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fO. Introduction

In his dissertation, R.Gay proved following theorem 1
Theorem 1. Let f(z) be an entire function satisfying following
conditions : fof any ¢ 70, there exists a constant C€7 0 such that
(1) |e(2)|€ cg exn(g]a]) (z ¢ €™
Namely,f(z) is infra-exponential type.
(2) f(m) = (}([ml by for all m = (ml,m2,..,mn)e;zfland some p ¢ N.
where ZZ? denotes the lattice points and N is the set of naturél
numbers.

Then f(z) is a polynomial of degree not exceeding p.

In the case of n = 1, this theorem is well known. (See Boas [2])
There is another similar type theqrem due to S.Bernstein.
Theorem 2(S.Bernstein) Suppose that entire function f(z) satisfies

the following conditions: for any ¢ 70, there exists a constant C£

suchrthat

(3) If(z)'§ Cg exp (Hy (z)+¢€|z]) (ze C)

where K is a real bounded closed interval and HK(Z) = sup Re(z ¥ ).
o = 0| ®) (x eR). ses

Then f(z) 1s a polynomial of degree not exceeding p.

Our aim in this paper is to unify these two theorems by making use
of hyperfunction theory. R.Gay gave the proof of theorem 1 with
the help of L.Schwartz distribution theory while our method is

based on analytic function theory.
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Following theorem 3 is our main result; Our proof is inspired by
the technic in Boas®s book [2].

Theorem 3. Suppose that entire function f(z) satisfies the following
conditions : for any ¢ 70, there exists a constant CE such that

(5) |r(2)|< ¢ exp(H(2)+¢fe]) (zee™

where K is a real compact convex set in Rn, HK(Z) = sup Re(z)37.

(6) f(m) = ()(lml Py for all m = (ml,m2,..,mn)e Zn.xéK

Then f(z) is a polynomial of degree not exceeding p.

To prove theorem 3, we make use of Fourier-Laplace and Avanissian-Gay
transforms of hyperfunctions with compact support. So in §l,we
recall the definitions of these two transforms and their properties.
Next in §2, we give the pfoof of theorem 3 ,and as colloraries of
theorem 3 we obtain theorem 1 and 2. Finally, in §3, we will show
some applications.

In what follows, K always denotes a real compact convex set and B [K]

is the space of hyperfunctions with support contained in K.

51. Fourier-laplace and Avanissian-Gay ftransforms of

hyperfunctions with compact support

For hyperfunction'Tg'B[K], we define its Fourier-Laplace

transform %(z) as follows:
T(z) = <ﬂ?y, exp(z7 )/, (z ¢C™)

where z 3 =zlfl+223'2+...+zn§'n.
Following theorem 4 caracterizes Fourier—Laplace transforms of P [K].
Theorem 4. Suppose that T belongs to E [K]l. Then its Fourier-
Laplace transformiﬁ(z) satisfies the following éStimate: for any ¢70,
there exists a constant C.¢ such that

|T(z)[§ Ce¢ eXp(HK(z)+€|z|) (z e (Dé)
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Conversely, if an entire function f(z) satisfies the above estimate,

then there exists a hyperfunction T € ﬂ [X3:-such that f(z) T(z).

For the proof of theorem 4, we refer to [5].
Next we define Avanissian-Gay transforms Gf(w) of T € B[K] as follows:
n
= -1
Gp(n) = (Tg s [T Q-wiexn(3 ) 7.

Remark that in general GT(W) is defined for w = (Wl""wn) in
n
[T (c \exp(—Ki)), where K, denotes 1-th projection of X.
i=1
Now we enumerate some properties of GT(W).

Proposition 5.(Avanissian-Gay [11])

(7)  Gp(w) is holomorphic in ;ET(C \epr:Ki)).g( ,  ( |

(8) g0 = (1) EGr+L L+ mZE%NUO)TTl((_—l) ", (-0 )
Bw M. .. Gw ) .

where @ (w) = w if |w|<1 and w ' if [w[yl . ¢(w) = 0 if |w|<I and

¢w) = 1 1f |wh1.

From this development, we have that 1lim GT(W) = 0.

[wiyes
(9) (Inversion formula)

T(z) = (e i)™ 1 _ﬂ, F‘GT(e.—g Jexp(z3 )4y
‘ =1 1

where [ﬁi is a positively oriented contour surrounding Ki'
Remark that Avanissian-Gay transform is one-to-one because of this
inversion formula.

52; -Proof of Theorem 3.

First of all, we prepare the following lemma
Lemma 6.  Suppose that Te€B[K] . If its Fourier-Laplace transform

'T(z) satisfies following condition:
~ limig
(10) 1im sup |T(m)] = 1.
im |- oo ~
Then T belongs to § [;0}]. In another words, T(z) is an entire function

of infra-exponential type.
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(proof) For the simplicity, we will confine ourselves to the cases
of n =1 and 2.

(i) n = 1 By proposition 5-(8), we have following expansions

M&‘
%

G (w) [w]<1),

|
1
AR
=
n}
=
=

Gp(w) = [w|y 1).

From the assumption (10), it is easy to see that GT(W) is holomorphic

in |w|<1 and |w|>1. From this and proposition 5-(T7), Gp(w) 1is

holomorphic in ¢ \§1I By means of Inversion formula(5-(9)), we have
/E'/(Z) = (2Ii)_l GT(e"7 Jexp(z ¥ )ay

r

As GT(W) is holomophic in @\flh GT(e_I )Yis holomorphic in C \{Qk

Therefore we can shrink [ towards {O} arbitrarily.Hence T(z) is entire

function of Iinfra-exponential type.

(ii) n=2 From 5 (7)and (8), it is easy to see that Gy (w SWy ) is

holomorphic in Trr (¢ \exp( K )) and W_T(w \T ), where T is unit

circle. =t = )

To show that GT(wl,w2) is holomorphic in (C \{1}) X (€ Vl} ), we

consider following Cauchy integral

_ s y—1 -1
G[‘(wl’WZ) = (2 1) GT(t, w2)(t—w2) dt

f’ is shown in the Figure 1.
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Figure 1.

Afofepigopod N
VA A1 At

Let fix W, in € \TZ' Then we can deform r1towards 1, since GT(t, w2)
is holomorphic in ;@;(C \Ti?. As &iﬁxFT(wl,wz) = O,GP(wl,w2) gives
single valued analytic continuation of GT(wl,w2) up to (C\Il}) Pl

(C \TZ)‘ Interchanging the role of w, and W,y We can obbain analytic

1
continuation of GT(wl,w2) up to (C \Tl) X (@\{1}).
By elementary set operation, we have the following identity
(A® denotes the complement of A.)
c c c c c c
(Aln Bl) % B2 ) Bl‘)( (A2(\B2) V. Alx A2

_ NI c

= (AN B)"x (A,0B,)7.
Putting Ai = exp(—Ki) and Bi = Ti’ we see that GT(wl,w2) is holomorphic
in (¢ \[1}) x (e \[1}).
Like in the case of n = 1, we apply inversion fomula:

~ _ 51 _7T
T(Zl’ZZ) = (-2K&1) 2 wGT(e l,e 2) exp(zl§'1+22512)df1d§é

1“" 2

1

- s » ,
Since Gp(e , e”~2) is holomorphic in (e \Jo}) x (¢\fo}), we can
shrink the contours I 1 (i = 1, 2) towards the origin.
~
Hence T(zl,z2) is entire function of infra-exponential type.

This means that T belongs to J3 []o}].

...__.5.__._..
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Now we pass to the proof of theorem 3. First we prove theorem 3 in

the case of n = 1. Next we will treat the dase of n = 2.

(proof of theorem 3) By means of theorem 4, there exists hyperfunction
T GIZ[K] such that f(z) ='E(z). By virtue of preceeding Lemma, f(z)

is entire function of infra-exponential type. v

(iii) n=1 We consider the following entire function F(z).

e D
F(z) = 2 P71 (2) - 5 2 2" (zeC)
n=0 :
v 7o)
where f(z) = 2:_ anzn is Maclaurin expansion of f(z).
n=s0

We put H(z) = Fz(z). As is easily seen, H(z) is entire function of

infra-exponential type, and H(m) = ()( m _2). There exists a hyper-
s

function 8663[{0}] such that S(z) = H(z). We consider Avanissian-Gay

transform GS(W) of 8. GS(W) has following expansion:

o A~
Gg(w) = > S(n)w" ((w]<¢ 1)
n=0
Co ~s N
Gg(w) == 2 S(-n)w" (w|y 1)
n=1

7~ —
Since S(m) = ()(m 2), Gs(w) is bounded -in C\ 1. By virtue:of celebrated
Riemann’s theorem concerning with removable singularity, Gq(w) 1s entire
function. Furthermore, as lim GS(W) = 0, GS(W) vanishes identically.
wh e

N~
By means of the inversion formula, H(z) = S(z) also vanishes identically.

Hence we obtain the following desire result:

P n
f(z) = z:_anz .
n=0

(iv) n=2 We develop f(zl,zz) as follows
n, n-

_ 1 7z
flz1,25) = 3 a2y
1272
: n
=z::a (z.)z,2
n2 n2 1772
We put F(z2) = f(ml,zz)for fixed integer m, - Since f(Zl,Z2) is entire

function of infra-exponential type, F(zg) has same property.

—_ ——
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Moreover F(zz) satisfies following estimate

- p
F(m,) = ()( |m, ) for all m, € Z.
Therefore by preceeding result in (iii1), F(zz) is polynomial of degree
p n
not exceeding p. This means that f(m,,z,) = ¥ a (m1)222
1°72 - n
n,=0 2
2
On the other hand, we have
, oo (m. ) 12
- Z
f(ml,z2) = E_ a, 17°2
n2~0 2
Hence for n, Z p+l,
ang(ml) =0 for all m,€Z.

Applying Cauchy’s integral formula to f(zl,zg), it is readily seen that

a, (22) is entire function of infra-exponential type. From the result

2 -,
in (iii), we see that a (zl) vanishes identically for n, > p+l.
5 4
Therefore p
— W n
f(Zl’ZZ) = E _ ag (21)222
i n2—0 2
Repeating the same argument, we obtain %
| D
f(z,,z,) = )L_ a zB1700
1°72 n1=0 nq,n, 1772
Mo=0
By means of the assumption , f(ml,mz) = () ( |m]| p), we can- conclude

that f(zl,zz) is polynomial of degree not exceeding p.

This is our desired result.

§3. Applications.
From theorem 3, immediately, we obtain following

Proposition 7. Suppose that T is a element of [ [K]. Then followings

are equivalent.

(11) T is a finite linear combination of derivatives of order not
exceeding p of Dirac’s delta function.

(12) '¥(z) is a polynomial of degree not exceeding p.

(13) Ekm) =vC>([ml Py for all m € Z".

__.__7_..._
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In next three applications, we will show how to apply theorem 1.
First we treat the discriminant of Hill’s equation. Following facts
are well known ([4] ).
(14) Discriminant A (E) is an entire function of order 1/2.
(15) 1im EY2( A (E)-2cos(TC EY/?) = 0.
E=oc

Now we put ‘f(E) = A (E)-2cos(TC EY/2). Then we have following
Proposition 8. If f(E) have the following property:

f(—am)=()(|m|p) - (m= 1,2,3,....)
for some positive number a, then‘potehtial V(x) in Hill’s equation
vanishés identically.
(proof) First we remark that f(E) . is an entire function of infra-
exponential type. So from the assumption, .(15) and théorem 1, we can
conclude that f(E) is polynomial. Furthermore, f(E) vanishes identically
because of (15). Namely, A (E) = 200s(7CEl/2). This means that
there is no unstable intervals. Hence by virtue of Hochstadt’s

theorem ([4]), we can obtain desired result.

Next we pass to eigenvalue problem of trace class operator defined on
a Hilbert space. Let A be a trace class oparator. Accordiﬁg to £71],
we put

f(z) = det (I + zA) (zeC).

Then following two. facts are known[7]

(16) f(z) is _ entire function of infra-exponential type.

(a7n  £(z) = ﬁﬁg (1+z A (8)) |

where j\j(A)J—%j=1...N(A)) are the eigen values of A counted with
algebraic multiplicity.and N(A) is finite or counéably infinite.
Under these preparation, we have following

Proposition 9. If f(m) = ()(hq p) for all me¢ Z and some natural

number p, then oparator A has at most p eigenvalues.

_— 8 —
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(proof) From the assumption and theorem 1, we will see that f(z)

is polynomial. By virtue of (17), there exist at most p eigen values.

Remark : If the assumption holds for p=0, the we can conclude that
eigenvalue of A is just 0. For the details of this we refer to exercise
156 in [7].

Finally we give one method to construct analytic functionals without
unique carrier. For the definitlon and some special terminologies of
analytic functionals, we refer [5] and [6].

Proposition 10. Suppose that entire function g(z) satisfies following

conditions
(18) g(z) is even function,
(19) there exist constants A and B such that
|g(Z)l§BeXp(A'|z[) (z€C)
(20) g(m) =QC |m| Py, .
(21) g(z) is not polynomial.
Put T = FB T (g(jEIEE)), where FB™! denotes inverse Fourier-Borel
(sometime called Fourier-Laplace) transform. Then analytic functional

TS aa, j‘YglgbA.

T is carried by polydiscs D = [(lf ,» §o)E ®2;
_ a,b 1 2
ab =1, a0, b>0 } . But T is not carried by the origin.

Remark : Intersection of D s 1s the origin.

a,b
(proof) From the assumption (18), g(/2122 ) is entire function.
By the elementary calculation and (19), g(/2122 ) satisfies the

following inequality : for any positive numbers a and b satisfying ab=1,

]g(/zlz2 )Ig’ Bexp(aAlzll+_bA‘zgl) ((zl,zz)é ¢? )
This means that T 1s carried by the polydiscs Da b* Now we will

2
show that T is not carried by the origin. If it were so, then

g(/zlz2 ) should be entire function of infra-exponential type.
Therefore g(z) also have same property. Applying theorem 1 and (20),

we obtain that g(z) is polynomial. This contradicts (21).

—_—g
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To close this final section, we give three examples of function
g(z).

_ 2p
Example 1. g(z) = z"%cos z. (p =0,1,...)
T = FB_l(cos(/zlzg)) is firstly proposed by L.Hormander in [5].
Example 2. g(z) = z°P-1
Example 3. g(z). = prjp(z). ( Jp(z) is Bessel function of order p

sin z. (p = 0,1,....)

and p = 0,1,...) T = FB—l(JO( zlz2))is considered by A.Martineau

with slight modification in [6].
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