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Star decomposition indexes of graphs
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Mikio KANO, Akashi Technological College

We deal with finite simpleAgraphs, which have neither
multiple edges nor loops. Let G be a graph with vertex set
V(G) and edge set E(G). The arboricity a(G) of G is the
minimum integer n for which E(G) can be decomposed into n

forests. A formula for the arboricity of a graph was obtained

by Nash-William [5],[6]. The formula is the following:
a(G) = maxf;_LEiElL
‘ [V (H)|-1

where the maximum is taken over all subgraphs H of G, and [x]
denotes the least integer not less than x. If we impose some
conditions to forests, then we obtain new invariants. A graph

is called a linear forest if each component of it is a path,

and linear arboricity =(G) of G is defined to be the minimum

n for which E(G) can be decomposed into n linear forests.
Some results on linear arboricity can be found in [1],[4].

We call a graph H a star if H is isomorphic to the complete

bipartite graph Ky o for some n (Fig. 1). We call a graph G
Figure 1. Kl 4 Figure 2. A star-forest.
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Figure 3. A graph G with *(G)=3. Figure 4. A and B.

a star-forest if each component of G is a star (Fig. 2). We

define the star decomposition index *(G) of G by the minimum n

for which E(G) can be decomposed into n star-forests (Fig. 3).
In this paper we shall investigate star decomposition indexes.
We begin with the following easy result.

Proposition 1. Let T be a tree. If T is not a star,

then *(T)=2.

Proof Let T be a tree5thét is not a star. Then it is
obvious that *(T)22. Let L(T) be the line graph of T (i.e.
V(L(T))=E(T) and two vertices of L(T) are adjacent if and only
if corresponding edges of T aré adjacent.). For two vertices

x and y of L(T), we denote by d(x,y) the distance between x and

y in L(T). Choose any vertex v of L(T), and set
A ={xeV(L(T)) | d(v,x) is odd} and
B ={xeV(L(T)) | d(v,x) id even}sv (Fig. 4).

Then A and B are star-forests of T, and thus *(T)<2. Therefore

x(T)=2. 0

- By Kn and Kn m,.we'denote'the complete graph of order n
14

and the complete graph of order n+m, respectively. Let A be a

graph. Then an A-factor of a graph is its spanning subgraph

each component of which is isomorphic to A.
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Theorem 1. [2] (K2n—l) (Kzn) n+1l,” where n=3.
;n * .
Proof ‘We first show that *(K, )2*(K, _;)zn+l. It is
. ; * . s - - N
obvious that *(Kzn_l)s (Ry ) - S;nce Kypo1 1s a 2 (n-1) -regular

graph and does not have a K -factor, we obtain * (K )

1,n-1 2n-1

'>n+l by Theorem 3, which will be given later.

* =
We next show that (K2n)Sn+l. Let V(Kzn) {Vl’VZ""'V }

2n
and put

r — 1t 1 =91
Fo {Vtvi | t<i'<t+n, i=i' (mod 2n)}

U{vn+tvj | n+t<j'<t+2n, =3 (mod 2n)} < E(K, )

for t=1,...,n, and define

F ,V v2 } (Fig. 5).

nt+l ={V-1Vn+l'v2vn+2"" n

Then K, =F.,uF.,u ... uF and we conclude that *(K2n)3n+l.

S

2n " 1772 n+l’
Consequently, 2n l) ) =n+1. D
@ VCA 0o $
Figure 5. l’ F2 3, F4 and F5 of K8.

The star decomposition index of the complete bipartite

graph Kn n was determined by Egawa, Fukuda, Nagoya and Urabe

r

{31, and *(Kn m) for some classes of n,m are obtained by Enomoto
I 4

and etc.

Theorem 2.[3] )=n+2, where n>4.

* =%
Kon,on) = ®ono1, 2n-1

* *
Proof We prove .only that (K2n—l,2n—l)s (K ) <n+2.

2n,2n

For the proof of * (K 1)2n+2, the reader should referto3].

2n-1,2n-

It is trivial that )< (K2n,2n)' Let V(K )

* (K
2n-1,2n-1
n}u{cl,... e rd

2n,2n

={a -ra_,b ,...,dn}. For every k,

l,o. l,---,

l1<k<n, we define
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Fo ={akci, bkdi’ aidk, bick | 1<is<n, i#k},
and put
Foil ={aici, aidi I 151Sn}( and
F 42 ={bici, b.d. | 1<is<n} (Fig. 6).
= *
Then K2n,2n F1UF2U . e an+2. Consequently, (K2n,2n)5n+2.

Q G2 % Q¢ b b2 bs be Q b
:;%§S§;é§§§Zi?§§:: I\I:iséEggsé;:;\:
G G G G di dy d5 de G di

Figure 6. F2 amd F5 of K8,8'

We write dG(v) for the degree of vertex v in G. A graph

G is called an r-regular graph if dG(x)=r for all vertices x.

Theorem 3. Let G be a 2r-regular graph. Then

*(G)zr+1
with the equality if and only if G can be decomposed into r+l

edge-disjoint Kl -factors.
2 :

Proof Since a(G)2|E(G)|/(|V(G)|-1)>r, we have *(G)
>a(G)>r+1. Suppose *(G)=r+l. Then G can be decomposed into

r+l star-forests H,, H H We denote by ni(t) the

ll

number of components K

2’ . e r r+1-

1,¢ in H;. Put p=|V(G)| and xi=|V(G)I

Then we have
2r ‘ :

P = X+ ) (3+1)ny (3) for all k, l<ks<r+l (1)
J=1

lEH ) |= ) j n,(3) = p-(x,+ J n,(3)), and
S S kogsk

: r+1
) d, (x) = 2pr = 2|E(@G) =2 ) |E(Hk)|

xeV(G) k=1

. r+l
=2p(r+1) - 2 ) {x+ ) n (3}
k=1 j>l
‘Therefore



p= T {x.+ n (). o o (2)
k=1 { k jgl k3 o |

The vertex of K (t>2) with degree t is called the center of

l,t

It follows that every vertex v of K (j<r) in H, must

Kl,t'

be the center of a component K

1,3

(t=2) in some H

1

» l’t K (k=2), since
otherwise 2r=d _,(v)=d. (v)+ z‘ d.. (v) <r+r, a contradiction.
G 17 k2 Hx :

Similarly, every end vertex of Ky 5 (j2r) in H, is contained in
; ’ » v

1
the center of a component in some Hk (k=2). Hence
r-1 2r r+l1
xp* I (G*Ling () + ] dng(3) < I (] my(£)) (3)
j=1 j=r k=2 t=z2
By substituting (3) into (2), we obtain
r+l r+l : r+l1
p=x.+ )n (3 + )] x.+ ) () n(3))+ ) n (1)
1 j=z1 1 k=2 k k=2 j=2 k k=2 K
r+l r-1 2r
> X+ .Z ny (3) + Z Xy +xq+ 'Z (3+1)ny (3) + _Z jng (3)
jz1 k=2 j=1 j=r
r+1
+ ) n (1)
k=2 X |
r-1 r+l r+l
=x.+ ) (§J+1)n,(3) + )} n,(3) + ) x,_ +x.+ ) n, (1)
SRS | 1 je1 1 k=2 ¥ 1 2ok
r-1 r+l r+l
=p+ ) n,(3) + ) x,  +x.+ ) n (1). (by (1))
j=1 1 k=2 ¥ 1 k22 K7
Hence nl(j)=0 for every j, l<js<r-1, ;nd Xl="'=xr+l=0'

We can similarly show that n, (j)=0 for all k, j (k=2 and j<r-1).

k

Therefore, each component of Hk Kl,t Kk is a
spanning subgraph of G. If dH (v)2r+1 for some k21 and veV(G),
' k
then 2r=d_(v) = ) d, (v)2r+l+r=2r+l, a contradiction.
-6 t>1 Py
Consequently, each Hk has no Kl ¢ for t>r+1, and we conclude
14

that every Hk is a Kl r—factor of G. Hence the proof is
14

complete. []

is (t>r), and H

$__



The next theorem can be proved by the same argument in the
proof of Theorem 3.
Theorem 4. Let G be a (2r+l)-regular graph. Then

* (G)=2r+2.

By Theorems 3 and 4, we have

r 1213 4 | 5 |
*(G) of r-regular graph GI 2| 3 |3,4 |4,5 |4,5,6

Note that the existence of a 5-regular graph Gy with *(G1)=5
and of a 6-regular graph G2 with *(G2)=6 is unknown.

A triagle cluster is a connected graph whose edges

partition into disjoint triangles with the property that any"
two triangles have at most one vertex in common and if such a

vertex exists, then it is a cut vertex of the cluster (Fig. 7).

Figure 7. A triangle cluster.

Proposition 2. (Fukuda [5]) . Let TC be a triangle

cluster. Then

2 1if every triangle has a vertex of degree 2
*(TC) =

3 otherwise.
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