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Sheaf Theoretic L2—Cohomology

Masayoshi Nagase
(#rk-# FHEL )

If M is a compact manifold, then we have the famous de Rham
isomorphism ; Hi(M) = Hom(H%R(M), R ). Our purpose here is to
generalize this isémorphism to the so-called Thom-Mather's
stratified space. More explicitly, we aim to show that, exchange
the simplicial homology for the Goresky-MacPherson's intersection
homology and the de Rham cohomology for the L2—cohomology of the
non-singular part, then the isomorphism is still valid for such a
situation.

We discussed this Subject‘at this research institute two years
ago ([4]). At that time, I constructed the isomorphism directly.
Therefore, at this time, I will select the other plan of proof,
in which we will pay little attention to how to construct the
isomorphic map. That is, according to Goresky and MacPherson([}]),
I will show the isomorphism axiomatically by sheaf theoretic

method.

§1. L2-cohomolggy and intersection homology : Main Theorem

n . . . ‘o
From now on, X© is an n-dimensional compact stratified space

without boundary. We will fix a stratification
X=X DX =% »(=Z)>X 32> ....0%; DX, ,
and the tubular neighborhood system and, moreover, the
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PL-structure compatible with these structures.
Let g be a metric on X-% , and let d. be the exterior derivative

on X-) with domain
dom d {we/l x5) AL (x-D) | awe AT x-2) ) .

The i-th cohomology group of the cochain complex {dom di} is

called the i-th L2—cohomology group, denoted by H%2>( X-2).

Next, taking account of the' PL-structure of X, let's define
the intersection homology. Let 1—3= (p2,p3,...,p ) be a perver51ty,
i.e., a sequence of non-negative integers satisfying p2-0 and
kapk+1$pk+'] for all k. The perversities which are of particular

importance are as follows:

(0,...,0), the zero perversity,

ol
H

(0,0,1,1,2,2,400.), M [g]—'l, the (lower) middle perversity,

£t=(0,1,2,3,....), the top perversity.

By the way, p<q means that P <9y for all k. And we set

i)+(i:(p2+q21p3+q3,¢..«..).
The pervérsity g is said to be the complementary perversity of p
if p+q=7%. Then, take an integer i. A subspace Y of X is called

(p,i)-allowable if dimY <i and dim (Y AX <i-k+ p, for all

n-k )
k. For example, that Y is (0,dimY )-allowable means that Y and

the strata are in general position.‘ Now, let's set

‘ICE(X) ={ 3¢ C. 13| is )-allowable and
93] is (f),i-"l)-allowable'. .

Then the i-th homology group of the chain complex {ICiP(X)} is

called the i-th intersection homology group with p and denoted
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by IHii)(X).

Now we may remark that the perversities which are interesting
here or which we want to treat here are the perversities which are
smaller than the middle perversity, i.e., p&m. This restriction
is not essential; see the remark following Definition 1.1.

Here, once again, we will return to the L2-cohomology and
define the metric associated to a given perversity p and then
announce the main theorem explicitiy.

Let Y be a Riemannian_ manifold with metric g and let's take
¢ 20, Then we set

c°(Y) = " the Riemannian manifold (0,1)xY
with metric dr®dr + rzcg n.

c=0

Now, fix a sequence of non-negative real numbers c = (02,..,c ) .
n

Then the metic g on X-F£ 1is said to be associated to ¢ if, for

any point x of any non-empty stratunm Xn k_Xn-k—1 » there exists

a neighborhood x€UCX such that

Un(x-2)

[¢] .

k ) ~ .
qu:z;i—/ ¢ “( (the link of X _,-X . 4 )<\ X'?-) with g )
isometry X (UN(X, _,-X, _j_4) with Euclidean metric ).

product -K-
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Definition 1.1. The metric g on X-2. is said to be associated

to the perversity p(Sm ) if g is associated to ¢ =(c2,..,cn):
-1 -1
((Ce-1-2p)7 oy < (k-3-2p )7 5 2y < ko3,

?‘ 1 < Ck< Ny ’ H 2pk= k-2.

If we want to treat the perversities which are larger than m
or which cannot be comparable with m, it will suffice to change
( certain ) c,'s into suitable negative numbers. By the way, it is
noteworthy that, if '1<ck< @ for all k and the metric g is
associated to ¢, then g is associated to the important perversity
Ti: this case was treated by J. Cheeger ([1]).

We will use the notation (X_Z)i 4ih order to express clearly
that the metfic on X-J under consideration is associated to p.

Then we can now announce

Main Theorem, If p< m, then

TRP(X) = Hom(H{,)((X-Z)5, R ).

The following two sections are the preparations for the proof

of Main Theorem from the view point of sheaf theoretic method.
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82, Sheaf theoretic L2—cohomology and intersection homology

As above, the non-singular part X-Y is endowed with metric g.

Let {0 be the complex of sheaves on X which is defined by

Y’UJ,fli) =\We€ Ai(Uﬂ(X-Z)) For any point x of U, there
exists a neighborhood x¢V(TU
such that

C e
VnA(X-L)

\ dWAK AW < oo
vn(X-X)
with the sheaf maps d: O — " induced by the exterior
derivative on X-)_ . In order to indicate that the metric g is
associated to the given perversity p, we will use the notation
0 .

Next, paying attention to the PL-structure of X, we will define

the complex of sheaves ﬂﬁ; . Before it, define the sheaf'Ci by

(U, Ci) = " the group of locally finite i-dimensional
‘ simplicial chains with respect to the induced

PL—stfucture of U "

For convenience, we set {;=;C~‘ and regard this as a complex of
sheaves: the sheaf maps are induced by the éimplicial boundéry

operator. Then we define its subcomplex ﬁéé by

T, 9" =(3eT@, ¢ | 3] 1s (5,1)-allovable and |93]
is (p,i-1)-allowable with

respect to the induced

stratification of U. .
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Now Jfﬁ and ‘96; are fine sheaves. Therefore we have

Lemma 2.17.

ne

NT(x, Q22) = 1y (X-D)g),

-4 .
¥ (X,%fj)

IR

IH;p(X).

Here ‘N%(X, «) is the hypercohomology.

§3. Key Theorem due to Goresky and MacPherson

Let 8 be a complex of sheaves on X which is constructible
with respect to the given stratification.ing (. that is, for any

I QiX X is cohomologically locally constant, i.e., its
371

associate cohomology sheaves are locally constant ).

Definition 3.1. We shall say s satisfies the axiom [Axﬂf)

provided:
(a) *ﬁi-[ = R[] ( the isomorphism in the derived category ),
(b) X(8) =10 for all i<-n,
. m . _ ‘ ‘
(C) K ()X‘X"Xn_k_«l )"‘ O fOI’ all m>pk-n’

(d) the attaching maps (in the derived category )

e Bxx,_, ) T R (G Ry N ’X{X-Xn )

~k-1 -k-1

are isomorphisms for all m< Py -n.

Here M (- ) is the cohomology sheaf. And : X-X

1yt
and Iy :Xn_k-Xn_k_,I——?X—Xn_k_1 are the inclusion maps.

n-k > XX, _y_q

Now, according to [3], we have
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Key Theorem ( Goresky and MacPherson ).

(1) The constructible complex of sheaves which satisfies thé
axiom [AX1]§ is unique up to isomorphism in the derived
category.

(2) ﬂﬁi—) is constructible and satisfies [AX1]I-J .

(3) £ B+3 =%, then JCo = RMm( e, by )nl, where Ly is
the dualizing complex on X, i.e., d?k = f!IR'pt :with

f: X— (a point ).

§4. Pfoof of Main Theorenm

It suffices to prove

Agssertion. {Zé[h] is constructible and satisfies the axiom

@Xﬂ]a, where q is the complementary perversity, p+q =*t.
Actually we have

Proof of Main Theorem. From Key Theorem (1) and Assertion,

we have
N-{.]=z Je_ .
5(n] q
Therefore, by substituting f?é[n] for V&ﬁé' at Key Theorem (3),

we get
IE = Rk Q2,0 ).
p p’ X
Hence, by Verdier duality theorem, we have

M‘i(X,ﬁ%) = Hom ( }o/i(X,.Q'}-j),]R ).

Thus, combined with Lemma 2.1, the proof is complete.

Now we will prove Assertion. It suffices to examine (a)-(d)

of [Axﬂﬁf The constructibility will be referred briefly later on

~
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the way.

(a) Since fzﬁ[njix_z_ is a sheaf of C -forms on X-Y , we

have flﬁ[n”XEZ.:: RX-Z[H] because of the usual resolution.

(b) 1f 1<-m, then ([i[n])? - QL™ - 0. Therefore W QD)

= 0 for all i<-n.

( Preparation for (c¢) and (d) ) For a point x of Xn T S
take a suitable neighborhood U and the link L of the stratum at x.

Then we have

(4.1)  303¢( (Z )X (UA(X-2) ).

Strictly speaking, the right hand side of (4.1) should be the
inductive limit l%g»H%z)(ILN(X—Zd ). But, for sufficiently small
U, it is naturally isomorphic to H%Z)(Uf%X—Z) ) because the
L2-cohomology is invariant under the quasi-isometric transformation.
Hence, also,.fZé can be regarded as constructible. Moreover,

(4.1) is isomorphic to

c

B,y ( ¢ ¢ L/\(XQZ))x(Un(xn_k-xn_k_1) )

c

= 1f,)( ¢ (LnE-T) )

;iH%z)(Lr\(X—Z) ) ; j<12(k_1+£-1;),
oy ] 1
0 | s d2 gt

through the natural extension maps ({4], [5]). Hence
J . 3
By (LAY ) 5 iay,

0 , ' ‘ H j>qk’
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(¢) This is equivalent to the assertion that, if j >y

then JQj(§2% %{= 0 for-any point x of X Xn_k_T.Hence, by

n-k-
(4.2), this is true.

(d) This is equivalent to the assertion that, if j<gq,, then
the attaching maps
(4.3) R ), — X (1, 2 )

7 Blx-x_ . 4 ek glxx L x

are isomorphisms for any point x of Xn—k_Xn-k-T'

In order to prove this assertion, first remark that a cross

section of fzplx X resp. ik*igj?élX X is a smooth

n-k-1 ““n-k-1

form which and whose image by the exterior derivative are square
integrableVnear_any”point ofd X—Xn_k_1 resp. - X- X ke ( For a

* A :
cross section @ of 1k%lk§2§‘X'Xn_k_q , 1t is not necessary

to claim that @ and dw are square integrable near any point of

X 'Xn-k-1' ) Therefore we have the natural sheaf map

n-k

Q": — i .u_i—x- Q.- .
Dl X=X, 4 SR 1R S S

And this just induces the attaching map (4.3). Now, from the

%
property of_ ik*ikfzilX-Xn_k_1 mentioned above, we have
. C(EL (LAX-D)) 5 i<k,
' J . * ‘ ; (2)
0 3 J2k,

for any point x of Xn-k_Xn-k—1‘ Hence, for j<q,, the identity
map from the right hand side of (4.2) to the right hand side of
(4L.2) is just the attaching map (4.3). Thus the proof of (d) is

complete.
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