グラフの星部分グラフ分解

Star decomposition indexes of graphs

加納 幹 在 明石工高專

Mikio KANO, Akashi Technological College

We deal with finite simple graphs, which have neither multiple edges nor loops. Let G be a graph with vertex set V(G) and edge set E(G). The <u>arboricity</u> a(G) of G is the minimum integer n for which E(G) can be decomposed into n forests. A formula for the arboricity of a graph was obtained by Nash-William [5],[6]. The formula is the following:

$$a(G) = \max \left[\frac{|E(H)|}{|V(H)|-1} \right]$$

where the maximum is taken over all subgraphs H of G, and [x] denotes the least integer not less than x. If we impose some conditions to forests, then we obtain new invariants. A graph is called a <u>linear forest</u> if each component of it is a path, and <u>linear arboricity</u> \equiv (G) of G is defined to be the minimum n for which E(G) can be decomposed into n linear forests. Some results on linear arboricity can be found in [1],[4]. We call a graph H a <u>star</u> if H is isomorphic to the complete bipartite graph $K_{1,n}$ for some n (Fig. 1). We call a graph G

Figure 1. K_{1,4}.

Figure 2. A star-forest.

Figure 3. A graph G with *(G)=3. Figure 4. A and B.

a star-forest if each component of G is a star (Fig. 2). We

define the star decomposition index *(G) of G by the minimum n

for which E(G) can be decomposed into n star-forests (Fig. 3).

In this paper we shall investigate star decomposition indexes.

We begin with the following easy result.

Proposition 1. Let T be a tree. If T is not a star, then *(T)=2.

Proof Let T be a tree that is not a star. Then it is obvious that $*(T) \ge 2$. Let L(T) be the line graph of T (i.e. V(L(T)) = E(T) and two vertices of L(T) are adjacent if and only if corresponding edges of T are adjacent.). For two vertices x and y of L(T), we denote by d(x,y) the distance between x and y in L(T). Choose any vertex v of L(T), and set

 $A = \{x \in V(L(T)) \mid d(v,x) \text{ is odd}\}$ and

 $B = \{x \in V(L(T)) \mid d(v,x) \text{ id even}\} \ni v \text{ (Fig. 4)}.$

Then A and B are star-forests of T, and thus $*(T) \le 2$. Therefore *(T) = 2.

By K_n and $K_{n,m}$, we denote the complete graph of order n and the complete graph of order n+m, respectively. Let A be a graph. Then an <u>A-factor</u> of a graph is its spanning subgraph each component of which is isomorphic to A.

Theorem 1. [2] $*(K_{2n-1})=*(K_{2n})=n+1$, where $n \ge 3$.

Proof We first show that $*(K_{2n}) \ge *(K_{2n-1}) \ge n+1$. It is obvious that $*(K_{2n-1}) \le *(K_{2n})$. Since K_{2n-1} is a 2(n-1)-regular graph and does not have a $K_{1,n-1}$ -factor, we obtain $*(K_{2n-1}) \ge n+1$ by Theorem 3, which will be given later.

We next show that *(K2n) \leq n+1. Let V(K2n) = {v1, v2, ..., v2n} and put

$$F_{t} = \{v_{t}v_{i} \mid t < i' < t+n, i \equiv i' \pmod{2n}\}$$

$$\cup \{v_{n+t}v_{j} \mid n + t < j' < t+2n, j \equiv j' \pmod{2n}\} \subset E(K_{2n})$$
 for $t = 1, \dots, n$, and define

Figure 5. F_1 , F_2 , F_3 , F_4 and F_5 of K_8 .

The star decomposition index of the complete bipartite graph $K_{n,n}$ was determined by Egawa, Fukuda, Nagoya and Urabe [3], and $*(K_{n,m})$ for some classes of n,m are obtained by Enomoto and etc.

Theorem 2.[3] $*(K_{2n,2n})=*(K_{2n-1,2n-1})=n+2$, where $n \ge 4$.

Proof We prove only that $*(K_{2n-1,2n-1}) \le *(K_{2n,2n}) \le n+2$. For the proof of $*(K_{2n-1,2n-1}) \ge n+2$, the reader should referto[3]. It is trivial that $*(K_{2n-1,2n-1}) \le *(K_{2n,2n})$. Let $V(K_{2n,2n}) = \{a_1,\ldots,a_n,b_1,\ldots,b_n\} \cup \{c_1,\ldots,c_n,d_1,\ldots,d_n\}$. For every k, $1 \le k \le n$, we define

$$F_k = \{a_k c_i, b_k d_i, a_i d_k, b_i c_k \mid 1 \le i \le n, i \ne k\},$$
 and put

$$F_{n+1} = \{a_i c_i, a_i d_i \mid 1 \le i \le n\}, \text{ and}$$

$$F_{n+2} = \{b_i c_i, b_i d_i \mid 1 \le i \le n\} \quad (\text{Fig. 6}).$$

Then $K_{2n,2n} = F_1 \cup F_2 \cup \dots \cup F_{n+2}$. Consequently, *($K_{2n,2n}$) $\leq n+2$.

Figure 6. F₂ amd F₅ of K_{8,8}.

We write $d_G(v)$ for the degree of vertex v in G. A graph G is called an <u>r-regular graph</u> if $d_G(x)=r$ for all vertices x.

Theorem 3. Let G be a 2r-regular graph. Then
$$*(G) \ge r+1$$

with the equality if and only if G can be decomposed into r+l edge-disjoint $K_{1,r}$ -factors.

Proof Since $a(G) \ge |E(G)|/(|V(G)|-1) > r$, we have *(G) $\ge a(G) \ge r+1$. Suppose *(G)=r+1. Then G can be decomposed into r+1 star-forests H_1 , H_2 , ..., H_{r+1} . We denote by n_i (t) the number of components K_1 , t in H_i . Put p=|V(G)| and $x_i=|V(G)|$ -|V(H)|. Then we have

$$p = x_{k} + \sum_{j=1}^{2r} (j+1) n_{k}(j) \quad \text{for all } k, \ 1 \le k \le r+1$$

$$|E(H_{k})| = \sum_{j \ge 1} j \ n_{k}(j) = p - (x_{k} + \sum_{j \ge 1} n_{k}(j)), \text{ and }$$

$$\sum_{j \ge 1} d_{G}(x) = 2pr = 2|E(G)| = 2 \sum_{k=1}^{r+1} |E(H_{k})|$$

$$= 2p(r+1) - 2 \sum_{k=1}^{r+1} \{x_{k} + \sum_{j \ge 1} n_{k}(j)\}$$

Therefore

$$p = \sum_{k=1}^{r+1} \left\{ x_k + \sum_{j \ge 1} n_k(j) \right\}.$$
 (2)

The vertex of $K_{1,t}$ ($t \ge 2$) with degree t is called the center of $K_{1,t}$. It follows that every vertex v of $K_{1,j}$ (j < r) in H_1 must be the center of a component $K_{1,t}$ ($t \ge 2$) in some H_k ($k \ge 2$), since otherwise $2r = d_G(v) = d_{H_1}(v) + \sum\limits_{k \ge 2} d_{H_k}(v) < r + r$, a contradiction.

Similarly, every end vertex of $K_{1,j}$ ($j \ge r$) in H_1 is contained in the center of a component in some H_k ($k \ge 2$). Hence

$$x_{1} + \sum_{j=1}^{r-1} (j+1)n_{1}(j) + \sum_{j=r}^{2r} jn_{1}(j) \leq \sum_{k=2}^{r+1} (\sum_{t\geq 2} n_{k}(t))$$
 (3)

By substituting (3) into (2), we obtain

$$p = x_1 + \sum_{j \ge 1}^{n} n_1(j) + \sum_{k=2}^{r+1} x_k + \sum_{j \ge 2}^{r+1} (\sum_{j \ge 2}^{n} n_k(j)) + \sum_{k=2}^{r+1} n_k(1)$$

$$\geq x_1 + \sum_{j \ge 1}^{n} n_1(j) + \sum_{k=2}^{r+1} x_k + x_1 + \sum_{j=1}^{r-1} (j+1)n_1(j) + \sum_{j=r}^{r} jn_1(j)$$

$$+ \sum_{k=2}^{r+1} n_k(1)$$

$$= x_{1} + \sum_{j\geq 1}^{r} (j+1)n_{1}(j) + \sum_{j=1}^{r-1} n_{1}(j) + \sum_{k=2}^{r+1} x_{k} + x_{1} + \sum_{k=2}^{r+1} n_{k}(1)$$

$$= p + \sum_{j=1}^{r-1} n_{1}(j) + \sum_{k=2}^{r+1} x_{k} + x_{1} + \sum_{k=2}^{r+1} n_{k}(1). \quad (by (1))$$

Hence $n_1(j)=0$ for every j, $1 \le j \le r-1$, and $x_1=\ldots=x_{r+1}=0$. We can similarly show that $n_k(j)=0$ for all k, j $(k \ge 2$ and $j \le r-1)$. Therefore, each component of H_k is K_1 , t $(t \ge r)$, and H_k is a spanning subgraph of G. If $d_H(v) \ge r+1$ for some $k \ge 1$ and $v \in V(G)$, then $2r=d_G(v)=\sum\limits_{t\ge 1}d_H(v)\ge r+1+r=2r+1$, a contradiction. Consequently, each H_k has no K_1 , t for $t \ge r+1$, and we conclude that every H_k is a K_1 , r-factor of G. Hence the proof is complete. Π

The next theorem can be proved by the same argument in the proof of Theorem 3.

Theorem 4. Let G be a (2r+1)-regular graph. Then $*(G) \ge r+2$.

By Theorems 3 and 4, we have

Note that the existence of a 5-regular graph G_1 with $*(G_1)=5$ and of a 6-regular graph G_2 with $*(G_2)=6$ is unknown.

A <u>triagle cluster</u> is a connected graph whose edges partition into disjoint triangles with the property that any two triangles have at most one vertex in common and if such a vertex exists, then it is a cut vertex of the cluster (Fig. 7).

Figure 7. A triangle cluster.

Proposition 2. (Fukuda [5]) Let TC be a triangle cluster. Then

*(TC) =
$$\begin{cases} 2 & \text{if every triangle has a vertex of degree 2} \\ 3 & \text{otherwise.} \end{cases}$$

References

- [1] J. Akiyama, Factorization and linear arboricity of graphs, Doctor thesis, Science University of Tokyo, (1982).
- [2] J. Akiyama and M. Kano, Path factors of graphs, Graphs and Applications (Proc. of the first Colorado symposium of graph theory, Wiley) to appear.
- [3] Y. Egawa, T. Fukuda, S. Nagoya and M. Urabe, A decomposition of complete bipartite graphs into edge-disjoint subgraphs with star components, to appear.
- [4] H. Enomoto, The linear arboricity of 5-regular graphs, to
- [5] T. Fukuda,修士論立, 電通大情報数理工学科 (1984)、
- [6] C. Nash-William, Decomposition of finite graphs into forests J. London Math. Soc. 39 (1964) 12.
- [7] C. Nash-William, Edge-disjoint spanning trees of finite graphs, J. London Math. Sco. 36 (1961) 445-450.