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On a decomposition of a connected graph

KIYOSHI AOKI ( AR %)
Niigata College of Pharmacy

SEIICHT WATABE ( P HF—)
Niigata Academy of Medical Technology

1. INTRODUCTION

The total number of nonidentical graphs of order p with the same

vertex set since there are p(p-1)/2 distinct pairs

of vertices. It is not difficult to see that the number of non-
p-1)/2
q

with p%l and qué(g). But the corresponding problem of determining

identical (p,q)-graphs is (p( ) for fixed integers p and q

the number of nonisomorphic (p,q)-graph, for fixed integers p and
g, is considerably more difficult. Also, many papers give charac-
terizations of the degree sequence. Some charactefizations of the
degree(sequence with the unique realization are given by S.L.Hakimi
(5Jand P.Erdosi6l. It is often Ehe case that two graphs have the
same structure, differing only in the way their vertices and edges
are labeled or only in the way they are represented geometrically.
One of the most common problems in graph theory deals with the
equivalence relation on graphs. It still remains an unsolved prob-

lem to discover an useful characterization of isomorphic graphs,

N

although the relation "isomorphic to' devides the collection of

all graphs into equivalence classes.

In our paper [12]1, we have been investigated the characterization
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of nonisomorphic graphs using the concept of the incident degree
sequence. In this paper, we shall introduce the new concepts which
are the Hamilton walk [3Jand the decompqsition by the Hamiltonv
walks. And we shall characterize the nonisomorphid‘graphs by using
the degree sequence and these concepts. We can determine whether
two graphs with the same degree sequence‘is isomorphic or not.
Some aspects of the decomposition by the Hamiltonbwalks are inves-

tigated.

2. DEFINITIONS AND PRELIMINARIES

A graph [81G is an ordered pair of disjoint set (V,E) such that E
is a subset of the set of unordered pairs of V. Unless it is ex-

plecitly stated otherwise, we consider only finite graphs, that is

bnl

V and E are always finite. The set V is the set of vertices and E
is the set of edges. If G is a graph then V:V(G)‘is the vertex set
of G and E=E(G) is the edge set of G. The order of G is the number
of vertices and it is denoted by Iv(iGg)|. The size of G is the num-
ber of edges and it is denoted by [E(G)|. For a graph G, if [V(G)]
=p and |E(G)|=qg, then G is called a (p,q)-graph. A graph of order

n and size (2) is called a complete n-graph and is denofed by Kn'

A graph G is iéomorphic 27 to a graéh H if there exists a one-to-

one mapping f, called an isomorphism, from V{(G) ontoc V(H) such that

Fh

preserves adjacency, that is, uvZE(G) if and only if f(u)f(v)%
" 7Y o . . . . T . . - ~ . .

E(H). If G is isomorphic to H, then we say that G and H are iso-
morpnic and write G = H. The degree (8] of a vertex v, of a graph

G is the cardinality of the set of vertices adjacent to v.; it is
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denoted by,d(vi) or di‘simply.‘The minimum degree of the vertices
of a graph G is denoted by §(G) and maximum degree by A(G). If V(G)
= {vl,...,vn} then a sequence d(vl),...,d(vn) is called a degree
sequence of G. Usually we order the vertices in such a way that the
degree sequence obtained in this way is nondecreasing. A wélk C13
is an alternating sequence of vertices and edges, say Xq1€19X ey

where e.= xi and 0¢ik, This walk is usually denoted by

€10 ¥k i=%i1

XoXpes Xy Note that a path is a walk with distinct vertices. A
graph 1s connected if for every pair {u,vi of distinct vertices
there is a path from u to v. A cycle dohtaining,all the vertices
of a graph G is said to be a Hamilton cycle C11l]l of the graph. No
efficient algorithm is known for constructing a Hamilton cycle. A
Hamilton path of a graph is. a path containing all the vertices of
the graph. And we shall define especially that a walk with all the
vertices of a . graph G is called a Hamilton walk in this paper. A
compact orientable 2-manifold {4] is a surface that may be thought
of as a sphere on which a number of handles has been placed. The
number of handles is~reffered as the genus of the surface. By the.
genus [73[9] Y(G) of a graph G is meant the smallest genus of all.
surface (compact orientable 2-manifolds) on which G can be embedd-

ed.

As above mentioned, we introduce the concept which is the Hamilton
walk. Let G be a connected (p,q)-graph and let g5 be the degree

sequence of nondecreasing order. Next, we shall construct the
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Hamilton walk as follows and let us consider the another sequence

(al,...,am).

P,: a vertex of the minimum degree S(G)zal.

P2: a vertex whose degree is the minimum degree a, among the
adjacent vertices with P, -

P3: a vertex whose degree is the minimum degree a3 among the

adjacent vertices with P2 except for Pl'
Let continue this labeling until all the vertices of G are labeled,
where edges and vertices must avoid overlapping as possible and we
give priority to the vertex of the low degree. According to-the
above mentioned method, we can get the degree sequence glz(al,..”
aS) and the corresponding to the vertex sequence G1=<P1""’Ps)
which is called the first Hamilton walk. If there are several
sequences gglz...,gij), then we define gl again as the minimal
sequence from among these degree sequences by the lexicographical
order. The vertex sequence corresponding to g, is denoted by Glz(
Pl""’Ps) again. And if there are several sequences és sSame as gl,
then we construct the second sequence g5 based on 8y And we choose

the base of the minimal second sequence g, as g again. Now, we

construct the second Hamilton walk G, as follows; let Ql‘be the

2
initial vertex Pl of Gl' And the edge which is used in Glfshould’be
used in G2 as possible. If there is no edge which is not used in Gr

then we construct the sequence that we give priority to the vertex

of the low index in G,. Then we can construct the second Hamilton

1
walk G2:(Q1,...,Qt} and g2:(bl""’bt) which is thercorresponding
sequence to G2 where bk is equal to the index number m if kapm.
_ R
And if there are several sequences as 85> then we may defiﬁe g5 as

the minimal sequence from among these sequences by lexicographical
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G

order. Similarly, we can get the another Hamilton walks G »

3,n--,

d the corresponding sequences g.,...,g respectively. This is
an 3 X

denoted by g=(go,...,gx) is the decomposition‘by the Hamilton walks

EREE
Gx, denoted by_ﬁ(G)[lOJ, is called a path space of G in this paper.

of G in this paper. And a vector space whose generators are G

Now, we can get the following theorem.

THEOREM 1. The correspondence ¥ from G to the decomposition g=
(go,...,ga) of G is a one-to-one mapping i1f and only 1f there exists
no graph except for G which has the same degree condition with G

for the extension of adding edges suitably to ig@Gi.

Proof. Let {Gif and {Hii, where i=1,...,¥, be the set of the
‘Hamilton walks in G and H respectively. Assume that there exists

a mapping Y from G and H to gz(go,...,gd) and h=(h .,hy)

0r*"

respectively. At first, we shall show that if g=h, then fflGi

=4 .
= f;iHi We can get Glé Hl by mapping the k-th vertex of G1 to the

k-th vertex of H1 and the k-th edge of G, to the k-th edge of H

1 1°

Similarly, we can get Gig Hi successively. Thus, it is clear that

g=h implies gi:hi for all 1. By composing their isomorphisms we

A

=3
can get fiiGi and £51Hi are isomorphic. Since we can identify

ES
leGig f;lHi’ we get G = H by the assumption that for the extension
3

of adding edges suitably to fflGi there exists no graph except for

G which has the same degree condition with G. Therefore, g=h

implies G £ H. Conversely, assume that g=h implies G = . As above
o

oA
mentioned, we can get ~ G, =~ 1, and G = H.
i=1"1 i=1"41i

-3

hus, we can get the

above condition. Therefore, the statement is correct.

w
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Next, as a consequence of theorem 1, we can get the classifica-
tion of (p,q)-graphs with respect to p and g where p=1,...,6 C11.
Now we consider the classification for the cgnnected graphs of
order.p§6. It is obvious that for the disconnected graphs we may

consider the classification of the connected components.

THEOREM 2. Let G be a connected graph of order p(26) and let
g0 be the degree sequence of G. Then a correspondence{?o from G to

g0 Is not a one-to-one mapping at the following cases; 1f p=5,

Ly2 2 4) 3,52 4,2

then 50:(233 ) and if p=6, then g0~(2 ), (2 (27374), (274%)
(23%0), (2%3%0%), (237450, (3447, (237070, (374Fs0, 3R, ./35/1
and (&6}.

‘Proof. According to above ment_oned classifications [11, it is

easy to obtain the statement. Clearly, there exist the graphs that
they have the same degree sequence but they are not isomorphic

mutually.
Néxt, we get the following theorem.

THEOREM 3. Let G be a connected graph of order 5. A correspond-

ence Yl from G to (g, gzlyis a one-to-one mapping.

Proof. By the deffinition of g, it is obvious. It is enough tc
2

) by theorem 2. For the nonisomorphic

0Q

raphs with the same g.=(2737), their first Hamilton walks are all

et
'..J

stinct. Therefore,

At the case of order 6 we can get the follcwing theoremn.

o
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THEOREM 4. Let G be a connected graph of order 6. Then a
correspondence 9} from G to (gO, g1/ 1s not a one-to-one mapping
“4r, (30 6

at the only following cases; 50:(22342’ (23 ) and (47).

Proof. In fact, at the case ofv(2234) there are four distinct
kinds of graphs and their first Hamilton walks are eqﬁal to (23323
3), (233233), (232333) and (223333) respectively. At the case of

(2344) there are three distinct kinds of graphs and g, is equal to
g respectively. At the case of (36) and (46) there are two dis-
tinct kinds of grapqs‘respectively and gl is '‘equal to g, respec-

tively. For the other cases of theorem 2 it is similar to theorem

3.

According to above mentioned facts, we can get the following theo-

rem.

THEOREM 5. Let G be a connected graph of order 6. Then a corre-

spondence ¥ from‘G to (g, g€,, &,/ is a one-to-one mapping.
1% ) go 51 Eo pping

Proof. It is enough to show that the graphs which have the

same first sequence 81 have the aistinct second sequence g2 mutu-
ally. Namely, we must consider the following cases; go=(2234),(234
4), (36) and (46). These graphs have the same gy - Now, let us con-
sider the second sequences for theif gfa@hs. Byithe definition of

g, we can get the following; for r6=(2234),'we get (162354) and

(163254) respectively. For'go=(2344), we get (154623), (162354) and
N | _ .

(163254) respectively. For g,=(37), we get (132546) and (1436125)

respectively. For gO:(46), we get (1351624) and (135264) respective-

ly. Obviocusly, in each case they are distinct mutually. Therefore,
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a correspondence 92 from G to (go, 81> g2) is a one-to-one mapping.

Next, when there exists a one-to-one mapping from G to (go,...,g&)
for some X, o« is called the dimension of the path space/ﬁ(G), de-

noted by dim(ﬁ(G)) in this paper. Then we get the following theorems.

THEOREM €. Let G he a cvcle or the complete graph of order p.

Then dim(jgﬂ?}/ 1s equal to 1.

Proof. If G is a cycle or the cmplete graph of order p, then we
get go=g1=(2p) or gO=g1=((p—l)p) respectively. By the definition of

the dimension of‘f(G) and theorem 1 we can get the statement.

THEOREM 7. Let G be a connected 3-regular graph of order p.

Then dim( P(G)) is equal to 2.

Proof. As a consequence of thecrem 1, we can get the statement

easily.

Furthermore, we can get the following statements with respect to

the genus.

LEMMA 8.1 Let C be a Hamiltonian graph of an even order p and
let C be a Hamilton cvcle of G. Then G is embeddable on the surface
with the genus {fp-&)/&} (the smallest integer not less than (p-4//
4 011 if and only 1f the number of edges which are crossing mutually

in the Iinterior region of C on the sphere 1s equal to pi2.

Proof. Assume that p/2 edges of G in the interior region of C

m‘
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are crossing mutually. Then we can draw on the sphere two edges of
theﬁ which are not cross to each other. And also, it is obvious

that by attaching a handle to the sphere we can put off the cross-

'ing number at least one. Thus, it is enough to attach the half of

p/2—2=(p—4)/2 handles to the sphere. That is, we can get the genus
of G is{(p-4)/4}. According to the definition of the genus, the

inverse 1s obvious.

LEMMA 8.2 Let G be a Hamiltonian graph of an even order p and.
let-C be a Hamilton cycle of G. If the chords of C on the sphere

are crossing riutually, then there exists the sequence gk:(bl’b2’b3’

bé,b5,b6,b7,b8,...} where hz<b5<h8<b b 5<h <h b b, <h

<
7¢b3s by b

4’ "2

b37b4)b5, b5<b6<b7 gnd b7>b87h9 for some k.

2

Proof. By the definition of b, and the index we can get the

k

statement.

THEOREM 8. Let G be a Hamiltonian graph of an even order p.
Then the genus of G is equal to {(p-4)/L} if and only if there
exists the sequence g,=(b. ,b. ,b. ,...) for some k where b. <{b. <
k 1,771,570y 1y 71
bi<bi’ bi<bi<b1<bi ,l% <bi<bi’ bi>bi>bi ’b1<tﬁ <bi’
8 4 2 6 7 3 1 2 3 3 4 5 5 6 7

b.>b.>h. and Q. Q. , Q. Q. , Q. Q. and Q. Q. are edges of G.
1y ig 19 1,71, 13 14 15 g 17 Ig

Proof.‘ Let us consider all the Hamilton walks of G. For some

k we can get the vertex sequence Qi ""’Qi which satisfies the

same condition of lemma 8.1, the existence of such the walk is the
necessary and sufficient condition for the genus of G is {(p-4)/4}.
Therefore, as a consequence of lemma 8.1 and lemma 8.2, we can get

the statement.
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