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Differential Geometry of Systems

?\ N I_’\i E? —E’— i'\ f)“z" (Shun-ichi Amari)

1. Introduction

When one treats a parametric family of systems such as an AR model,
it is important to study not only properties of a specific system but
those of a family itself. Since a paraﬁetric family of systems usually
forms a geometric manifold imbedded in a larger family of systems, it is
useful to study such differential-geometric structures of the manifold as
Riemannian metric, affine connection, curvature, etc. The present note
is a preliminary work for constructing a general differential-geometrical
theory of systems. We introduce a Riemannian metric and a one-parameter
family of affine connections. Characteristics of AR and MA families of
systems are elucidated from this point of view.

The differential-geometrical properties of the manifold of a
parametric family of probability distributions S = {p(x,e )}, where x is
a random variable and p is a density function of x parametrized by a
vector parameter @, have fully been studied by a series of papers (Amari,
1982a, b; 1983a; b; Nagaoka and Amari, 1982, Amari, 1984). It has been
proved that such a theory play; a fundamental role in studying asymptotic

properties of statistical inference (Amari and Kumon, 1983; Kumon and

Amari, 1983). Since a discrete-time stationary system can be regarded as
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a transformer of a sequence of input signals {Etk into output signals

{xt}, t = ..., -1, 0, 1, 2, ..., when {C } is a white Gaussian noise,

t
properties of the system are fully represented by stoqhastic properties
of the stationary tiﬁe-series ~{xt} produced by it. Hence, when we
consider a parametric family of systems, their geometric properties are
given by the stochastic properties of the related manifold of the
parametrized stochastic processes which they produce. We can thus
introduce a differential-geometric structure into a manifold of systems
by using the method developed in differential geometry of statistics.

We first introduce a differential-geometrical theory of a family of
probability distributions and show some fundamental properties based on
Nagaoka and Amari, 1982. We then introduce a differential-geometric
structure into a family of stationary Gaussian processes. This structure
is then used to define the geometric structures of parametric family of

systems. Some interesting properties of AR and MA models are shown by

using the geometric concepts.

2. Geometrical Structure of Statistical Models

2.1. Metric and o{~connection

Let § = {p(x,e )} be a statistical model consisting of probability
density functions p(x, ) of random variable x€X with respect to a
measure P of X such that every distribution is uniquely parametrized by
an n-dimensional vector parameter @ = (Bi) = (91, ..., 8™). Then, under

a certain regularity conditions, S is considered to be an n-dimensional
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manifold with a coordinate system €. Let us denote by Bi = 2/361 the

tangent vector of the i-th coordinate curve Gi (Fig.l) at point 8. Then,

n such tangent vectors {ai}, i=1, ..., n, span the tangent space 'l‘e at

point @ of the manifold S. Any tangent vectbr A€T, 1is a linear
combination of the basis {21},
| a=ata ,

: where Ai are the components of A and Einstein's summation convention is
assumed throughout the paper. The tangent space Tg is a linearized
version of a small neighborhood at 8 of S, and an infinitesimal vector d¢
= deiai denotes the vector connecting two qeighboring points O and @+ db
or two neighboring distributions p(x, 8) and p(x, 6+ dé ).

Let us introduce a metric in the tangent space Ty. It can be done
by defining the inner product gij ©) = <2i, aj > of two basis vectors Bi
~ and 2_]' at 8. To this end, we represent a vector ?ié Tg by a function
'aiQ(x, 6) in x, where d(x, 8) = log p(x; 0) and 'Bi(in 311) is the partial
derivative '3/961. Then, it is natural to define the inner product_ by

85 = <3, ;7 = E,0,0(x,6)2,0(x, )1 , (2.1)

where EB denotes the expectation with respect to p(x, 8). This gij is

Fisher information matrix. Two vectors A and B are orthogonal, when

oy



<a,8) = a2, B aj> A'Blg; = 0.
It is sometimes necessary to compare a vector Aél‘e of the tangent

space '].‘9 at one point @ with a vector B&T belonging to the tangent

el
space TG' at another point g§'. This can be done by comparing the basis

vectors {Bi‘; at 'I.‘9 with the basis vectors §3i} at T Since Ty and To.

0"
are two different vector spaces, two vectors A and B are not directly
comparable, and we need some criterion to compare them. This can be done
by introducing an affine connection, which maps a tangent space Te+d6 at
@+ d8 to the tangent space Tg at @. _Thé mapping should reduce to the

] 1}
identical map as d@—> 0. Let m(aj) be the map of ?j e're+d° to TO' It is

slightly different from 'aj e'l‘a . The vector

o 1 'y _
Vay2) = lin —5 fnp -2, %

represents the rate with which the j-th basis vector 'aée Te

"intrinsically" changes as the point § moves from @ to f+ d@ (Fig.2)

in the direction 21.
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We call \73131, the covariant derivative of the basis vector 3j in the

direction 'ai. Since it is a vector of Tp» its components are given by

r_’ijk - <V3i3j’ 2k> ’ (2.2)
and
V3.2, =%
215 ij
m T .
where ﬁjk rij Bk We call 'ijk the components of the affine

connection. An affine connection is specified by defining V’igj or [zjk'
Let A(8) be a vector field, i.e., for every point B€&S is defined a
vector A(@) €T,. The intrinsic change of the vector A(f) as the position §
moves is now given by the covariant derivative in the direction ai of
A@©) = A3 (6);, defined by

(aiAJ'raj + a3 (Va2

j ik
;A +l';kA)aj,

Vash

in which the change in the basis vectors is taken into account. The
covariant derivative in the direction B = BiDi is given by
_ gL
Vgh = B 5A .

We introduce the d-connection, where o is a real parameter, in the

statistical manifold S by

o = B 19,290, 0) + £5%2,0x, 0)2,0(x,0 )}2,00x,8)] . (2.3)

Especially, the l-connection is called the exponential connection, and

the -l-conmection is called the mixture connection.

2.2. Duality in o/-flat manifold

Once an affine connection is defined in S, we can compare two
tangent vectors A€Ty and A'e Te, belonging to different tangent spaces To

and Te, by the following parallel displacement of a vector. Let ¢ : Q=
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f(t) be a curve connecting two points @ and g'. Let us consider a vector
field A(t) = Al(t)bieTe(t)‘ defined at each point g(t) on the curve. If
the vector A(t) does not change along the curve, i.e., the covariant

derivative of A(t) in the direction @ vanishes identically

o ~ 1.k, aj _
Ve ACE) = A(e) + 17, 7a7(e)8 =0,

the field A(t) is said to be a parallel vector field on c. Moreover,

A(tY)eT at O(t') is said to be a parallel displacement of

e(t’)
a(t) at ©(t). We can thus displace in parallel a vector AcT, atb

to another point @' along a curve §(t) connecting @ and §', by making a

A(t)ET

vector field A(t) which satisfies {ZA(t) = 0, 0= 6(0), ¢' = 6(1), and
A(0) = A€Ty. The vector A' = A(l)e T,, at §' = 6(1) is the parallel
displacement of A from @ to @' along the curve ¢ : @ = 6(t). We denote
it by A' = TTCA. When the & -connection is used, we denote the «-parallel
displacement operator byT[((;() . The parallel displacement of A from § to
@' in general depends on the path c : @(t) connecting @and f'. When
this does not depend on paths, the manifold is said to be flat. It {is
known that a manifold is flat when, and only when, the
Riemann-Christoffel curvature vanishes identically. A statistical
manifold S is said to be o&/~-flat, when it is flat under the (-connection;

The parallel displacement does not in general preserve the inner
product, i.e.,(TTCA, I’TCB) = <A, B> does not necessarily holds. When a
manifold has two affine connections with corresponding parallel displacement
operators ﬂ:: and W:, and moreover ywhen

A s = <A, B) ' (2.4)

holds, the two connections are said to be mutually dual. The two
operators TI(': and Wg are considered to be mutually adjoint. We have the

following theorem in this regard.
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Theorem 2.]1. The ¢o/l-connection and -{-connection are mutually dual.

When S is d~flat, it is also -f-flat.

When a manifold S is o-flat, there exists a coordinate system (91)

such that
Doy _ Pw) -
V§i ) = 0 or $3c@) =0
identically holds. Ian this case, a basis vector )i is the same at any

point 8 in the sense chat 3ic- T, is mapped to Biefe. by the o -parallel
displacement irrespective of the path connecting @§ and g'. Since all the
coordinate curves ei are o-geodesics in this case, & is called an
o -affine coordinate system. A linear transformation of an «-affine
coordinate system is also -affine.

We give an example of a l-flat (i.e., % = 1) manifold S. The
density functions of exponential family S = {p(x, 6 )} can be written as

p(x, 8) = exp[oixi - ¥®)}

with respect to an appropriate measure, where §= (Gi) is called the
natural parameter. From
we easily have
=2 2¢ gy « Lo

gs5(0) =2.2%®) ,  T7j;,(® 7 2 Y-
Hence, l-connection f’ﬁi)‘ vanishes identically in the natural parameter,
showing that @ gives a l-affine coordinate system. A curve ei(c) =
a‘t + bi, which is linear in the @-coordinates, is a l-geodesic.

Since an +«-flat manifold is —~{-flat, there exists a -d-flat

coordinate system '] = (71) = (’71, cees '7“) in an d-flat manifold S. Let
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2t = 3/27i be the tangent vector of the coordinate curve 71 in the new
i .
coordinate system 7. The vectors {2 } form a basis of the tangent space

T, or Ty of S. When the two bases iaiS and {Bl} of the tangent space T,y

1
satisfy

iN 83
{(25,27) =83
at every point O (or 7), where 3'3 is the Kronecker delta (denoting the

unit matrix), the two coordinate systems 8 and '] are said to be mutually

dual.

Theorem 2.2. When S is >o(-flat, there exists a pair of coordinate
systems @ = *(91) and 7] = (71’.) such that i) @ is d-affine and 17 is
~{-affine, ii) f and ] are mutually dual,‘iii) there exist potential
functions $(8) and #(7) such that the metric tensors are derived by
differentiation as

g, @ = (3,20 =2p4t® ,
g - @2l - A,

i1
where gij and g J are mutually inverse matrices so that
- g o] i_ 11
24 gijz ’ ° g bj

holds, iv) the coordinates are connected by a Legendre transformation

ot =%y, o, =240 (2.5)
where the potentials satisfy the identity
¢ +¢( - €-7=0, (2.6)

where §.9 = éi?i.

In the case of exponential family S, the expectation parameter 7 =

(7



n: = Elx;1 = 2.4(8)
is ~l-affine, @ and 1 are mutually dual, and the dual poteantial ﬁ(')) is

given by the negative entropy,

¢ () = E(log p] .

2. 3. d—divergence and o(—projeccion

We can introduce the notion of d-’divergence Dg(8, 0') in an o-flat
manifold S, which represents the degree of divergence from distribution
p(x, 8) to p(x, @'). It is defined by

D6, 8') =4 +4(1") - 61", | (2.7)
where ' =7(0') is the )-coordinates of the point §', i.e., the
'l—coordinacas of the distfibution p(x, 8'). The d-divergence satisfies
Dy, ') > with the equality when and only when 6= @'. The
~-d-divergence satisfies D—d(o? ') = D,(6', ). When S is exponential

family, the -l-divergence is the Kullback-Leibler informationm,

D_,(6,8") = Ifp(x, 8') : plx, 0)} = SP(x, § )log - gz(:: :)') dp .

When S = {p(x) & is a function space of a non-parametric statistical

model, the J-divergence is written as

D, {p(x), a(x)} = _1_2__2 (1 - (pao) (1072 gy (1412
- o

Qo

when o # ¥1, and is the Kullback information or its dual when o= -1 or

1.
When @ and @' = @ + df are infinitesimally close,

D (e, €+de) = g, (0)d0ae! (2.8)

holds, so that it can be regarded as a generalization of a half of the

square of the Riemannian distance, although neither symmetry nor the
triangular inequality holds for Dy. However, the following Pythagorean

theorem holds.



Theorem 2.3. Let c be an d-geodesic connecting two points fand §°',
and let c¢' be a -¢-geodesic connecting two points §' and Q" in an o-flat
S. When the two curves ¢ and c' intersect at‘g' with a right angle, 0,
O' and @'" forming a kind of a right triangle, the following Pythagorean
relation holds,

D (6, 6') + D, (6", 6™ =D,E,6" - (2.9)

Lett M = {q(x, u)} be an m-dimensional submanifold imbedded in an
of -flat n-dimensional manifold S = tb(x, 7] )} by & = 6(u). For
distribution p(x, eo)es, we search for the distribution q(x, ﬁ)eM,
which is the closest distribution in M from P(x, 60) in the sense of the

¥ -divergence,

min D“iﬁo, 9(u)§ = Dioo. G(G)} .

ueM

We call the G(Go) the d —approximation of p(x, BO) by M. It is important
in many statistical problems to obtain the o-approximation, especially
-l-approximation. Let c(u) be the o/-geodesic connecting a point‘ f(u)eM
and 90, c(u) : @ =8(t; u), 6(u) = §0, u), 60 = (1, u). When the
d-geodesic c(U) is orthogonal to M at (1), i.e.,

be; M, =0,
where })a = 3/3ua are the basis vectors of Tu(M), we call the U the

o/ -projection of 90 on M.

Theorem 2.4. The o/-approximation 3(90) of 00 by M is given by the

o/ -projection u(@ o) of 6, on M.

10
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3. Geometrical Structure of Family of Systems
3.1. o{-representation of systems-

Let us consider the set of all linear regular stable invertible
systems. When its input is drived by a white Gaussian noise, its output
produces a stationary Gaussian process {xt}. A system 1is "hence
characterized by the stochastic proéess which it produces, if the phase
factor is neglected. A stationary Gaussian pfocess is represented by the
power spectrum S(w). Hence, we first treat the set M of all the regular
power spectrum functions S(@). A spectrum S(w) is connected with the

autocovariances c, of the process by

T
1 .
. = Im f S(w) coswtdw , (3.1)
~n
S(w) = c0+ 2 5 <, cosat , | ' (3.2)
where
c. = E[xx_,.]

t r r+t

for any r. A power spectrum S(W) specifieS a probability measure on the
sample space X = {xt} of the stochastic processes. We study the
geometrical structure of ‘the manifold M of the probability meésures given
by S(w). A specific parametric model, for example the AR model Mﬁk of
order n, is treated as a submanifold imbedded in M.

Let us-define the. d-representation Q(d)(w) of a power‘spe,ctrum S(w) {,y A

1 ~of
- i@}, w40,

L () = (3.3)

log S(w) , d=0.

11
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(Remark: It is better to define the «-representation by - (1/«)[ S(w)

- 1]. However, the following discussions are the same for both

representations.) We pose the following regularity conditions on the

members of M that )(() can be expanded into the Fourier series for any «

_as
Jz(d)(‘*’) = f((;() +2 2 §£d)cosdt . (3.4)
t>0
where
g . 4 [ﬁ@), .
N = o (@)cosetdw , t=0,1, 2, ....

o)
We may write ,QMIM specified by 5 =§£d) as A (w; EFd)). The infinite

number of parameters Y§§q )} specify a power function by

a0 s 3NV, a0
s(a; 1) = ' (3.5)
exp J(o)(W; E(O))

so that they are regarded as defining an infinite-dimensional coordinate
o 5
system in M. We call *f‘(: )} the d-coordinate system of M. Obviously,

the -l-¢oordinates are given by the autocovariances, g‘;”= Ce

. . - 1
The negative of the l-coordinates §§ ), which are the Fourier coefficients

-1 :
of S "(w), are denoted by ?:'t and are called the inverse au(:ocovau:iamces,§‘t".-.-.-2‘;'t

3.2. Geometry of parametric and non-parametric time-series models

Let Mn be a set of the power spectra S(Ww; u) which are smoothly
specified by an n-dimensional parameter u = (ua), a =1, 2, ..., n.

Then, Mn becomes (under a certain regularity condition) a submanifold of

12
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M. This Mn is called a parametric time-series model. However, the
members of M specified by an infinite-dimensional parameter u, e.g., by
the o/ ~coordinates S(d) = f §£°()‘, t=20,1, ...} in the form S, §(‘)).
The following discussions are hence common to both the parametric and
non-parametric models, irrespec:ive of the dimensions n of parameters.
Let us consider the -tangent space 'I.‘u at u of M or Hn, which bis
spanned by an infinite number of or n basis vectors ba = 3/2u? associated
with the coordinate system u. The o -representation of Ba is the

following function in w,
2, = PN E; v .

v
Hence, in M, the basis 35() associated with the o-coordinates §£ ) is
«) .
2 t
2coset , t#0.
Let us introduce the inner product Bap of 2, and Bb in Tu by
- \ o @) ... o) .

(W = (2,,2.) =ER @ wo ™ w wl,

where E, is the operator defined at u by
2%

E, [a(e)] = {S(w; u)} a(@)dw.

The above inner product does not depend on ¥, and written as

<?a’\ Bb> = S?a log S@, u)?b log S@, u) dw. (3.6)

13
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We next define the o/-covariant derivative Vg(a) Bb of Bb in the
direction of 2 by the projection of Qaabq(«) to T . Then, the

components of the d -connection are given by
@y o™ 3\ . ( 2055 (05 @)
r,abc:(u)' <V9a 2b’ ac> S aaabl aco' de . .7
If we use O-representation, it is given by

(L) - - '
rabc(u) S(Qa'ablog S o(aa log Sab log S)Bc log S da .
From (3.4) and (3.7), we can easily see that the d-connection vanishes in

M identically, if the o-coordinate system EN) is used. -Hence, we have

Theorem 3.l. The non-parametric M is o/-flat for any . The
-affine coordinate systém is given by S(N). The two-coordinate systems
}(d) and S(-d) are mutually dual.
Since our definitions of thé geometrical structure in M or Mn are
the same as those introduced before in a family obf probability
distributions® on sample space X, except that /X = {xt & is
infinité-dimensional in the present time-series case, we can define the

~ d-divergence from Sl«(w) to Sz(w) in M. It is calculated as follous
Theorem 3 .2. The o-divergence from SL to 52 is given by

(1/«2)5 “S_z("’)/sl(‘“')ld -1 —dlog[sz/sl]}dw, odf 0

14
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2
l (1/2) S [log Sl(c‘n) - log Sz(w)] dw , o =0 .

3.3. o -flat models

An o -model M:’l of order n is a parametric model such that the
d-representation of the power spectrum of a member in M; is specified by

n + 1 parameters u = (uk), k=0,1, ..., n, as
«®),,.. = n
2 («; u) =uy+ ZZ‘“_' u, coskw .

Obviously, M: is «-flat (and hence -d-flat), and u is its do-affine

coordinate system.

The AR-model Mn of order n consists of the stochastic processes

defined recursively by

n

2 X = &

R=0
where £t is a white Gaussian process with unit variance and a = (ao,
A, cees an) is .the (n+l)-dimensional parameter specifying the members of
M:R. Heace, it is an (n+l)-dimensional submanifold of M. The power
spectrum S{w; a) of the process specified by a is given by

S(w; a) =1{/ ‘ ?akeiiwlz
0

We can calculate the geometric quantities of t-f:R in terms of the

AR-coordinate system a from the above expression. Similarly, the

MA-model Mn of order n is defined by the processes

15



where b = (bo, bl’ cees bn) is the MA-parameter. The power spectrum S(w;

b) of the process specified by b is

S(w; b) =,Z bkelkw,z .
]
: EXP . . i
The exponential model Mn of order n introduced by Bloomfield is

composed of the following power spectra S(®; e) parameterized by e = (eo,

el, ceey en),

"
S(w; e) = exp{e0 + ) e cos kaJ}.

R2o

It is easy to show that the l-representation of S@; a) in Mﬁ is

given by
~ n
C = = aa, .o k=0,1, ..., n
E# =0, kOn

where

l(l)(a); a) = - s"i(w; a) =Z?:’keiwk .
R

~

This shows that M‘:‘R is a submanifold specified by € = 0, (k> n) in M.
(1)
n

Hence, it coincides with » although the coordinate system a is not

l-affine' but curved. Similar discussions hold for MEA.

16
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Theorem 3.3. The AR~model M‘:‘R coincides with L

t1-flat. The MA-model M‘:A coincides with Mf:”, and hence is also
EXP

t1-flat. The exponential model Mn coincides with M[(lo)

, and hence is
, and O-flat.
Since it is metric, it is an (n+l)-dimensional Euclidean space with an

orthogonal Cartesian coordinate system e.

3.4. o-approximation and o{-projection

Given a parametric model Mn = {S(w; u)} , it is sometimes necessary
to approximate a spectrum S(&) by one belonging to M,. For example,

given a finite observations x eeey X Of {xt}, one tries to estimate u

1’ T

in the parametric model M,, by obtaining first a non-parametric estimate
Pa

S{») based on x

..., X, and then approximating it by S(w; Q) e Mn. The

1’ T
o ~approximation of S is the one that minimizes the « -divergence D, [S(W),
S{(w, u)], u € M. It is well known that the -l-apptoximation is_ related
to the maximum likelihood principle. As we have shown in §2’, the
o/-approximation is given by the d-projection of S@) to Mn' /We. now
discuss the accuracy of the e(-approximaﬁion. To this end, we consider a
family of nested models Mn such that MOC M]. C Mz C --(M_ =M. The
{MﬁR}, iM:A} and -{MEXP} are nested models, in which Mo is composed of the

white noises of various powers.

A
Let‘{M:k be a family of the « —~flat nested models, and 1let Sn(o.!;

i

i}n)e Mn be the -d-approximation of S®W), where :“\n is the'

(nt+l)~-dimensional parameter given by

821:: p_ds. s @) =D_ s, s_w; W) .

17
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The error of the approximation by Sné Mu is measured by the

~

~d-divergence D_d(S, Sn) . We define
] A a
En(S) = min D_((S. Sn) = D_“(S, Sn) . (3.8)

«
Sae My,

It is an intersting problem to know how En(S) decreases as 1 increases.

Theorem 3.4. The approximation error En(S) of S is decomposed as

fod ~ A
E (S) = h-Z" D_ (Spey» S - (3.9)
Hence, ' '
A ha PN
D_(5, Sg) = X D_q(Spyys S) -

The theorem is proved by the Pythagorean relation for the right
triangle AS§n§O composed of the ¢o-geodesic §n§0 included in M: and
-d-geodesic s§n intersecting at ’S\n perpendicularly. The theorem shows
that the approximation error En(S) is decomposéd into the sum of the
~d-divergences of the successive approximations Ak, k = n+t1, ..., o0,
where /S\,. = S is assumed. Moreover, we can brove that the
—~d-approximation of gk in M;- {n < k) is ?n' In other words, the sequence
{:S\nl) of “the approximations of S has the following property that gn is the
b’eét approximation of ?k (k > n) and that the approximation error En(S)
is decomposed into the sum of the -¢-divergences between the further
successive ‘approximations.

Lét us consider the family MﬁR of the AR-models. It .coincides
with M[ll . Let Sn be the -l-approximation of S. Let ct(S) and ?:'C(S) be,

respectively, the autocovariances and inverse autocovariances. Since c,

18
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and ©. are the mutually dual -l-affine and l-affine coordinate systems,

the —-l-approximation gn of S is determined by the following relations

"
1) ct(sn) = cc(s) , t=0,1, ..., n
~ A
2) ct(Sn) =0, t = n+l, n+2, ....

Pal
This implies that the autocovariances of Sn is the same as those of S up

to t = n, and that the inverse autocovariances ¢,

. of s, vanish for ¢ > n.

Similar relations hold for any other «~flat nested ﬁodels, where c, and

'E’t are replaced by the dual pair of d- and -o-affine coordinates.

Especially, since {Mﬁxpi are the nested Euclidean submanifoids with the
self-dual coordinates E(o), their properties are extremely simple.

We have shown some fundamental properties of o-flat nested
parametric models. These properties seem to be useful for constructing
the theory of estimation and approximation of time-series. The
ARMA-model, which is not d-flat for any @, has also an interesting global
and local geometrical properties, although we do not discuss about them

here.

19
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