) . (64)
ii i i
T * x -1

Due to (57 . = . = 3 . -
(57), v1+lFi+lvi+l Xi+lv1+l Yi+lFi+lxi+l Therefore, the selec

~ 19 -
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1h.

The nesting property of {Fi} in (61) leads. to the notion of nested
. . i
realizations. Let o . = {f., F., g., v.} be a realization of 0.2z /¢, (2).
i i’ tif Cit i i i

The sequence {R,} of realizations is called a nested realizations, if
1

1 .
hi,, = [y ] Fipp = t* V*J (69)
= fgl v =V
941 T L* Pi+1 it1 - ViPiere

where*pi+l is some number. The implication of nested realizations is shown
in Fig.4. The nested realizations allow us to build up the realizations
sequentially preserving the structure of the previous realizations. An ex-
ample of such realization was given by Kalman [21], which is closely related
to the‘state space algorithm of recursive realization proposed by Rissanen
[22]. There are a number of ways of constructing nested realizations of
cizi/¢i(z). However, there is one and only one nested realizations which

has the diagonal state convariance., This is the lattice realizations {in}

given by

T i
QC. = (e, F, F, Fieir %o

i 1 Fiegls (70)

which corresponds to oﬁp in (50) for the order i. Here,vwe'denote the scaled
Schwarz form (39) of order i by Fi.

Theorem 3 The lattice realization (50) is the one and the only one
nested realizations of Oizi/¢i(z), i=1, -+, n, having the diagonal state
covariances {Pi}. The state covariance matrices {Pi} are nested, i.e., P.i1 .

is written in the form

- 21 -
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Piv1 = LO *}'

(Proof) It is easily seen by direct manipulations that {oﬂi} is nested

with the diagonal state covariance Pi = Ai = diag(l A 2 . A 2 ... X 2 ).

1 1 i-1
To prove the converse we note that every minimal realization of oizl/¢i(z)

. e . . . T * *
is obtained by a similar transformation of the realization (el Fi ' Fi ‘

[o . C

k. * k- *
¥ e, L TF. e.). Let Y, be the transformation matrix, i.e.,
k. 1 1" k., 1 i i i .
i i
T_ % -1 * -1
= .Y, .= YF, Y,
hi e Fl i Fl lFl S (71)
c c
- Ei—y Fle v, = ‘i Tr %o I (72)
9 Tk, ii Gif ik, o141 S
i i
. * * 2 * T * m '
Since I - F, (F. ) = (k.c/k.) F. e,e, (F. ), we have Y.Y.T - F.(Y,Y.T)F.T
i i i i i 7i7i i ii i 7iti i

T T . . .
= g,q9, . Therefore, P, = Y Y . From the assumption that Y.Y.T is diagonal,
i“i i ii iYi
Y. can be written Y, = A,U, with A, diagonal and U, unitary. Then F, =
i i i’i i i i
* T, =1 . * T : ST
A.U.F, U.,”A, . 1In order that F, is nested, U.F, U. must be nested. There-
i"iti i1 i iti i »
fore, according to Lemma 7, Ui should be chosen in either of the two ways
(62) and (63). Keeping the selection of (62) at each i leads to F, = AiF. A,
which is exactly the scaled Schwarz form. Therefore, this selection generates
the lattice realizations.
To prove the assertion, it is sufficient to show that a selection of

: ; . ‘ T
Ui+l according to (63) destructs thé nesting property. Let Ui+l = Vi+l'

T * c

C
Then, due to (0, g5,y = (ky/k A GV F i = ®in/Ki) 0%
c . . . .
ei+l = ki+lAi+lei+l = const. ei+l' This obviously contradicts to the nesting
pProperty. O

Theorem 3 reveals the essential characteristic feature of lattice real-
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izations in terms of state space representations.- It should be remarked
that the requirement of both of the nesting property and the orthogonality
(which is reflected in the requirement that the state covariance is diagonal)

is quite strong.
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Ry /X ko Re/An kR

D 0 <
klll h’- 2: kl:lH

Fig. 1 Normalized Lattice Filter

Fig. 2 TUnnormalized Lattice Filter
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Fig. 3 Block Diagram of Nested Realization
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Fig. 4 Maximum Phase Dual Lattice Filter
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