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An Approach to the Subgraph Homeomorphism Problem*
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Abstract

The subgraph homeomorphism problem for a fixed pattern graph H is
stated as follows: given an input graph G=(V,E), determine whether G has
a subgrabh homeomorphic to H. We show that the subgraph homeomorphism

problem for the fixed graph K is solvable in polynomial time, where

K3’3 is the Thomsen graph, onz’gf the Kuratowski graphs used to
characterize planar graphs. Specifically, we present an O(V)-time
algorithm for this problem. This problem was suspected to be NP-complete
by Fortune, Hopcroft and Wyllie. We also present several pattern graphs

for each of which an O0(V)-time algorithm exists.

1. Introduction

The subgraph homeomorphism problem for a fixed pattern graph H is
stated as follows: given an input graph G=(V,E), determine wﬁether G has
a subgraph homeomorphic to H, i.e., a subgraph isomorphic to a graph
obtained from H by a sequence of subdivisions of edges. This problem was
one of the most popular open problems in computatibnal complexity [7].
This problem remains open, although some significant new subcases have
been settled [12].

The "fixed-vertex'" version of the problem (the input specifies
exactly which vertex of G is to correspond to each vertex of H) has been
completely classified'for directed graphs by Fortune, Hopcroft and Wyllie
[6]: it is polynomial-time solvable if H is a fixed graph all of whose

arcs share a common tail, or all of whose arcs share a common head; and

* A preliminary version of this paper was présented at the meeting of the
Technical Group on Automata and Languages of the Institute of Electronics

and Communication Engineers of Japan, Tokyo, June, 1983 [2].
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Fig. 1. The Kuratowski graphs K

it'is NP—complete for‘all other fixed graphs H.b With respect to the
"undireoted and fixed-vertex" Qersion of the problem, seﬁeral complicated
polynomial-time algorithms have beeh found for particular values of H,
suchras a triangle’[15] and two independeﬁt edges [19,21,22, 23] '

With respect to the "non-fixed-vertex" versions of the problem, any
polynomlal time maximum cardinality matching algorlthms in [20] solve the
problem for k independent edges, where k is any fixed interger. Fortune,
Hopcroft and Wyllle [6] have classified a number of H (both polynomlally
solvable and NP- complete) in the directed case, and L1u and Geldmacher
[16] have presented a polynomial-time algorithm for the complete‘graph
with four vertices, i.e,, forrH=K4 in the ondirected case. However, much
remains open [12]. For example, with respect to the "undirected and
non—fixed—vertex" version of the problem, it seems that a polynomial-time
algorithm has not beenvpresented explicitly for any 2-conhectedigraph
with four more vertices except the graph K4 ‘Note that a polynomlal time
fixed-vertex algorlthm for H 1mp11es a polynomial—tlme non—flxed—vertex
algorlthm for H, but not vice versa.

In this paper we attack the "

undirected and non-fixed-vertex"
version of the subgraph homeomorphism problem for a fixed pattern graph
H. We first show that the subgraph homeomorphism problem for the fixed’

graph K is solvable in polynomial tlme, where K is the Thomsen

graph, gnz of the Kuratowskl graphs used to characieglze planar graphs
(Flg. l). Spec1f1cally, we show that for any input graph G=(V,E), there
is an 0(V)-time algorlthm for thlS problem. Next, we present an O(V )=
tlme algorithm for actually findlng a subgraph of G homeomorphlc to K3 3
1f G has such a subgraph These results mlght be 1nterest1ng, because it

was suspected by Fortune, Hopcroft and Wyllie [6] that, for a spec1f1c
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Fig. 2. .Graphs K4, G6 and;K213_

Kuratowski graph H, the subgraph homeomorphism problem for H is
NP-complete even though there is a polynomial planarity testing
algorithm.

We use an efficient algorithm in [10] for decomposing a graph into
3-connected components in order to obtain the above results. This
approach will be useful in designing an efficient algorithm for the
subgraph homeomorphism problem for a fixed 3-connected pattern graph,
because we show that, for a 3-connected graph H, a graph G has a subgraph
‘homeomorphic to H if and only if some 3-connected component of G has a
subgraph homeomorphic to H, and we may expect that 3-connected graphs
have some specific properties.

As applications of this approach, we first present several pattern
graphs for each H of which there is an O(V)-time algorithm to determine
whether an input graph G=(V,E) has a subgraph homeomorphic to H.
Included among them are the graphs K4, G6 and K2,3 shown in Fig; 2 two of
which are used to characterize outerplanar graphs. Our O0(V)-time
algorithm for H=K4,rwhich also finds a subgraph homeomorphic to K4 if an
input graph G=(V,E) has such a subgraph, may compare favorably with the
previous known O(E)-time algorithm in [16]. Then, we present a new
characterization of outerplanar graphs together with an O(V)-time
algorithm to determine whether an input simple graph G=(V,E) is

outerplanar.

2. Preliminaries

For terminology on graph theory, we follow [9]. A graph considéred
in this paper is a finite undirected graph. For a graph G we denote by
V(G) and E(G) the vertex set and the edge set of G, respectively. For Uc
V(G), we denote by G-U the subgraph of G obtained from G by deleting all

vertices in U and all edges incidgnt with vertices in U. For S<E(G), we
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Fig. 4. A separation pair {u,v} of a graph G and

ig. 3. A graph G' homeomorphic to a graph H. split graphs Gl and G2 with a virtual edge e,

denote by G-S the subgraph of G obtained by deleting all edges in S and
by G/S the contraction of G obtained by contracting all edges in S. For

two disjoint subsets SC and S, of E(G), (G-Sd)/SC is a subcontraction of

d
G. A graph G' is homeomorphic to a graph H if G' is obtained from H by a

sequence of subdivisions of edges (Fig. 3). Formally, the subgraph

homeomorphism problem for a fixed pattern graph H is defined as follows.

Instance: A simple graph G.

Question: Does G contain a subgraph homeomorphic to H?

A connected graph G is 2-connected if, for each two distinct edges e and
e' of G, there is a cycle of G containing e and e'. A maximal connected
(resp., 2-connected) subgraph of G is a connected (resp., 2-connected)

comgohent of G. An unordered pair {u,v} of distinct vertices in G is a

separation pair of G if there exist two subgraphs Gl' and G2' satiéfying

the following:

(a) V(G)= V(Gl')lJV(GZ'), V(Gl')r\V(Gz')= {u,v};
(b) E(G)= E(G;") UE(G,"), E(G;") nE(G,")=4, |E(G;")[=2, |E(G2')]2 2;

(c) For some e, ¢ E(Gl') and e, € E(Gz'), there is a cycle of G

1

containing ey and ey

Graphs Gl' and G2' are called separation graphs with respect to the

separation pair {u,v}. Define Gi (i=1,2) as the graph obtained from Gi'

2

by adding a new edge e=(u,v). Graphs G1 and G2 are called split graphs

of G with respect to {u,v} and the common new edge is called a virtual

edge (Fig. 4). Decomposing a graph G into two split graphs G1 and G2 is

called splitting. For two split graphs G1 and G2 with the common virtual

edge e=(u,v), define a graph G as follows:
V(G)=V(G,) uV(G,) and E(G)=(E(G,) UE(G,)) -{e}.

The graph G is called a merged graph of G1 and G2 obtained by merging the

virtual edge e. Merging is the inverse of splitting. A 2-connected
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(a) (b)

Fig. 5. Decomposition D of a graph G into 3-connected components.

(a) graph G (b) decomposition D

graph G is called 3-connected if G has no separation pair. A 3-connected
graph with three or more vertices is a simple graph. Maximal 3-connected

subcontractions of G are called 3-connected components of G. A

decomposition of a graph G into 3-connected components is obtained as

follows.

(i) Divide G into 2-connected components D={G1,G2,...,Gk}.
(ii) For each Gi in D, if Gi is not 3-connected then decompose Gi

into split graphs Gi and Gi2 with respect to a separation pair

1

{u,v} of Gi and D:=D—{Gi}+{Gil,Giz}.

(iii) If all Gi in D are 3-connected then stop, otherwise go to (ii).
Note that there is an 0(|E(G)|)—time algorithm for decomposing a graph G
into 3-connected components [10,25]. Each 3-connected component of a
graph G is a simple graph or isomorphic to the multigraph K,* with three

3
parallel edges (Fig. 5). Furthermore, if D, and D, are two

decompositions of a graph G into 3—connecteé compoients, then there is a
bijection f:D1->-D2 such that Gi is isomorphic to f(Gi) for any Gi in Dl
[17]. Thus, the number of 3-connected components of a graph G, i.e., the
number of 3-connected components in a decomposition of G into 3-connected

components does not depend on decompositions.

3. Subgraph Homeomorphism Problem for the Fixed Pattern Graph K

3,3
The main object in this section is to show that, for an arbitrarily

given input simple graph G, the subgraph homeomorphism problem for K3 32
b4



which was suspected to be NP-complete by Fortune, Hépcroft and Wyllie
[6], is solvable in 0([V(G)() time. We first give some preliminary
lemmas. The following lemma is easy to obtain but it plays the most

essential role throughout this paper.

Lemma 1. For a 3-connected graph H, a graph G has a subgraph
homeomorphic to H if and only if there is a 3-connected component of G
that has a subgraph homeomorphic to H.

Proof. We shall show the lemma by induction on the number of
3-connected components of G, i.e., on the number of 3-connected
components in a decomposition of G into 3-connected components. If G is
3-connected then the lemma is trivially true. Thus, we may assume that G
is not 3-c6nnected. Note that, since H is a 3-connected graph, G has a
subgraph homeomorphic to H if and only if there is a 2~connected
component of G that contains a subgraph homeomorphic to H. Thus, we can
assume that G is 2-connected.  Let {u,v} be any separation pair of G.

Let G,' and G.' be separation graphs of G with respect to the separation

1 2
pair {u,v} . Let G, and G, be the split graphs of G corresponding to the
separation graphs Gl' and GZ', respectively. Then, we have only to prove

and G, has fewer 3-connected

the following (i) because each of G1 2

components than G.

(i) A graph G has a subgraph homeomorphic to H if and only if G, or

1
G2 has a subgraph homeomorphic to H.

(i) can be obtained by the following observations.

(ii) If G has a subgraph homeomorphic to a graph G' and G' has a
subgraph homeomorphic to a graph G", then G has a subgraph
homeomorphic to G".

(iii) G has a subgraph homeomorphic to each Gi (i=1,2).

(iv) If G has a subgraph homeomorphic to H then G1 or G2 has a
subgraph homeomorphic to H.

(ii) is trivial by the definition. (diii) is almost evident, because each
of the séparation graphs Gl' and G2' has a path connecting the two
vertices u and v. (iv) is obtained by the 3-connectedness of H, because
if G has a subgraph homeomorphic to H and none of Gl and G2 had a
subgraph homeomorphic to H then it is easily shown that H would not be

3-connected. Thus, we have (i) and consequently, the lemma by the
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Corollary 1. A graph G has a subgréph homeomorphié fo K
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is 3-connected, we ‘have the following.

K33 if and

only if there is a 3—¢onnected component of G that‘has a subgraph

homeomorphic to K .
3,3

The following lemma is a famous chéracterizatiqn of planar graphs.

Lemma 2 [14].
5 or K3’3.

The graphs KS and K3,3

subgréphlhomeomorphic to K

vertices.

A graph G is nonplanar if and only if G has a

(Kn is the complete graph with n

are called the Kuratowski graphs.)

- Since 3-connected graphs are restricted graphs in some sense, they

may have some specific properties.

The following lemma, which is -easy to

derive, is an example of such properties and plays a crucial role in this

paper.
small hole.

Hall [8] first obtained this but his proof seems to have a very

We give a brief constructive proof of this lemma, because

the algorithm described in the next section is based on the proof. -

Lemma 3 [8]. A 3-connected graph with six or more vertices is

nonplanar if aﬁd only if G has a subgraph homeomorphic te K

Proof.

only the necessity.

3,3°

Since the sufficiency is evident by Lemma 2, we consider

Suppose that G is nonplanar and has a subgraph G'

homeomorphic to KS' If G'=K5,»then, for any vertex v of G which is. not -

contained in G', there are three
vertex—disjoint paths in G from the

vertex v to three distinct vertices

of G', because G is 3-connected (Fig.

6(a)). It is easily séen that G has
a sgbgraph hqmeomorphic‘to K3’3 |
6(b)). Thus we may assume G'#KSJ

Let u and v be two vertices of degree
4 in G' such that there is a path,
say P(u,v), of length>2 in G' which
not only connects the two vertices u
and v bﬁt.alsb cohtains no other
vertices of degree'4 in ¢'. Since G
is'3—connected; for some Gertex’w '

(w%u;v)‘onwthe ﬁatH'P(u,v) and some

(Fig.
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A -subgraph of a graph G homeomorphic .to K3 3

_(a) subgraph-G'=K5 and three vertex-disjoint

paths from a vertex v to three vertices of

(b) subgraph homeomorphic to L
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vertex x of G' which is not on the PN T
path P(u,v), there is a path P(w,x) wﬁ,ﬁ?\ \\ wéig\u \

: <
in G connecting the two vertices w vﬁﬁ_*{ijk_:;ix N v%:’ //\\ ’%x
and x such that any internal vertex \g\jl\/)(//l \\)k\,/w//
on the path P(w,x) is not contained \é{fj::\/ \/”«‘\\/
in G'. By symmetry, we have only to

consider the cases shown. in Fig.

7(a). Thus, by an easy inspection,

ek N
/’}}* \\ /U
one can see that G has a subgraph AN é, \
Pid r\ ~ w,/ 7\ & .
2 . s \ A < [
homeomorphic to K3’3 (Fig. 7(b)). U v%:_7L__r_3? R vq;( ARV
\\ \\L~ ,/\\//’ \\ -\;L )\,/ ,l
By Corollary 1 and Lemma 3, we NN N/
‘ ’ A} '/’ \\‘I ¥ // \\.
have the following lemma. drm oo ¥
Lemma 4. A graph G has no
subgraph homeomorphic to K3 3 if and e
. ’ P 7 N
only if every 3-connected component R S NS AN
wal PN w & N !
of G is a planar graph or the graph v 'L__Z“L__}§} v o j N~ )
AN I' \ ’I,' -> q-——/ ______ \,, /
K \ N ‘LTS \ ! ;!
5° ‘ TN N N d,’
\‘ /’/>< ‘\ 1 X \ 7 K X
The following lemma gives an wl 1 *y | S 4
upper bound on the number of edges of
; . (a) Fig. 7. (b)
a simple graph which has no subgraph
homeomorphic to K It can be A subgraph of a graph G homeomorphic to K3,3’

3,3°
obtained by a simple calculation.

Lemma 5. If a simple graph G with two or more vertices has no
3,3° then ]E(G)]s 3|V(G)|—5.

Proof. We shall prove the lemma by induction on the number of

subgraph homeomorphic to K

3-connected components of such a graph G. Suppose that G is 3-connected.

Then G is a planar graph or the graph K. by Lemma 3, because G has no

5
If G is planar then

subgraph homeomorphic to K
|[EG)| < 3]v(e)| - 6

by Euler's formula for planar graphs [9], and if G=K5 then
lE@@) ] = 3lve)] - 5.

Thus the lemma is true for such 3-connected graphs. Suppose that the

3,3°

lemma is true for all such graphs with k or fewer 3-connected components.
Let G be such a graph with k+l 3-connected components. Assume that G has
a separation pair {u,v}. Let G, and G2 be split graphs of G with respect

1
to the separation pair {u,v}. Clearly,
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E@G)| = [E@G)] + [E@)] -2 and [V(@)] = [VED| + |[VE)] - 2.
By the proof of Lemma 1, none of G1 and G2 has a subgraph homeomorphic to

Thus, if both G, and G, are simple theﬁ by the inductive

K3,3‘ 1 2

hypothesis we have
ClEEp | s 3lvep ] -5

for each Gi (i=1,2) since Gi has fewer 3-connected components than G, and
consequently, we have

[E@) | = [E@GDI+ [E@G)]- 2 < 3]V(E)|+ 3]V(6y]| - 12 = 3|v(6)| - 6.
1f G, or G,, say G,, is not simple, then Gl—{(u,v)} and G, are both
simple. By the inductive hypothesis, we have

|E(G) [ <3|V(G))]| - 4 and |E(G,))|<3|V(G)]| - 5
and consequently, we have

|E@G) | < 3|V(G)| - 5.
If G is not 3-connected and G has not a separation pair, then each
2-connected component is a 3-connected graph. ' In this case let G' be a
2-connected component. Let G'" be the graph obtained from G-E(G') by
deleting all isolated vertices. We can always choose G' in such a way
that G' and G" have at most one vertex in common. Thus,

|ECG) |=|E(G") |[+|E(G")| and |V(G)|>2|V(G") |+|v(c™)| - 1.
By the same argument as described above, we have

|EG) | <3|V - 7.

Thus we obtain the lemma. []

Now we can design an O([V(G)I)-time algorithm to determine whether a

given input simple graph G has a subgraph homeomorphic to K3 3 as
14
follows.

Algorithm A. ,

Step 0. For a given input simple graph G, if |V(G)|2 2 and
|E(G)| 23|V(G) |-4 then return "yes" (G has a subgraph homeomorphic to
K3,3 by Lemma 5).

Step 1. Decompose G into 3-connected components D(G)={G1,G2,...,Gk}

by uéing a linear~-time decomposition algorithm [10].
Step 2. For each Gi in D(G), determine whether Gi is nonplanar or
not, by using a linear-time planarity testing algorithm [11].

Step 3. 1If somevGi is nonplanar and distinct from KS’ then return
"yes" (G has a subgraph homeomorphic to K by Lemma 4). Otherwise

3,3
return '"no".
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The correctness of the Algorithm A is .evident from Lemmas 4 and 5.
As for the time complexity, the graph G in Step 1 has no more edges than
3|V(G)l—5.v Thus Step 1 requires only O(|V(G)]|) time. Similarly, Steps 2
and 3 require only O(|V(G)l) time. Thus we have the following theorémf

Theorem 1. Algorithm A correctly determines whether an input simple

in 0(|V(G)|) time.

graph G has a subgraph homeomorphic to Ky 5
b

4. Algorithm for Finding a Subgraph Homeomorphic to K

3,3 .
Algorithm A can be modified in such a way that it actually finds a

subgraph of a graph G homeomorphic to K 3» if G has sﬁéh a subgraph. To
i 9’ : .

describe an algorithm, we need only one31emma.

Lemma 6. Let D be a decOmposition'of a graph G into 3-connected
components.,  Let {el,e.,.;.,er} be the set of all virtual edges of a -
3-connected component G' in D. Then there is a set of vertex-disjoint
paths in G, say {Pl,Pz,...,Pr}, such that each Pj (j=1,2,...,r) connects
the two end-vertices of ej and contains no edge of G'.

Proof. By the definition of split graphs, each virtual edge is
contained in exactly two 3~connected components in-the decomposition D.
Furthermore, two 3-connected components- -have one or zero virtual edge in
common. Let D' = {Fl,Fz,...,Fh} be the set of graphs obtained from the
set of 3-connected components in D by merging all virtual edges except

the edges e e sees €. Then G' is clearly contained in D' and each

2° , ‘
graph Fj in D' distinct from G' has one or zero virtual edge. Thus,

r <h-1 in general, and r=h-1 if G is 2-connected. We can assume, without

loss of generality, that F,=G' and, for each ej (j=1,2,...,r), the graph

h
F, contains e,. By the definition of a separation pair, the subgraph

Fj—{ej} of Fj'confains a path Pj connecting the two end-vertices of e

Clearly, the paths P P ...,’Pr are vertex—disjoint paths of G and

1’ "2

contain no edge of G'. [l
Now, we can obtain the following algorithm.

Algorithm MAF.

Step 0. For a given input simple graph G, if |V(G)|22 and
|E(G)|23|V(G)[-4 then let G' be any subgraph of G consisting of 3IV(G)|—4

edges and set G:=G'. (G' has a subgraphkhomeomorphic to K by Lemma. 5.)

3,3
Step 1. Decompose G into 3-connected components D={G1,G2,r..,Gk} by

10
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using a linear-time decomposition algorithm [12]. ’

Step 2. »‘Forveach’G in D, determine whether G is nonplanar‘hy k
using a llnear tlme planarlty testing algorithm [13]

Step 3. If there 1s no nonplanar graph dlfferent from KS’ then

retﬁrnk"nd" (G has no Subgraph homeomorphic to K by Lemma 4),

. 3,3
Otherw1se, let G be a nonplanar graph different from K

5° .
, . . -
Step 4. Flnd a mlnlmal nonplanar Subgraph G Qf>Gi‘ (Gi is
homeomorphic to K5 or K3 3 by Lemma 2.)

'

1s homeomorphic to K. then find a subgraph G' of Gy

Step 5.£ If Gi
homeomorphic to K

5

3,3 by the same technlque as used 1n the proof of Lemma

3. Otherw1se, set G': -G ' (G"ls homeomorphic to K3 3 )
SteE 6. For all the v1rtual edges e (u ,v ), e,= (u2,v2), vees

q (uq,v ) in E(G'), find q vertex—d15301nt paths P cees Pq in G

> >
such that each PJ (3=1,2,...,9) connects the two ené—veitlces uJ and vj
of the edge eJ and contains no edges of G'

Step 7. Return "the graph H'" obtained from G' by replac1ng each
virtual edge eJ—(u ,v ) (3=1 2,...,q) of G'kw1th the correspondlng path
.Pj .

The correctness of the algorithm immediately follows from Lemmas:
2-6. Therefore, we concentrate on the time complexity of the algorithm.
Steps 0-3 require only O(IV(G)l) time, because the: graph G after Step O
contains at most 3|V(G)l—4 edges. By Lemma 6, Step 6 can be implemented
by the so-called path finding algorithm which requires only linear time
[1]. Thus, Steps 6 and 7 require only O(|V(G)]|) time.

As for Step 5, we.can obtain a subgraph G' of Cikhomeomorphic to
K3’3 in O(|V(G)|) time by using a network flow algorithm as follows [5].
Suppose that Gi' is homeomorphic to KS.
Now assume that Gi'%K . We first identify the vertex s with an

5
arbitrarily chosen vertex v of Gi;whichvis not. in Gi" and next add to G

Let s-and t be two new vertices.

i
five new edges each connecting a distinct vertex of Gi' and ‘the vertex t.
Let Ga be the resulting graph. Then it is clear that Gi has three
vertex-disjoint paths from the vertex v to three distinct vertices of Gi'
if and only if G, has three vertex-disjoint paths connecting the vertices
s and t. For Ga, consider the‘following directed graph G d obtained by
. _ : . - + I
first splitting each vertex u into u and u with making an arc (u ,u ),
. -+ Sl ’ . .
and then making arcs (u ,v ) and (v ,u ) if and only if there is an edge

(u,v) in Ga' Then it is easy to see that Ga has three vertex-disjoint

11
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paths connecting the two vertices s and t if and only if Gad has three

edge-disjoint paths from s to t+. Now consider the network Nad with the
entrance s and the exit t+, which is obtained from Gad by associatiﬁg
all arcs unit capacities. Then, Gad has three edge-~disjoint paths from
s to t+ if and only if Nad has a flow of value three from s to t+.
Thus, Gi has three vertex-disjoint paths from v to three distinct
vertices of Gi' if and only if Nad has a flow F of value three from s to
t+. Since Gi is 3-connected, Gi has always such three vertex-disjoint
paths. Thus, we can find such a flow F in O(lE(Gi)|) time by using a

network flow algorithm in [20], since Na has O(IE(Gi)|) edges and F is

of value three. It is trivial to obtaindsuch three vertex—disjoint paths
from the flow F. Thus, we can obtain the subgraph G' of Gi homeomorphic
to K3’3 in 0( |E(Gi) |) time if Gi'=K5 (see Fig. 6).

Next assume that Gi'#KS. Let u and v be two vertices of degree 4 in
Gi' such that there is a path P(u,v) of length;zz of Gi' which not only
connects the vertices u and v but also contains no other vertices of
degree 4 in Gi'. For each vertex y of Gi', if y is on the path P(u,v)
then we add a new edge (s,y), otherwise we add a new edge (t,y). Then we
delete two vertices u and v. Let Ga be the resulting graph obtained from
Gi' From a shortest path P in Ga connecting s and t, we can easily find
a path of Gi such that itrnot only connects a vertex w (#u,v) on the path
P(u,v) and a vertex x of Gi' which is not on the path P(u,v) but also
contains no vertex of Gi' except w and x. Such a shortest path of Ga can
be obtained in O(|E(Gi)|) time by the so-called breadth-first search
algorithm [1]. Thus, a subgraph G' of Gi homeomorphic to K3’3 is
obtained in O |E(Gi) |) time even if Gi'#KS.

Therefore, Step 5 requires only O0(|V(G)|) time.

These observations imply that if Step 4 requires g(|V(G)‘) time then
the algorithm MAF requires only O(g(|V(G)])) time. The following simple

method achieves g([V(G)])=O(!V(G)|2){

begin
let Gi' be any subgraph of Gi consisting of 3[V(Gi)|—5 edges;
{Gi' is nonplanar by Euler's formula [9]}
G’ ".=G 1.
i i
for each edge e of Gi" do
if Gi'—{e} is nonplanar then Gi':=Gi'—{e}

end;

12
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In this method we are trying to delete edges of Gi one by one without
violating the nonplanarity. If an edge cannot be deleted without
violating, then it is called a critical edge. Critical edges are not
deleted and they do not lose their criticality when other edges are
deleted. Therefore, we end up with a nonplanar subgraph of Gi which
consists entirely of critical edges, that is, a minimal nonplanar
subgraph of Gi is obtained. By Kuratowski's Theorem (Lemma 2), it is
homeomorphic to K5 or K3’3. Each edge is treated once in this method,
and each such treatment calls a linear-time planarity testing [11].
Hence, this method requires only O(|V(Gi)|2) time.

Thus we have the following theorem.

Theorem 2. For a given input simple graph G, Algorithm MAF not only
correctly determines whether G has a subgraph homeomorphic to K3 3 but
?
in 0(|v(e)|?) time if G
3,3

has such a subgraph. Furthermore, the time complexity of the algorithm

also finds a subgraph of G homeomorphic to K

depends only on that of Step 4, that is, if Step 4 requires g(IV(G)I)
time then the whole algorithm also requires only O(g(IV(G)|)) time.

5. Applications

The technique used in the previous section can be applied to many
graph problems including the subgraph homeomorphism problems for other
fixed pattern graphs. Recall that we could obtain an efficient algorithm

by the

for the subgraph homeomorphism problem for the graph K3 3
B 2

following facts.

(i) A graph G has a subgraph homeomorphic to a 3-connected graph H
if and only if there is a 3-connected component of G that has a
subgraph homeomorphic to H.

(ii) There is an efficient algorithm for decomposing a graph into
3-connected components [10].
(iii) There is an efficient algorithm to determine whether é

3~-connected graph has a subgraph homeomorphic to K3 3°
‘ b

These suggest that, for a fixed 3-connected pattern graph H, if there is
an efficient algorithm for 3-connected graphs then we can obtain an
efficient algorithm for any input graphs. In this section we preSent

this type of applications.

13
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5.1. Subgraph Homeomorphism Prbblems for Other Fixed Pattern Graphs

We present éeveral pattern graphs H for each 6f which there is an
O(!V(G)l)—time algorithm not bnly to determine whether an input simple
graph G has a subgraph homeomorphic to H but also to find a subgraph
homeomorphic to H if G has such a subgfaph. Includéd among them are the

graphs K,, G, and K, ., (Fig. 2). We first consider the graph K

4 76 2,3 4
fixed pattern graph H. By an argument similar to the one described

as a

before we have the following lemmas.

Lemma 7. A 3-connected graph G with four or more vertices has a
subgraph homeomorphic to KA.'

Proof. Let v be any vertex of a 3-connected graph G with four or
more vertices. Since the subgraph G-{v} of G is 2-connected, for any
edge e=(v0,vl) and any vertex w ndt incident with e, G-{v} has a cycle
containing e and w [10]. Let C = VO?Vl’""Vp(=w)’vp+1’°"’Vm(=v0) be
such a cycle. Since G is 3-connected, there are three vertex-disjoint
paths from v to three distinct vertices on the cycle C. We can assume,
without loss of generality, that two of the three vertices are on the arc
C[vl,vp] of C connecting v
Clv

1 and Vp(=W) and the other on the arc

p+l,vo] connecting Vp+l and vy Thus, by an easy inspection, one can

see that the graph obtaind from the cycle C and the three vertex—disjoint

paths is homeomdrphic to K4. O

.Since the graph K, is 3-connected, we have the following lemma by

4
Lemmas 1 and 7.

Lemma 8. A graph G has a subgraph homeomorphic to K, if and only if

4
there is a 3-connected component of G with four or more vertices.
Thus, we have the following lemma by a calculation similar to the

one in the proof of Lemma 5.

Lemma 9. If a simple graph G with two or more vertices has no

subgraph homeomorphic to K,, then |E(G)|S 2|V(G)[—3.

4?
By Lemmas 7-9, we can obtain the following algorithm, in the same
way as before, which not only determines whether any input simple graph G

has a subgraph homeomorphic to K, but also finds a subgraph homeomorphic

4
to K4 if G has such a subgraph.

“Algorithm BF.

Step 0. For a given input simple graph G, if [V(G){ZZ and

14
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IE(G)|22|V(G)|—2 then let G' be any subgraph of G consisting of 2]V(G)|—2

edges and set G:=G'. (G' has a subgraph homeomorphic to K, by Lemma 9).

. . 4
Step 1. Decompose G into 3-connected components D(G)={G1,G2,...,Gk}

by using a linear-time decomposition algorithm.
Step 2. If there is no 3-connected component with four or more

vertices, then return "no" (G has no subgraph homeomorphic to K, by

4
Lemma 8). Otherwise let Gi be a graph in D(G) with four or more

vertices. (Gi has a subgraph homeomorphic to K, by Lemma 7.)

4

K ~ 1 . )
Step 3. Find a subgraph G' of Gi homeomorphic to K, by the method

described in the proof of Lemma 7. o :
Step 4.  For all the vi:tual edges e1=(ul,v1), e2=(u2,v2), ey
eq=(uq,vq) in E(G'), find q vertex-disjoint paths Pl’ P2, cees Pq in G
such that each Pj (j=1,2,...,q9) connects the two end-vertices uj and vj
of the edge ej and contains no edges of G', Return "the graph H'"
obtained from G' by replacing each virtual‘edge ej=(uj,vj) of G' with the

corresponding path Pj.
By the same argument as in Section 4, we have the following theorem.

Theorem 3. For a given input simple graph G, Algorithm BF not only

correctly determines whether G has a subgraph homeomorphic to K4 but also

finds a subgraph homeomorphic to K, if G has such a subgraph in O(1V(G)1)

4
time.

Similarly, for the graph G6 shown in Fig. 2, we can obtain an
O(IV(G)I)—time algorithm which not only determines whether an input
simple graph G has a subgraph homeomorphic to G6 but also finds a
subgraph homeomorphic to G6 if G has such a subgraph. The algorithm is
based on the following lemma.. A proof of this lemma and details of the

algorithm are left to the readers.

* Lemma 10. For a 3-connected graph G with n (n >6) vertices; G has a
subgraph hbmeomorphic to G6 if and oniy if G’is not any of the following

graphs: the wheel wn_l of order n-1, the compléte bipartite graph K3 n-3
. v 9
with three left vertices and n-3 right vertices, and the graphs
P + ) + ) . . * !
( 2LJK1)+Kn_3, P3 Kn—3 and K3 Kn—3 obtalPed from K3,n—3 by adding onmne,
two and three edges among the left vertices, respcetively (see Fig. 8).

(A wheel of order n-1, denoted by wn_l, is the graph obtained from a

cycle Cn—l of length n-1 by adjoining one new vertex v and n-1 new links

joining v and the n-=1 vertices of Ch—l')

15
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(P, UK, ) 4K, P,+Kg 375

Fig. 8. Graphs W __,. K3,n_3, (PZUKl)fxn—B’ By+K 3

and K_+K
n-3

3 (in the case of n=8).

Although we have considered only 3-connected graphs as a pattern
graph, the technique can be applied to some 2-connected gréphs. Now we
consider the graph K2 3 (Fig. 2) as a fixed pattern graph H. Clearly,

s

K is not 3-connected.
2,3

Lemma 11. A 3-connected graph G with five or more vertices has a

subgraph homeomorphic to K2 3°
s

Proof. By Lemma 7, such a graph G has a subgraph homeomorphic to

K By an argument similar to the one in the proof of Lemma 3, one can

g

eisily prove that G has a subgraph homeomorphic to K2,3.
In the proof of Lemma 6, if G is a simple graph then we can always
obtain, for any r distinct virtual edges el=(u1,v1), e2=(u2,v2), cees
er=(ur,vr) of the same 3-connected compoment G', r vertex-disjoint paths
Pl’ P2, cees Pr in G such that each Pj (i) is of length >2, (ii) connects
the two end-vertices uj and vj of the edge ej, and (iii) contains no edge

of G'. By this observation, we can obtain the following lemma.

Lemma 12. A graph G has a'subgraph homeomorphic to K2’3 if and only
if there is a 3-connected component satisfying one of the following.

(1) It has five or more vertices.

(ii) It is the graph K4 with one or more virtual edges.

(iii) It is the graph K3* with three virtual edges.

16
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Proof. (Sufficiency) Since we can consider virtual edges of the

same 3-connected component as vertex—disjoint paths of length>2, it is
easily seen that if G has a 3-connected component satisfying (ii) or

(iii) then G has a subgraph homeomorphic to K If G has a 3-connected

2,3°
component satisfying (i) then the 3-connected component has a subgraph

homeomorphic to K by Lemma 11, and consequently, G has a subgraph

2,3

2,3°
(Necessity) If any 3-connected component of G satisfies none of

homeomorphic to K

(i), (ii) and (iii), then every 3-connected component of G satisfies one
of the following.

(a) It is K
(b) It is K

4 with no virtual edge.

3° o

(¢) It has two or fewer vertices with two or fewer virtual edges.
If a 3-connected component of G satisfies (a) then it is a 2-connected
component whose edges are not contained in any subgraph of G homeomorphic

to K Therefore, we can assume that no 3-connected component of G

2,3°
satisfies (a). Suppose that every 3-connected component of G satisfies
(b) or (c). Then it can be easily seen that G has no subgraph

homeomorphic to K .
2,3

By the same calculation as before, we have the following lemma.

Lemma 13. If a simple graph G with two or more vertices has no

subgraph homeomorphic to K2 3 then |E(G)| S2|V(G)|—2.
H]

By Lemmas 11-13, we can obtain the following algorithm.

Algorithm CF.

Step 0. For a given input simple graph G, if IV(G)IZZ and |E(G)| >
2|V(G)|—1 then let G' be any subgraph of G consisting of 2|V(G)|—1 edges

and set G:=G'. (G' has a subgraph homeomorphic to K by Lemma 13).

» 2,3
Step 1. Decompose G into 3-connected components D(G)={G1,G2,...;Gk}

by using a linear-time decomposition algorithm.

Step 2. If there is no 3-connected component satisfying (i), (ii)
or (iii) of Lemma 12, then return '"no" (G has no subgraph homeomorphic to
K2’3 by Lemma 12). Otherwise let Gi be a graph satisfying (i), (ii) or

(iii) of Lemma 12. (G has a subgraph homeomorphic to K by Lemma 12.)

2,3

Step 3. Find a subgraph of G homeomorphic to K by the method

2,3
described in the proof of Lemma 11.

17
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By the same argument as before, we have the following theorem.

Theorem 4. For a given input simple graph G, Aigorithm CF not only
correctly determines whether G has a subgraph homeomorphic to K2,3 but
also finds a subgraph homgomorphic to K2,3 if G has such a subgraph in
o(lve)l) time.

Similarly, for each pattern graph H of graphs C

4 and CS'(Flg. 9), we

can obtain an 0(|V(G)|)—timé

algorithm. Details are left to the

readers. Note that, for the complete

bipartite graphs K shown in Fig.

2,p
8, one can easily design a

polynomial-time (for example, Cy ‘ ¢
O(pr(G)!a)-time) algorithm using a

network flow algorithm (see [5]). ’
: Fig. 9. Graphs C, and C;.

5.2. Testing Graph Properties

Some graph property T is characterized in terms of excluded
homeomorphic subgraphs: a graph G satisfies 7 if and only if there is a
set S(m) of graphs such that G has no subgraph hbmeomorphic to a graph in
S(m). '"Planarity", "outerplanarity'", etc. are examples of such a
property. In this section we show that the. previous arguments can be
applied to testing such a property. First consider the 'outerplanarity".
Since G is outerplanar if and only if G has no subgraph homeomorphic to
K2,3 or K4 [91, we can easily design an 0(|V(G)|)-time algorithm to
determine whether an input simple graph G is outerplanar by Theorems 3
and 4. However, by Lemmas 8 and 12, we can also design a more simple

O(IV(G)[)—time algorithm based on the following lemma which is a new

characterization of outerplanar graphs.

Lemma 14, A graph G is outerplanar if and only if every 3—connedted’

component of G is the graph K, or has two or fewer vertices with two or

3
fewer virtual edges.
Similarly, since a graph G is series-parallel if and only if G has
no. subgraph homeomorphic to K4 [4], we can obtain O(]V(G)|);time
algorithm to determine whether a simple graph G is series-parallel.
However, there have already been O(|V(G)|)-time algorithms for testing

these properties [18,24].

18



6. Concluding Remarks .

85

e

In this paper, we have shown that subgraph homeomorphism problem qu

the fixed graph K is solvable in polynomial time. To obtain the

result, we have fiézt observgd that, for any 3-connected g:aph H, a graph
G has a subgraph homeomorphic to H if and only if there is a 3-connected
component of G that has a subgraph homeomorphic to H, and then employed
an efficient algorithm for decomposing a graph into 3-connected
components and an efficient planarity testing algorithm. As applications
of this technique, we have first presented several pattern graphs, such
as Ka% G6’ K2,3, C4 and>C5 (Figg. 2 and 9), for each H 6f Which?,there is
an O(|V(G)I)—time algorithm to find a subgraph homeomorphic to H. Then
we have presented an O(|V(G)|)—time algorithm to determine whether a
graph G satisfies é property. T, such as "= "outefplana: graph'" and
"series-paralell graph“.v ' ,

As for finding a minimal nonplanar subgraph of a nonplanar graph G,
Mr. Kaschube informed us recently that Professor Williamson has an
O(|V(G){)—time algorithm [26]. Thus, the time compiexity of our
algorithm MAF for finding a subgraph of G homeomorphic to K?),3 becomes
O(|V(G)|) (see Theorem 2 and Step 4 of Algorithm MAF in Section 4). Mr.
Kaschube also imformed us that he independently obtained the similar

result for the subgraph homeomorphism problem for K [13]. It remains

3,3

open whether the subgraph homeomorphism problem for the fixed graph K5 is

polynomial-time solvable. . ‘ ,

Even if the.subgraph homeomorphism problem for a fixed 3-connected
graph H were solvable in polynomial time, the problem of finding a
maximum subgraph that has no subgraph homeomorphic to H is NP-complete
[3]. Thus, the problem of finding a maximum subgraph that has no |
subgraph homeomorphicvto H ié.NP—complete for each H, H=K3’3,‘K4, G6.
Similarly, the problem of finding a maximum subgraph that has no subgraph

homeomorphic to H is NP-complete for each H,‘H=K2‘3, K4 and~G6, even if
: s

it is restricted to planar graphs [2]. L
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