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91. Introduction.

Recently several authors have been interested in the
feedback stabilization of evolution equations. ( f8) ’ (1
ﬁo])(mj ,015), €163, €193, C21] and (22]) . oOur purpose

here is to give some refinements. of EWZL] by an abstract method.

Let X be a Banach space over € , and let -A be a

-tA |

generator of a (CO) semi-group ge j» t2o in X (Hille and

Phillips (4], Yosida (251 ). The mild solution u = u(t)
ec( L 0,0 —> X ) of

{(1.1) M m=0 (tZ0)
(1.2) u (O) = a o

e—tA

is given by u(t) = a , and (1.1) is called a "free system".

We suppose that (1.1) is unstable. Then we want to construct

its stable modification in the following sense :

N

et S : X ——>¢C and T : @N —> X be bounded linear

N

operators, ¢ being the N-dimensional complex vector space.



We consider the equation

(1.3) o+ av = 8v  (+Z0)
with

(1.4) v(0) = a .

Wwe put B =TS , which is notﬁing but a bounded linear operator
on X of finite rank, and (1.3) is called a "feedback system"
of (1.1). From the practical point of view, S and T may |
be called a "sensorf and a "controller®® , respectively, and
the pair < T, 8> is called a "feedback".

It is known that -(A - B) geﬁerates a (CO) semi-group,
which is denoted by {e t(A=B)} +20 + The mild solution
v=v(t)ec(l0,00) —>X) of (1.3) with (1.4) is given
by v(f) = e_t(A’B)a (Kato U5 ] ).

Definition 1.

"For «w € R, <T, S> 1is said to be " c) -(feedback)
stabilizable" (in X ) with respect to e A if

-t(A- =t
(1.5) BB, s we (tZ0)
‘holds for some constant M>» 0. Il

We are interested in constructing w -stabilizable feedback



o

< T, S> for WZ0, in the case that the free system
(1.1) is unstable, that is,

inf { ReX; 2 € o”(A)}<o.

Here o~ (A) denotes the spectrﬁm of A .

We introduce the following notions for the semnsor S and
for the controller T , according to Fattorini C2 ] ,-Sakawa
C 1.2, 13 ] , Triggiani C20 J , etc. |

Let Y CX be a closed linear subspace:

Definition 2.

A sensor S : X —> ¢V is said to be "Y-observable" (in X )°

with respect to e " if the conditions a€Y and Se "Pa = 0

(0St < 00) imply a = O. . 1
" Henceforth 2 denotes the closure of z<¢X in X .

Definition 3,

- A controller T : ¢V —> X is said to be "Y-controllable" (in

X ) with respect to e"tA if _Z-DY , where yA =Ut>0 Zt

t L
with 2z, = {S e~ (t-8)Anr(syas 5 £ e1(0, )V .
0 1
ey _ (P ~(t-s)A
Here we note that v(t) = g e Tf(s)ds is a mild
0

solution of



(1.6)  $E + av = 7£(t) (+20)

| with

(1.7)  v(0) =0 .

As for the free system (1.1), we assume the following hypoﬁheses:

Assumption 1.

The spectrum of A , G°(A), is divided into two subsets :2:0

and :Z:1 . Furthermore, X 0 is bounded, and the rslation

(1.8)  Rg=suwp { ReA; A€ Xy < int { red52€ X}

holds true.
There exists a Jordan curve [7 which surrounds 2 0 and,
at the same time, separates :i'o and 23 4 - Ve put
.1 -1
(1.9) P= "oF—\(A -4 aa . o
-2 -1 o S [] 
e , |

Assumption 2. A ' '

The estimate
-t
~-tA < -1 _
(1.10) (1 - P)e "x—->x 2 Mye (t20)
~ holds for a I(1>/fo. B | | D
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<

Assumption 3.

We have the finite dimensionality of Xo , that is,

(1.11) m=dim X;< O,

where
(1.12) X, = PX . o O
Now our theorems are stated as follows:

Theorem 1,

Let a sensor S : X — wN and a real number @ satisfying
K g < W s K 1 be given. Then, there exists a controller
T : ¢ —3 X such that the feedback < T, S > is

) -stabilizable with respect to e"tA if and only if S is

X,-observable with respect to e tA

i

Theorem 2.

Let a controller T : @N ——> X and a real number <O

satisfying K, < w = fC1 be given. Then, there exists a

N

sensor S : X —> €' such that the feedback < T, S> is

@) -stabilizable with respect to e_tA- if and only if T is

g

Xy-controllable with respect to e~ tA

These theorems are abstract versions of the results in Sakawa

and Matsushita (14 ) for parabolic equations in bounded domains,



O-Observablllty and XO-

controllability are shown to be equivalent to similar rank

In fact, in later sectiomns, X

conditions given in {14 J . However, the following points should
be noted: First we shall propose to use a simplenargument in |
the proof, applicable to other problems on the feedback
stabilization. For this pdint, see our forthcoming papers.
Secondly our theorems actually give refinements of C14 ] .

In fact,

(a) The operator need not bé self-adjoint nor a generator of
a holomorphic semi-group. ‘ _
(b) The best possible exponent /€ 4 can be taken as & in
; constructing the feedback < T, S > .

For example, we can apply our theorems to the parabolic equation

, %%%' =Au = V(x)u in Lz(m;).

with V(x) = o( Ixl 27%) (£> 0) as Ix| — 20,

to construct zero-stabilizable feedback <IT; S > , since this
operator -A + V is self-adjoint and 6 ( - A + V) = (0, 0¢)
Uia, s 1sisa} with 1i<o‘.' See Kuroda { 7] , for

instance,

Theorems 1 and 2 are constructively proved. In a forthcoming
paper; we shall discuss certain concrete problems, where,
applying Theorems 1 and 2, we shall refine some theorems due to
Nambu {9, 10) and Ti‘iggiani C21 ] on "boundary sensors",

Yamamoto 24 ) on "pointwise sensors" and Triggiani ( 22 ) on
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"boundary controllers",

This paper is composed of six sections., In $2, we show
that the observability is equivalent to certain rank conditions
even if A is not self-adjoint. In $3, we show a key estimate
ne~t(A-B)))

on Theorem 1 is proved in §4. 1In 35,

X=X °
we state the duality between observability and controllability,
and show the equivalence of controllability and certain rank
conditions; In virtue of this duality, we reduce Theorem 2

to Theorem 1 in §6.

§2. Observability and rank conditions.

In this section, we show that the observability is equivalent
to what is called, the rank conditions even if A is not
self-adjoint. We recall that

- (2.1) X

0 = Px; m = dim X < 0o ,

0]

and we put

_(2.2) A, = Alx

A(A- A)'-1d),Xo .

1
21T/ -1
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The operator AO : XO ———9.XO is linear on the finite dimensional

-tAg

space XO s, So that e : XO ———91X0 is well-defined. We

~.

first note the followings,

Lemma 1, ,
A sensor S : X — CN is XO-observable in X with respect
to e " if and only if ‘
(2.3) S5 =5 i Xy —> €Y
* 0 XO I ¢ I
| “tAy O
is Xo-observable in XO"with respect to e . ‘

Proposition 1 (the first rank condition),

A sensor S5 : X ———>v¢N is X0~observablevin X with respect.

to e *® if and only if

(2.4) rank (Sg, Ags* '°°°,.(Ag)m—1 Sg') =m,

where +% denotes the dual operator in consideration.. '[]

Let CT'p(A) be the set of the eigenvalues of A .
The assumption of dim Xy =m < 0O  implies that 2:,0 is
contained in 6\'p(A) » and also that the number of elements
in 23 o 1is finite. We set . 0 = { ﬁjﬁ 1gisg+ For a
sufficiently small circle [7 . with center at 3 ;s the
projection

(2.5) P, = (2 - &)~ taa

1
* 271‘_\/—_1-»(”5



L
can be defined, and we get ZZT Pi =P . Let
i=1

(2.6) m, = dim P;X and n; = dim Ker( L ;- ) .

(S

" Then we have m = :Z:' 1 m; and n,$m;  (Kato (5] ) .
i=
Let {?ij“ 1€ 3zn, be a basis of Ker( A ; - A) (1___<_.i§1 ).

The following proposition was shown by Fattorini {2 J ,

Sakawa (12, 13 ) and Triggiani (20 ) , in the case that A

is self-adjoint. We can prove it along the line of Suzuki

( 17, 18 j . Its proof is given in (26:] . See also

Hautus ( 3 j . Henceforth X¥* means the dual space‘of X :

Proposition 2  (the second rank condition).

Let S : X ———9'$N be a sensor :

(2.7 5= (54,8, 0, 8) X —dN

s, €x¥ (15k=W) .

Then S 1is Xo—observable in X with respect to e

if and only if

(2.8) rank M; = n; (1s1i58) ,
where M, is an N)(ni matrix defined by

(2.9) Mi = ( X*‘<Sk ’ C}Oij > X ) 1§1§N,1§j§ni * ﬂ



33, A stabilization estimate.

. . . . -t(A-B)
In this section, we drive an estimate on Il e "X—9 X
which is useful later. We recall that -A 1is a generator
of a (CO) semi-group in X , satisfying Assumptions 1-3.
The operator B = TS is a bounded linear operator on X of

finite rank, and the equation
(3.1) P +au=B (tZ0)

represents the feedback system of (1.1). We set

(3.2) X5 =PX, X;=(1-7P)X, .
0] 1
~ and

The operators AO, BO : XO ———a:xo are linear on the finite
diménsional space Xo » hence e-t(AQ- Bo) is Well-défined.
On the other hand, --A1 : X1 ———§»X1 generates a (CO) semi-group

e M on Xy , which can be written as

-tA
(3.5) e 1a=(1- P)e"’“AIX .
1

/10



Therefore the estimate

—tA.l I | -1t K
. . _S_ >

(3.6) |
holds true by (1.10). Here we further assume the following.
There exists some constant W, with W o 2 K4 such that
the estimate ‘ |
-t(A.~B.) | -t
0 70 0]
_ Xo—> X, < Mge - (tz0)

(3.7) fe
holds true.: TheﬁHWe can show the following ( (26 ] ) .

Theorem 3.

Under the assumption stated above, the estimate

(3.8) e tABYy =

, | M
Mexp(-t{K1-M1(P1+(ilFO?{ )})
. o~ 1

holds for some constant M >0 , where

1}

NPB(1 - P) Il

X—X ’
(3.10) Py = N1 -P)B(T - ) Iy, 4
and
(3.11) oy = (1 - P)mP "x—a»x- . l}

/1
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- %4, Proof of Theorem 1.

Now we prove Theorem 1 stated in §1 :
Firstly we supposé that there exists a controller T :

¢N_—-9 X such that

~t(A-TS)y . < -t
for some ¢J satisfying K_o < W = k1 .. We show that

S: X —eCN is X,-observable with respect to et

To this end, we assume

tA

(4.2) a €X, and Se"*a=0 . (0St<oo) ,

0]

and put u(t) = e”*®a ., since a € X, C G (») ‘, u = u(t)

01( 0, W) —>X ) is the strong solution of

%%-s-Au

0 = TSu (tZzo)
u(0) = a .

Thereforé we may get

(4.3) - u(t) = e~ t(A-TS) ,

whence we have

1Z



(4.4) (el = Me T *®yap  (t20)

by (4.1). On the other hand, in view of a G-XO

we have for sonme fosif-’ve iuTeaeYS & 2

| ~tA,
(4.5) u(t) =e “a
Y RO FE 3 .
A (8" pda (t20) .
1=1 =0 3!

We now substitute (4.5) into (4;4). Noting Rei\ig. | qd o S W
(1513 2), we obtain D a =0 (1SiSR, 05js9-1) ,
and, in particular, a = Pa =0 .

Conversely we suppose that S is Xo-observable. Then,

X X K |
rank (SO, LS AR (A

by Proposition 1 of $§2. By Wonham’s pole assignment theorem

( {23 J ), there exists a linear bperator To ¢V — X,

such that

inf { ReA; A€ 67(Ay - T80} > @, .
We then have
-t(AO—TOSO)“

(4.6) & (tZ0)

/6



for some constants My> 0 and CU, > W, . Ve put
(4.7) B=Ty,:X—>X.

Since (1 - P)B = 0, we can take cx1'= ?1 = 0 in Theorem 3
of §3. Therefore we-get |

-t
(.8) e tA-Blgye (tzo) ,

so that <CTO, s> is [ ,-stabilizable with respect to
-tA

e‘ o D

§5. Duality between observability and controllébility.

The duality between observability and controllability is
well-known (Dolecki and Russell {1 ) . We here show it
as a version concerning "Y-observability" and "Y-controllability",
For a closed linear Subspace YCX , Y*¥ and Y+ |

denotes the dual space of Y and the orthogonal complement

of 'Y , respectively ;

we recall



-f
<o

| 1 -1
P = - A da ,
27cf-—1'y(2 )
I7
X0=PX
and
X1=(1-P)X .

From the direct sum decompositi'on'
(5.1) XA=X0 ® X,

we have the isomorphisms

~

1 ~ o ¥ | L *
(5.2) X, FX and  Xg )
In particular, we have dim Xy = dim XO =m < 09,

Also, we have

(5.3) X1J' = p¥x¥ XOJ‘= (1 - s9x¥F
o . 1 e |
(5.4) P Ry g (2 - 1 a7

r

and

(5.5) x¥ = xf‘@ x(;L

15



For the operator A IX , we denote its dual operator by
| : -tA?g ¥ o
AO* . Then e : XO* > XO is defined and we have

. |
e O (by X7 Fx*)

iR

-tA K

(5.6)  (e™™) 2t
Xy

Also, for a controller T y We define the operator To*: XO*

— ¢¥ such that

¥ ¥xyty
(5.7) TO*Q!TlXﬁ' (by X =Xy ) .

Then we have the followings ( €263 )

Lemma 2.

T <EN —> X is Xo-controllable in X with respect to e TA

if anci only if T * : XO’* —_— CN is X *_observable in XO'*

O .
. -tA¥
with respect to e . D
It is known that dim Ker( 7\ - A'*) = dim Ker( 1 A)

= n, holds. (Kato {537 , for example ) Let {CP

ij } 1¥jsn
be a basis of ;{er( Zi - A‘*). .

Proposition 3

: (the second rank condition for controllability)-.
Let T: ¢ —s X be a controller . |

(5-8) T : e —_— -/X
U W
o) o N ‘ 4
() 15y —> Zk=1ozkwk » Fr€ .

74



Then, T is Xy-controllable in X with respect to e tA
if and only if

. Y rank L, = n (1=is4) ,
(5.9) i i
where Li is an N)(ni matrix defined by

(5.10) 1y = ( <§P"i‘j,’V/k> ) |

x*

$6. Proof of Theorem 2,
We now prove Theorem 2 stated in §1.

Proof of the "if' part of Theorem 2 :

We assume that T : €Y —> X is X.-controllable in X with

0
respect to e~ tA .« By Lemma 2 in 35, TO* : Xg — N is
. o Y
XO'*-observable in .XO* with respect to e . By Proposition 1

- in §2 and wonham’s pole assignment theorem, there exists

a linear operator 7F, ; CN —_—> X X such that

0 0
-t(F - 7.7 -tw
(6.1) | e 0 0~0 | ¥ ¥ = MOe 0
‘ Xo— X5

for some constants MO>0 and u)o > hf1 .

et S5 : Xy —> ¢V be the dual operator of F, . Then,
since dim Xo =m< 0o, (6.1) implies



-t(A~-PTS,) ‘ -t
0 0 < 0
(6.2) Il e = M.e .
) Xo—e XO 0
we set
Sy (on X, )
(6.3) 8= 7
0 (On X1 ) >

and apply Theorem 3 in §3 for B = TS . Since FO - P1 _'o
by (6.3), we then have : .

-t
(6.4) Il e~ t(A-TS) Il X— X = Me 1

for some constant M>O0, which shows that < T, S > is

~

I d j-stabilizable in X with respect to oA, ﬂ

Proof of the "ohly if" part df Theorem 2 :

Here we show the "only if" part in the case that X is
reflexive., For the general Banach space X, the proof is given
in. C267) . : ,
We assume that < T, S > is C0 -stabilizable with respect to
eTt  for W ,<wSE W4 . Then we have.

s Me~

(6.5) e TATIS)y. o o0s

tw

for some constant M> 0.

The reflexivity of X img}ies
- * _ -2
<e f.A ) = C zA

(e~ t(A-TS)yk _ ot (a-15)¥ (R.S.Phillips €11 J ).

/¥



Therefore we get

W ¥
(6.6) [le~t(AT=STTT) . < pett® (t20) .
X

— x*

We show that T is Xo-controllable with respect to e "%,

To this end, we have only to show (6.7) ;

—tA¥ ' L
(6.7) et 4 2 o (0=t < o0) and a € X, imply

a=00

. _+ ¥ 2 ’
we put u(t) = e A%, ., Since a € Xy C ~<9(A’*), “u-= u(t)
¢ C1( L0, 00) —>X ) is the strong solution of

g—% + 2% - 0 = s¥Mu (t 20)

u(O) = a *
Therefore we get u(t) = e~ t(A7-S ) a and
C o o | i . .
(6.8) e A7 4y . S Me YWyan (t20). (by (6.6) ) .
' X
Now by g (6.8), a & Xy and Re ;Ii = /(O <), we see
a = Oo ’ B

19



Appendix., Example :

Here we apply Theorem 1 toithe_following stabilization

problem.

X = 1°(0, TC)

S ) =130, T)NB(0, L) .
0
In Assumption 1, we set
. 0 50
Then we have

XO = Span { sin x, sin2x } .

&1

1) We define S : X —> € by Su = g u(x)dx .
/0 ’
Then by Proposition 2, this sensor S 1is X_.-observable

0
with respect to e~ A By Theorem 1, we define T : ¢ —> X by

ML) = K(35sin x - 17sin 2x ) ,

for example. Then this feedback < T, S > 1is 3-feedback

stabilizable in X with respect to et [1

z0



2) We define S : X —> (132 by

T
Su=(5
’O

Then by Proposition 2, this sensor S is Xo-observable.

By Theorem 1, we define T : 0}2 —> X by

|
u(x)dx, —%go u(x) xdx ) .

11

— sin x + 13 sin 2x ) +
Z

T(O{1’ o 2) = <j1(

0(2(1 sin x - 3 sin 2x ) ,
2

for example. Then this feedback < T, S > is 3-feedback

stabilizable, u

zl



13l

(2]

(3)

43

(5]
(6

(73

(8]

(1ol

References

S.Dolecki and D.L.Russell, A general theory of
obséi&étion and control, SIAM J.Control, 15 (1977),
185-220. o

H.0.Fattorini, On complete controllability of linear
systems, J.Differential Equations, 3 (1967), 391-402.
M.L.Hautus, Controllability and observability
conditions of linear autonomous systems, Indagationes
Mathematicae, 31 (1969), 443-448,

E.Hille and R.S.Phillips, Functional Analysis and
Semi—gfoups, Revised Ed.Providence : Am.Math.Soc.Collogqg.
Publ. Vol.31, 1957.

T.Kato, Perturbation Theory for Linear Operators, second
edition, Springer, Berlin-Heidelberg-New York, 1976.
H.Komatsu, Semi-groups of operators in locally convex
spaces, J.Math.Soc.of Japan, 16 (1964), 230-262. |
S.T.Kurocda, An Introduction to Scattering Theorj,
Lectufe Notes Series No.51, Aarhus Univ., 1978,

Kwan Chao-Chin and Wang Kang-Ning, Sur la stabilisation

de la vibration élastique, Scientia Sinica, 17 (1974),

446-467.

T.Nambu, Feedback stabilization for distributed
parameter systems of parabolic type, J.Differential
Equations, 33 (1979), 167-188,

T.Nambu, Feedback stabilization for distributed

- parameter systems of parabolic type, II,



o
S

. Arch.Rat.Mech.Anal., 79 (1982), 241-259.

(11) R.S.Phillips, The adjoint semi-group, Pacific J.Math.,

. 5 (1955), 269-283. o |

(12)  Y.Sakawa, Controllability for partial differential
equations of parabolic type, SIAM J.Control, 12
(1974), 389-400.

{13) Y.Sakawa, Observability and related problems for
partial differential equations of parabolic. type,
Ibid., 13 (1975), 14-27. |

{(14)  Y.Sakawa and T.Matsushita, Feedback stabilization of
a class of distributed systems and construction of a
state estimator, IEEE Trans.Automat,Control, AC-20
(1975), 748-753.

L15) M.Slemrod, A note oh complete cohtrollability and
stabilizability for linear control systems in Hilbert

| space, SIAM J.Control, 12 (1974), 500-508.

t16] Sun Shunhua, Boundary stabilization of hyperbolic
systems with no dissipative conditions, SIAM J.Control,
20 (1982), 862-883.

(A7) rT.Suzaki, Observation of evolution systems,
Master’s thesis (in Japanese), University of Tokyo,
Tokyo, 1978. R

(18]  T.Suzuki, Certain moving sensors and observability
for parabolic equations, Numer.Funct.Anal,.,and Optimiz,,
2(4) (1980), 287-300.

GED R.Triggiani, On the stabilizability problem in Banach
space, J.Math,Anal.Appl., 52 (1975), 383-4C3,

23



Addendum, Lbld., 56 (1976), 492.
(20] R.Triggiani, Extensions of rank cdnditions for
_controllablllty and observablllty to Banach spaces .
and unbounded operators, SIAM J. Control 14 (1976),
313-338., o _
{21] 'R.Triggiani, op'Nambu's boundary stabilizability
problem for diffusion’prOCesses, J.Differential
Equations, 33 (1979), 189-200.
(22] R.Triggiani, Boundary feedback stablllzablllty of
parabolic equations, Appl.Math.Optim., 6 (1980),
201-220. | ” ’
(23)  W.M.Wonham, Linear Multivariable Control :
a Geometric Approach, se¢ond edition, Springer,
New York-'Heidelberg-Berlin, 1979. |

{243  M.Yamamoto, On feedback systems for parabolic
~equations : Well-posedness and Stabilizability,
Master’s thesis (in Japanese), University of Tokyo,
Tokyo, 1983. |

(25] K.Yosida, Functional Analysis, Springer, Berlin-
Gottingen-Heidelberg, 1964.

(26] T.Suzuki and M,.Yamamoto, Observability, controllablllty
and feedback stablllzablllty for evolution equatlons ’

I. submitted to Japan Journal ‘of Applied Mathematics.

Deparﬁment of Mafhematics
‘Faculty of Science
Univeréity of Tokyo

Hongo Tokyo

113 Japan .

AN



