

§1. Introduction. Klainerman [1], [2] proved that one and only one C^{∞} solution exists for Cauchy problem of a fully nonlinear wave equation of the form: \square u + F(t,x,u',u") = 0, with sufficiently small and smooth initial data under the following assumptions:

(1)
$$F=F_{u'}=F_{u''}=0$$
 for $u'=u''=0$ if $n\geq 6$,

(2) $F=F_{u'}=F_{u''}=F_{u'u'}=F_{u'u'}=F_{u'u''}=F_{u''u''}=0$ for u'=u''=0 if $3\leq n\leq 5$. Here n is the space dimension and \square denotes the d'Alembertian, u' represents the vector of first derivatives, u'' that of second derivatives with respect to the $x=(x_1,\ldots,x_n)$ and t. See also Klainerman-Ponce [3] and Shatah [4]. The case n=3 is, of course, of special importance for applications. Under the assumption (1) Klainerman's theorem cannot be extended to n=3, which was showed by John [5]. According to John's result, for example we have that every non-tivial C^2 -solution of the equation: $\square u=2u_tu_{tt}$ for which $u(0,x),u_t(0,x)$ are of compact support and $\int_{R^3} [u_t(0,x)-u_t^2(0,x)] dx \geq 0$ blows up in finite time. Thererfore, when n=3, the assumption (2) is needed to get a global existence theorem. For example, a classical non-linear wave operator: u_{tt} - $\Delta u(1+\sum_{j=1}^n (u_{x_j})^2)^{-1/2}$, satisfies the assumption (2).

In this note, our purpose is to extend Klainerman's theorems to an exterior problem. Our results stated here will be published elsewhere (see Shibata and Tsutsumi [6] and [7]). Let Ω be an unbounded

in R^n , its boundary $\partial\Omega$ being C^∞ and compact. We denote a time variable by t or x_0 and a space variable by $x=(x_1,\ldots,x_n)$, respectively. We abbreviate $\partial/\partial t$, $\partial/\partial x_j$ and $(\partial/\partial x_1)^{\alpha_1}\cdots(\partial/\partial x_n)^{\alpha_n}$ to ∂_t or ∂_0 , ∂_j and ∂_x^α , respectively, where α is a multi-index with $|\alpha|=\alpha_1+\cdots+\alpha_n$, and $j=1,\ldots,n$. We consider the following problem:

Roughly speaking, under the assumptions (1) and (2) we can establish unique existence theorem of time global C^{∞} solutions for (M.P) (T = ∞) if data u_0 , u_1 and f are sufficiently small and smooth. In §2, we consider the local existence theorem of C^{∞} solutions for (M.P). In §3, we consider the global existence theorem of C^{∞} solutions for (M.P) under the additional assumption: Ω is non-trapping.

To conclude we list notations. For p with $1 \leq p \leq \infty$ we denote the standard L^p space defined on Ω and its norm by $L^p(\Omega)$ and $\|\cdot\|_p$, respectively. For a vector valued function $h=(h_1,\ldots,h_s)$, we put $\|h\|_p=\Sigma_{j=1}^s\|h_j\|_p$. For a positive integer N we put $\|f\|_{p,N}=\Sigma_{|\alpha|\leq N}^s\|h_j\|_p$. We set $\|h_p^N(\Omega)\|_p=\|h_p^N(\Omega$

$$\sup_{t\geq 0} (1+t)^k \sum_{j+|\alpha|\leq \underline{L}} \|\partial_t^j \partial_x^\alpha u(t,\cdot)\|_p, \text{ respectively.}$$

§2. Local existence theorem. In this section, for finite T>0 we consider the problem (M.P) under the following assumption.

Assumption 2.1. (1) F(t,x,u',u'') is a real-valued function defined on $[0,T]\times\overline{\Omega}\times\{(u',u'')\in R^{(n+1)(n+2)}; |u'|+|u''|\leq 3\lambda_0\}$ such that $F=F_{u'}=F_{u''}=0$ for u'=u''=0. (2) Let us define functions F_2^j , F_2^{ij} , F_1^j and F_0 by the formula: $(dF/d\theta)(t,x,u'+\theta u'')|_{\theta=0}=\Sigma_{j=0}^nF_2^j(t,x,u',u'')\theta_t\theta_jv-\Sigma_{ij=1}^nF_2^{ij}(t,x,u',u'')\theta_i\theta_jv+\Sigma_{j=0}^nF_1^j(t,x,u',u'')\theta_jv+F_0(t,x,u',u'')v$. Then there exists a positive number d such that $\Sigma_{ij=1}^n[\delta_{ij}+F_{ij}^2(t,x,u',u'')]\xi_i\xi_j\geq d|\xi|^2$, $1+F_2^0(t,x,u',u'')\geq d$ for all $(t,x)\in[0,T]\times\overline{\Omega}$, $|u'|+|u''|\leq 3\lambda_0$ and $\xi\in\mathbb{R}^n$. Here $\delta_{ij}=1$ if i=j and i=0 if $i\neq j$.//

Before stating main results in this section, we define a certain class of data and compatibility condition.

Of course, it follows from Assumption 2.1 that \mathbf{u}_2 is unique if exists. If \mathbf{u}_0 , \mathbf{u}_1 and f are sufficiently small, \mathbf{u}_2 exists near 0 by implicit function theorem. To discuss the compatibility condition,

we have to introduce some notations as follows. For a smooth function v(t,x), we put $(\partial_t^p v)(0,x) = v_p(x)$. We define functions G_{p-2} as follows: $\partial_t^{p-2} F(t,x,v'v'')\big|_{t=0} = F_2^0(0,x,\overline{D}_x^2v_0,\overline{D}_x^1v_1,v_2)v_p +$

+
$$G_{p-2}(x,\overline{D}_{x}^{1}v_{p-1},\overline{D}_{x}^{2}v_{p-2},...,\overline{D}_{x}^{p}v_{0})$$

where $\overline{\mathbb{D}}_X^{\mathbf{j}}v=(\mathfrak{d}_X^\alpha v, |\alpha|\leq \mathbf{j})$. If $(u_0,u_1,f)\in\mathcal{D}$, it follows from assumption 2.1 that $1+F_2^0(0,x,\overline{\mathbb{D}}_X^2u_p,\overline{\mathbb{D}}_X^1u_1,u_2)\geq d>0$. Therefore, we can define $u_p,p\geq 3$, successively as follows:

$$\begin{array}{l} u_p(x) = \big[1 + F_2^0(0,x,\overline{D}_x^2u_0,\overline{D}_x^1u_1,u_2)\big]^{-1}\big[\Delta u_{p-2} - G_{p-2}(x,\overline{D}_x^1u_{p-1},...,\overline{D}_x^pu_0) + \\ & + \big(\partial_t^{p-2}f\big)(0,x)\big]. \end{array}$$

We state the local existence theorem.

Main Theorem I. We assume that Assumption 2.1 holds. Let Ω be a domain in R^n , its boundary $\partial\Omega$ being C^∞ and compact. If data u_0, u_1 , f belong to class $\mathcal D$ and satisfy the compatibility condition of order infinity and u_0 , $u_1 \in H_2^\infty(\Omega)$ and $f \in C^\infty([0,T];H_2^\infty(\Omega))$, then there exists one and only one solution $u \in C^\infty([0,T'];H_2^\infty(\Omega))$ of the problem (M.P) for some positive $T' \leq T$. Here T' depends essentially only on n, Ω , F and the bound for $\|u_0\|_{2L+2}$, $\|u_1\|_{2L+1}$, $\|f\|_{2L}$, [0,T], [0,T], and [0,T] and

§3. Global existence theorem. We consider the global existence theorem of (M.P) with $T = \infty$ under the assumptions (1) and (2) and additional assumption: Ω is non-trapping. More precisely, we introduce the following assumption.

Assumption 3.1. (1) The spatial dimension $n \ge 3$.

- (2) The nonlinear mapping F is a real-valued function belonging to $\mathcal{B}^{\infty}([0,\infty)\times\overline{\Omega}\times\{(u',u'')\ \in\ R^{(n+1)(n+2)};\ |u'|+|u''|\leq 1\}).$
- (3) Put $\lambda = (u',u'')$. $F(t,x,\lambda) = \begin{cases} 0(|\lambda|^2) & \text{near } \lambda = 0 \text{ if } n \ge 6, \\ 0(|\lambda|^3) & \text{near } \lambda = 0 \text{ if } 3 \le n \le 5. \end{cases}$

 $(Gv)(t,x) = \int_{\Omega} G(t,x,y)v(y)dy.$

Then there exists a $T_0 > 0$ such that $(Gv)(t,x) \in C^\infty([T_0,\infty) \times \overline{\Omega}_b)$ for any $v \in L^2(\Omega)$ with supp $v \subset \{x \in R^n; |x| \leq a\}$, where T_0 depends only on n, a, b and Ω , and Ω_b denotes the set $\Omega_b = \{x \in \Omega; |x| \leq b\}$.

Remark 3.2. (1) It is well known that if the complement of Ω is convex, then Assumption 3.1 (4) is satisfied. (see e.g. Melrose [8]). (2) It is well known that under the Assumption 3.1. (4) the local energy of solutions of wave equations of the form: \square u = 0

decays exponentially if $n \ge 3$ and n is odd (see e.g. Lax-Phillips [9]). Melrose [8] proved that if $n \ge 4$ and n is even, the order of local energy of solutions of wave equations is -n. But, as byproduct of our proof in Shibata and Tsutsumi [6] we proved that its order is -2n+2. This is a sharper result than Melrose [8]. Furthermore, comparing with the order of local enery in the whole space R^n , our result is best.//

Now, we shall state our global existence theorem.

Main Theorem II. Let m be an arbitrary integer m ≥ 0 . Let Assumption 1.1 be all satisfied. (1) Put m° = $2\max(4\lceil\frac{n}{2}\rceil+7,m+1)+4\lceil\frac{n}{2}\rceil+8$. If n \geq 6, then there exist positive constants a and δ_0 having the following properties: If $\phi_0 \in \mathcal{B}^{2m^\circ + \lceil \frac{n}{2} \rceil + 3}(\overline{\Omega})$, $\phi_1 \in \mathcal{B}^{2m^\circ + \lceil \frac{n}{2} \rceil + 2}(\overline{\Omega})$ and $f \in \mathcal{B}^{2m^\circ + \lceil \frac{n}{2} \rceil + 1}([0,\infty)\times\overline{\Omega})$ satisfy for some δ with $0 < \delta \leq \delta_0$

$$\begin{split} \|\phi_0\|_{4/3,2m^{\circ}} + \|\phi_1\|_{4/3,2m^{\circ}-1} + \|f|_{4/3,(n-1)/4,2m^{\circ}-2} &\leq a\delta, \\ \|\phi_0\|_{4,2m^{\circ}+2} + \|\phi_1\|_{4,2m^{\circ}+1} + \|f|_{4,0,2m^{\circ}} &\leq a\delta, \\ \|\phi_0\|_{\infty,2m^{\circ}+2} + \|\phi_1\|_{\infty,2m^{\circ}+1} + \|f|_{\infty,0,2m^{\circ}} &\leq a\delta \end{split}$$

and the compatibility condition of order m°, then Problem (M.P) has a solution u ϵ C^{m+2}([0, ∞)× $\overline{\Omega}$) satisfying

$$|(u',u'')|_{2,0,m} + |(u',u'')|_{4,(n-1)/4,m} \le \delta.$$

(2) Put m° = $2\max(3[\frac{n}{2}]+6,m-1) + 3[\frac{n}{2}]+7$. If $4 \le n \le 5$, then there exist positive constants a and δ_0 having the following properties: If $\phi_0 \in \mathcal{B}^{2m^\circ+2}(\overline{\Omega})$, $\phi_1 \in \mathcal{B}^{2m^\circ+1}(\overline{\Omega})$ and $f \in \mathcal{B}^{2m^\circ}([0,\infty)\times\overline{\Omega})$ satisfy for some δ with $0 < \delta \le \delta_0$

$$\|\phi_0\|_{1,2m^{\circ}} + \|\phi_1\|_{1,2m^{\circ}-1} + \|f\|_{1,(n-1)/2,2m^{\circ}-2} \leq a\delta,$$

$$\|\phi_0\|_{2,2m^{\circ}+2} + \|\phi_1\|_{2,2m^{\circ}+1} + \|f\|_{2,(n-1)/2,2m^{\circ}} \leq a\delta,$$

$$\begin{split} &\|\phi_0\|_{\infty,2m^\circ+2} + \|\phi_1\|_{\infty,2m^\circ+1} + \|f\|_{\infty,0,2m^\circ} \leq a\delta \\ \text{and the compatibility condition of order m°, then Problem (M.P) has} \\ &a \ \text{solution u} \ \epsilon \ C^{m+2}([0,\infty)\times \overline{\Omega}) \ \text{satisfying} \end{split}$$

$$|(u',u'')|_{2,0,m} + |(u',u'')|_{\infty,(n-1)/2,m} < \delta.$$

(3) Let σ be a positive constant with $0<\sigma\leq 1/(7m+18)$, and m° an integer with $m^{\circ}\geq \frac{7}{\sigma}[\frac{3}{2}+(3m+7)\sigma]+3[\frac{n}{2}]+6$. If n=3, then there exist positive constants a and δ_0 having the following properties: If $\phi_0\in\mathcal{B}^{2m^{\circ}+2}(\overline{\Omega})$, $\phi_1\in\mathcal{B}^{2m^{\circ}+1}(\overline{\Omega})$ and $f\in\mathcal{B}^{2m^{\circ}}([0,\infty)\times\overline{\Omega})$ satisfy for some δ with $0<\delta\leq\delta_0$

$$\begin{split} \|\phi_{0}\|_{1,2m^{\circ}} + \|\phi_{1}\|_{1,2m^{\circ}-1} + \|f\|_{1,1+\sigma,2m^{\circ}-2} &\leq a\delta, \\ \|\phi_{0}\|_{2,2m^{\circ}+2} + \|\phi_{1}\|_{2,2m^{\circ}+1} + \|f\|_{2,1+\sigma,2m^{\circ}} &\leq a\delta, \\ \|\phi_{0}\|_{\infty,2m^{\circ}+2} + \|\phi_{1}\|_{\infty,2m^{\circ}+1} + \|f\|_{\infty,0,2m^{\circ}} &\leq a\delta. \end{split}$$

and the compatibility condition of order m°, the Problem (M.P) has a solution u ϵ C^{m+2}([0, ∞) $\times \overline{\Omega}$) satisfying

$$|(u',u'')|_{2,0,m} + |(u',u'')|_{\infty,\frac{1}{2}+\sigma},m \leq \delta.$$

Furthermore, there exists a small constant $\delta_1 > 0$ such that if $u, v \in C^3([0,\infty) \times \overline{\Omega})$ are two solutions of Problem (M.P) for the same data with $|(u',u'')|_{\infty,0,0} \le \delta_1$ and $|(v',v'')|_{\infty,0,0} \le 1$, then u = v.// Combining Main Theorems I and II, we have

Main Theorem III. The same assumption and conditions as in Main Theorem II are satisfied by data ϕ_0 , ϕ_1 and f, nonlinea term F and the domain Ω . Furthermore, assume that ϕ_0 , $\phi_1 \in H^\infty_2(\overline{\Omega})$ and $f \in C^\infty([0,\infty);H^\infty_2(\overline{\Omega}))$ and that ϕ_0 , ϕ_1 and f satisfy the compatibility condition of infinite order. Then there exists one and only one solution of Problem (M.P) belonging to $C^\infty([0,\infty);H^\infty_2(\overline{\Omega}))$.

- <u>Concluding Remarks.</u> (1) The local existence theorem can be extended to more general fully nonlinear 2nd order hyperbolic operators (see Shibata and Tsutsumi [7]).
- (2) We can also obtain the analogous results for the mixed problems of the nonlinear Klein-Gordon equation and the nonlinear Schrödinger equation.//

References.

- [1] S. Klainerman, Global existence for nonlinear wave equation, C.P.A.M. 33 (1980) 43-101.
- [2] _____, Long time behavior of solutions to nonlinear evolution equation, Arch.Rat. Mech. Anal., 78 (1982)
- [3] S. Klainerman and G. Ponce, Global small amplitude solutions to nonlinear evolution equations, C.P.A.M. 36 (1983), 133-141.
- [4] J. Shatah, Global existence of small solutions to nonlinear evolution equations, J.D.E., 46 (1982), 409-425.
- [5] F. John, Blow-up for quasi-linear wave equations in three space dimension, C.P.A.M., 34 (1981), 29-51.
- [6] Y. Shibata and Y. Tsutsumi, Global existence theorem for nonlinear wave equations in exterior domain, to appear.
- [7] ———, Local existence of C^{∞} solution for the initial-boundary value problem of fully nonlinear wave equation, to appear.
- [8] R.B. Melrose, Singularities and energy decay in acoustical scattering, Duke Math. J., 46 (1979), 43-59.
- [9] P. Lax and R. Phillips, "Scattering Theory", Acad. Press, 1967.