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On the Resolution of Hypersurface Singularities

By Mutsuc OKA ) gﬁing
RIS AT STEY BERE

§1. Introduction.

Let F(zl, . ) be a germ of an analytic {function at the origin

" Znel
such that f(0) :AO and f has an isolated critical point at the origin.
We assume that f has a non-degenerate Newton boundary. Let V be a germ of
hypersurface f_l(O) at the origin. We will study the resolution of V. Let
r'*(f) be the dual Newton diagram and let I* be a simplicial subdivision.
It is well-known that there is a canonical resolution/ T : ¥—>V which is
associated with I*. ([51]). However the process to get £* from T*(f)
is not unique and a "bad" £* produces unnecessary exceptional divisors.

The purpose of this paper ié to study the topology of the exceptional
divisors using a "canonical" subdivision I*. For example, if n = 2, there
is a "unique" subdivision r* éo that the resolution graph is obtained by

a canonical surgery from S, '*(f) (=2 skeleton of r*(f) which we consider

2
as a graph by a plane section). Namely we have:

(I). For a vertex P of 52 r™f) which corresponds to a compact two
dimensional face - A(P) of the Newton boundary F(f)? there is an exceptional
divisor E(P) which is a Riemann surface of genus g(é). Here kg(P) is
equal to the number of integral points of A(P) - 3A(P).

(II). A line segement ﬁﬁv of S, I'*(f) is replaced by r(P, Q) + 1

copies of a chain of rational curves

T T T
o ..
P \. ._ o -—./ Q
M -m, -My
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where r(P, Q) is the number of integral points on = - 33,

g = A(P)na(Q). The continuous fraction m - =

oL
m
is canonically associated to P and Q. (See Theorem (6.1).)
This paper consists of the following sections.
§2. Newton boundary and the dual Newton diagram.
§3. Canonical simplicial subdivision.
§4. The resolution of V.
§5. Topology of the exceptional divisors.
§6. The surface singularity.

§7. Three dimensional singularity.

§2. Newton boundary and the dual Newton diagram.

Let f(z, ..o, 2, ) =2 asz be the Taylor expansion of f where
v, v
7 = zy 1 . anfl as usual. Recall that the Newton boundary T(f) 1is the

union of compact faces of F+(f) where P+(f) is the convex hull in Rn+l

n+1

of the union of the subsets v + (RY) for v such that av £ O.

I (f) has a natural polyhedral decomposition. For any closed face A  (of

any dimension) of T (f), we associate the polynomial fA (z) = geAavzv
We say that f 1is non-degenerate on A if '—afA'»z e = afa . 0
39z 9z
. 1 n+l
N+l

has no solution in (€*) "~. We say that f 'is non-degenerate if f is

non-degenerate on any face A of T(f). ([61]1, [14D.



[p 2% IR
é.},f..

Let N* be the space of positive vectors of the dual space of Rn+l.

1

a
For any vector a = (§ ) of N+, we associate the linear function a(x) =

an+l

Ta.x, on 1‘+(f). Let d(a) be the minimum value of a on r+(f) and

it
let aA(a) = {x¢ fﬁ(f); a(x) = d(a)} . We introduce an eguivalent relation
~ on N° by a~b if and only a(a) = A (b). For any face A of

dimension k of I‘+(f), there is an equivalence class A* of dimension
(n+l-k) which is defined by A* ={aeN' ; Aa) = A} . The collection
of A* gives a polyhedral decomposition r*(f;.gﬁ,N+ which we,céll the dual
Newton diagram of f. We identify T *(f) and its projection on the hyperplane
L = {xl ¥ oeee + X =1}. Thus a vertex P of r *(f) 1is a primitive
integral vector suﬁh that A(P) is of dimension n. If P ié strictly
positive, i.e. each coordinate of P is positive, A (P) is a compact
face of T(f).

Example (2.1). Let f(x,y,z) = s ya + z4 + xyz. Then T(f)
has three faces of maximal dimension and *(f) is the following;

U

OR P :t(z, l, l), 5§(1,0,0)
./ . Q =%1, 2, 1), T=10.1,0)
O/////P Q‘\\\‘o R=Y1, 1, 2), U=(0,9,1)
S T

Figure (2.1)

For any P eN', we define the support of P by A (P)*.
We say a polyhedral subdivision * of r*(f) is a simplicial

subdivision if the following conditions are satisfied. ([ 5 1).



(i) z* is a subdivision by the cones over the simplexes o = (Pl”"’Pk+l)
where Pl,...,Pk+l are primitive vectors and they can be extended to a basis
of Zn+l. We identify the cone over a simplex ¢ and o itself. In particular,

any n-simplex o = (Pj,...,P. ) with P, = "(p, .,...,p_ ;) satisfies
R 9

: n+l,i
det (pi .) = +1. The intersection of two simplexes is a simplex.
H

(ii) For any n-simplex as above, there exists a permutation 1 of {1,..., n+l}
such that

(2.2) (P (1)) DMP5)) D DAP_ 1y

(1
Remark (2.3). The condition (2.2) can be replaced by a weaker condition

but (2.2) makes the intersection of exceptional divisors easier to be unders-

tood. (See Lemma (4.7).)

§3. Canonical simplicial subdivision.

t

Let Pi = (pl..,..., p .) (i=l,..., k) be given integral vectors
: ; \

of N'. We define a non-negative integer det(Pl,...,Pk) by the greatest

common divisor of all k x k minors of the matrix (pj ;) and we call
- b

det(Pl,...,P ) the determinant of P P

170+ Pp-
i j) be a unimodular matrix. Then we have
det'(Pl,..., P) = det (APy,..., AP

Lemma (3.1).7Le£ A= (a

K
The proof is an easy exercise of linear algebra.

Lemma (3.2). Let Pireees Pk) be given integral vectors such that

det (Pl""’ Pk) =11. Then there exist intégral‘vcetors Pk+l""’ Pn+l such

that det (Py,..., P_ ;) = &l.

1

P:oof. Let M be the subgroup of y 3 generated by 'Pl,..., Pk' Then

by the structure theorem of a fihitely generated abelian group, there is a



subgroup M' of rank k such that MCM' and ‘M' 1is a direct summand of

Zn+l. Then the assumption that det(Pl, ceey Pk) = 1 'clearly implies M' = M,

(I). Division of a line segment.

i 1
P1 a; integra
Let P =" and Q =|: be given distinct primititgv;gg{g;; in N',

pn+l qn+l

Lemma (3.3). let c = det(P, Q).

(i) Any integral vector P

| On the segment PQ such that det(P, P =1

can be written as
o}

P = fqg4+-Lp

1 C c
for some integer 2 0.

(ii) There exists a unigue c, such that O¢ cy<cC.

1
(iii) P, is necessarily primitive. 1
Proof. By Lemmas (3.1) and (3.2), we may assume that Q = ?
0
Then ¢ is nothing but g.c.d(pz, ey pn+l). Let Pl = 3P+ pQ(X 20, p 20)
and assume that P, is an integral and P, satisfies det (P, Pl) =1. As
det (P, Pl) = p.det(P,Q) = pc = 1, we have p =<% . As “Pl is integral,
c
APy € z for i=2, ..., ntl and this implies that ) :-El for some Cy2 0
and Cipy *+ 1 =0 modulo c. The last equation has a unigue solution in
E)écl <c as g.c.d(pl, c) = g.c.d(pl, cees pn+l) = 1. The assertion (iii)
is immediate from the assumption det(P, Pl) = 1. Note that ¢, = 0 if

and only if ¢ = 1.

Remark (3.4). By the abuse of language, we say that Pl =AP +1Q is

on the line segment PQ 'if the normalized vector P! = —2—p . H Q is

1 7+ A +H
> 0.

on PQ. This is the case if and only if A 2 0, u
Definition (3.5). Let PQ be a line segment of S,I*(f). Here Skr*(f) is

the k-skeleton of [Y(f). We say that
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the primitive vectors Pl’ ceey Pk on PQ are the canonical primitive sequences

if the following is satisfied.

(i) If c = det(P,Q) =1, k=1 and P, =P+ Q.
(ii) If c> 1, there are non-negative integers c = Cg> C1> +-- >C = 1, Crel = 0

such that

C.
1 i+l .
= Q + P. (i=0, ..., k)
i+l C4 C; i ’ ’

where PO = P‘ and Pk+l = Q.

The condition (i) is to satisfy (2.2).

Lemma (3.6). Assume that ¢ = det(P, Q)>1 and let P., ..., P, be the

1’ k
canonical primitive sequence of the line segment PQ. Let c; (i=0, ..., k+l)

: €i-1 * Cial
be as in (3.5) and let m;, = ——————= (i =1, ..., k). Then m, is
i c; i

an integer such that m; 2 2 and the continuous fraction

1
m -
i mo-
_ 4
M
. C
is equal to o -
: 1
Pui ‘
Ps + 1 + Ps o
Let Pi =] . Then ms is equal to 1,1-1 1,1+l for any j =1, ..., n+l.
Jri
LPn+l,i
Proof. We prove the assertion by the induction on k. Assume that k = 1.
1 1 c+0 _ .

Then Pl =3 Q + E-P. Thus m = EI— =c. As ¢ pj,l = qj + pj, we have

Py + Q. _ c C
c=—1 1 pssume that k> 1. Then as Pl = %-+‘—1-P and P2 = %— +AEZ Pl’

Pin c 1 A

1 1 €2 C+C2

we have that det(P, Pz) :-El det(P, Q + CZPl) :451(1 +-E—) det(P,Q) = ) =m .
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<

Thus my is an integer and m

implies that P

1 1
is the canonical primitive sequence for PP

> 2. We can write P, =P/ m o+ P2/ ml‘ This

o Now we have

cl/02 = C/Cl’ completing the proof of the

1

ml _ % ' _C+ C2 o1
2. - c

first assertion.The second assertion is obvious from the-equality:

(e 1 *C541 WPy = e3Py + Pyy)- |
Remark (3.7). Lemma (3.6) 1is true for every primitive sequence Pl,...,

P onP Q@ such that det (P, )=1 fori=1,..., s¢1 (P

s = P and PS+

-1 Py 0
Q). exept that m; > 1 in this case. For example, [ml+l, 1, m,
[ml,...,mk]. Here we write r.- i [rl,..., r,] for brevity's

1 r2—. t

1

+ l’m3’f"7mk1

S
. I,
sake. Note that if c = det (P,@) > 1, a primitive sequence Ploeees Py s
canonical if and only if m, > 2 for each i, by the second expression of
the, _
ms . In particular, if Pl""’ Pk is V' canonical primitive sequence of P Q,

Pys+++» Py 1s the canonical primitive sequence of TP. The ahbiguity of the
continuous fraction expression [rl,...;,rs] for T, 2 1 corresponds to the

existence of the exceptional curve of the first kind. (See §6.)

(II) Division of Sy M*(f).

Let € be a closed cell of dimension 2 with vertices P,..., S. There
is no unique way to divide € into simplexes with determinant 1. We first
take canoniéal primitive sequence on the boundaries and divide £ into
triangles without adding any other vertices. The determinant need not be

equal to one.



Lemma (3.8). Let A  be a triangle with primitive integral vectors P, Q,
R as vertices. Let c = det(P,Q,R) and assume that c > 1 and det(P,Q) =

det(P,R) = 1. Then there are unique c, and d; such that

(i) © <'cl < ¢ and 0 < dy < c. (11) The point defmed by Tl —% R +
c; d i =1
-C—-Q sl P is an integral point which satisfies det(P,Q,Tl). (iii) T1 divide

A into three (two if dl = 0) triangles with det(P,Q,Tl) =1, det(P,Tl, R)

= Cy and det(Q, T R) = d.
Proof By Lemma (3 1) and Lemma (3.2), we may assume that P = t(l,O,...,D),
(O,l,O‘,...,Oy) and R = (rl’IZ’rB’O’ ..,0). Thus c = T3. Tl is an integral
point if and only if Cp + Ty = 0, dl = 0 modulo c. Clearly this has a

Iy =
unigue solution in 0O < ¢y < ¢ and 0 < dl < c. If c; = g, Tl is on
PR and we have a contradiction 1 = det(P,R) = ¢ det(P,Tl). The other asser-
tions are obvious.
Note that det(P, Tl) =1 by det(P, Q, Tl) = 1. Thus we can do the same

operation on the triangle Al = A(P,Tl,R) if c, > 1. By the induction, we

get

Lemma (3.9). Assume that c > 1. There exists unigue integers Kk, Cls =ees
pk and dl""’ dk such that c= =Cy> € > >ck-l and O <d < Ci_1-
and T, = R/c; g+ c;T, j/c. g + diP/e; /(1 =1,..., k) are integral pomts

with det (P,T. ,,T. ) = 1 where T Q. (See Figure (3.10).)

i-1?

0~

Figure (3.10).

We say that Aiz (P,T Ti) (i=1,...,k+1) are the canonical s_impliéial

i-17
subdivision of the triangle (P,Q,R) at P.

(T,; =R). In the case c = 1, we take



N
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one vertex T =Q + R if AQ) & AR) and A(Q) » A(R). Otherwise we do not
need any‘subdivision.

We return to the subdivision of % . Take any triangle A(P',Q',R'). If
det(P',Q') # 1, we take canonical primitive sequences on P'Q' , say Pl""’ Pk’,
and divide A4 (P',Q',R") info k+l triangles with the property det(Pi’Pi+l,d)
< det(P',Q',R'). If det(P',Q') = 1 and A(P') and A(Q') are not compatible
with (2.2), we take one vertex Pl = P' + Q'. Thus we may assume that det(P',Q')
=1 and A(P') and A(Q') are compatible with (2.2).Then we do the same opera -

tion on P' R'. As the determinants of the triangles are monotone decreasing under
the above operation, after a finite number of operations we come to the situatior
of Lemma (3.8). Then we apply Lemma(3.85 and so on. Thus by the finite .operations
we can divide ¥ into simplicial triangles i.e. with determinant one and the
condition (2.2). By this argument, we can divide S5I*(f) into simplicial
triangles so that the restriction of the subdivision to the SZP*(f) is the
canonical one which is constructed in (3.5).

The subdivision of ["*(f) can be done by the inductive argument. Suppose
we have a simplicial sudivision of SmP*(f). First we divide Sm+lf*(f) into
simplexes with determinant not necessarily one without adding any vertex on
SH”*(f). Then the following Lemma plays the same role as abaove.

Lemma (3. 1 ). Let A be a simplex with vertices Py, ..., P, and

L

assume that det(Pl, ce., P ) =1 and c = det(Pl,..., Pm+1) > 1

irer Pogl

(i=2,..., m+l). Then there exists unigue integers c Cn such that

ICIRRRE
the vertex T defined by

T = clPl/c Foee. + CﬂFPm/C + Pm+ /c

1

is an integral point and 0 < c; <¢ for i £1 and ¢ >c, > 0. T divides

1



by
[y
&2

A into m+l simplexes with respective determinant Cis +ees Cp and 1.
The proof is completely parallel to that of Lemma (3.8). The details are

left for the reader. See also [5] for a further information.

§4. The resolution of V.

Let f be an analytic function with an isolated critical point at the
origin. We assume that f has a non-degenerate Newton boundary and let I¥
be a given simplicial subdivision of T *(f).

For any n-simplex g = (Pl, ..., P
1

) = (pij), we associate

(n+1) - dimensional Euclidean space Cgf

)

. 9 )

n+1 n+1

and holomorphic mapping m 1, —>¢C which is defined by

p. P P. .
i,1 i,2 i,n+1 . .
Z; =Yg 1 Yo :2 » ey Vg :n+l . By the abuse of the notation, we write
z= (y0 50 . Let X be the union of Cngl which are glued along the images
of Ty Let 7 : X > tn+l be the projection map and let V be the

n+l

closure of ¢ 'l(vf\(m*) It is well-known that T :V —> Vv is

a resolution of vV ([ 5 ]). (Mm=z2)

Let d; = d(Pi) and 4, = A(Pi) be as in §2. The ordering of Pio oo

is so chosen that

(4.1). A1>A2 D...)An+l
y ) n+l dj i
e define gAi(¥J,l’ . ycgn+l) = fAi( “0'(ycy))/ jia ¥f,j f It is easy’
to see that gAi is a function of .n+ 1 = i variables Yo 1410 **0 Yo nael -

If Pi is strictly positive, 9, is a polynomial. We can write
i

- 10 -



d d v ‘
1 n+1 i s ~ 7~ N+l
* = f . By the definition of VvV, VAC =
mx flyy )=y ) Yool Ty Oy 0 By i » VnCe
d .
{fG =0} and f Ogrr woor Gr oes yo,n+l) = gAi(yU’j+l, ey yc,n+l)'

Thus we have
(4.2). V afy, ;=0] # @ if and only if dimap 0.
Recall that. ——— S, T*(f) is the union of cells of TI*(f) whose

dimension is less than k + 1, and we call Sk I'*(f) the k - skeleton of

I*(f).
4.3)
Remarky™ The dimension of a cell decreases by 1 1if we consider the
section with the hyperplahe Xp 4 eee F X0 = 1.

~ n+l e N+l
Corollary (4.4). Assume that o 5 S T*(f) = @. Then VAC CCF) " .

Thus no exceptional divisor is in this chart.

~S

Ltet O be as abqve and let E(P;50 ) = Vf\{xj’i =0} = {(Ygqseees Xr,n+l”

_ _
Y% i =0 gAi(XJ,i+l’ . Xr,n+l) =0} . The smoothness of V and E(P;5 0)

in a neighborhood of 71'1(0) is easily derived from the non-degeneracy

assumption of the Newton boundary. By the definition of T, o, We have

(4.5). ﬂ&(E(Pi;CI)) ={0§ if and only if P, is strictly positive.

Now we study the glueing map between €771 L

and C Let . o

= (Pl’ ceey Pn+l) and T = (Ql, cee, Qn+l)‘ We can write
N+l
Q = 3il %in forany i=1, ..., n+l.
-l _ S : _
Then ygs= Tyom (y ) =m (yT ) and o~ T is the matrix A = (Aij).

0 ST

Namely we have
Aj
—_ 9
(4.6). %, %

Ai,m-l

T onel (i=1, ..., n+l) .
’

y

— P

?

In particular, if Pj = Qi we have

- 11 -



( 0 N
A = 0
-1 - J
0
et A" = ( Ka'B)afjani . Then p' is a ugimpdular matrix and E(Qi, 7) |
~
and E(Pj; o) are glued by y% = (yT,l’ ceey O, i, yf,n+l) N yé - (y% W'

Thus for each P e £ with dimA(P)> 0, the union of E(P; ) for simplexes
g such that P ¢ ¢ 1is a divisor of 'V "and we denote it by E(P). E(P)
is a compact exceptional divisor if and only if P 1is strictly positive. If
P is not strictly positive, q(E(P)) # {O,}' The topology of E(P) will
be studied in the following sections.

We say that vertices Pl’ veay Pk in g* are adjacent if there is
an n-simplex g of ¥ ‘such that Pi‘é c for i=1, ..., k.

The following criterion for the ihterseotion is important.

Lemma (4.7). Let P P, be mutually distinct vertices of gs*

17 w000 Py
with dimA(P;) >0 for i =1, ..., k. Then the intersection E(P)N) ... NE(P)
is non-empty if and only if Pl’ ceey Pk ' are adjacent. If P., ..

K 1 k

are adjacent and if £:§ A(P;) is compact, EPD) A - [\E(Pk) is a compact

., P

¢ manifold of dimension n - k.

Proof. fE(Pi)/\ mi;l £ @ if and only if g;aPi. _Thus the first assertion
is obvious by (2.2). Let o = (Ql, ceny Qn+l) be a simplex such that

(*)» A(Ql) D A(Qz) Do D A(Qn+l)

and Pi:Qyi for V]<Vp< cer < vy

n+l

In EO , E(Pi;O ) is defined by

- 12 -



291
by i

E(Pi;o ) = { yg ’ yO,Vl = 0, gA(QVi) (y07Vi+l’ ey y’n+l) =0 }-

Thus E(P 50 ) +or AE(PLS o) =

g OyVs

R i 0 for isl, ..., k and 9y, (yo’vk+l’ o0 Yonel) = 04

which is clearly smooth of dimension n - k. It is compact because
'E(Pl)(\.../\E(Pk) is a closed subspace of a compact divisor E(Pk)‘

The divisor E(P) with dimA(P) = 1 1is special by the following reason.

Lemma (4.8). Assume that dim(P) = 1. Then E(P) has r(A(P)) + 1 \connected
components where Tr(A(P)) 1is the number of integral points on A(P) - 34 (P).

Proof. We can find a simplex g = (Pl, e Pn+l) such that Pn =P

and A(Pn+l) is one of the end points a'A(P). Let fA(P)(Z) =

T+l Vi
z

a;z where are integral points of A(P) in the
i=0

vo, V1, ccevpg

order and r = r(A(P)). E(Pjs ) is definedby y =0 -and
L o

’

gA(Pn)(yo,n+1) = 0. As the number of the integral points on A(P) and on

S(gA(Pn)) ( = th¢ support of gA(Pn))) are equal, we may assume that

T+1
Thus by the non-degeneracy condition,

B i
gA(Pn)(yO,ml) = 81Y0 n+l

i=0

gA(Ph) (yc,n+l) = 0 is the disjoint union of r + 1 planes

L( o)i = {yo,n+1 = Ei and yo,n = 0} where & i £0 for i=1, ..., r+l.
let T = (Ql, ey Qn+l) be a simplex such that A(Ql) ... j)A(Qn+l)
and Q; =P for some i and A(Qi+l) = ... = A(Qn+l) = one point. We

can find a simplex G as above such that Ql = Pi , Q2 = Pi y eeey Qo = P_.

1 > i n
Watching the glueing map carefully, we can see that E(P; 1) C E(P; 0).

- 13 -



Do
]
(%]

Thus E(P) 1is covered by E(P; &) where § 1is of the above type. Let

g' = (P, ... PH+1) be another simplex with P! = P. Then Ygr and
Yo are identified through the matrix
0+ )
A
o
K i ¥ 1,*
{0 BRI 0,1
The sign + 1 means whether PH+L is on the same side of Pn+l or not

|

with respect to A(P)*. Thus the component Yoi nsl = gi is glued with
3

ALl Al,n-l1 _A1,n
_ _ ,N— ,N+1
the component Yenel = ;i BY Y1 =Vl - el Yt nel

9 e ey

A X A
n-1,1 n-1l,n-1 n-1,n+1 .
R y(}_,,n_l yGJ,n+l . Thus the union of

y , - 5, for each i make a connected component.

Remark (4.9). The above compdnents are birationally equivalent to Pnfl

§5. Topology of the exceptional divisors.
Let g(ul, ceby un) be a polynomial with support S(g). We say that

g is globally non-degenerate (= O-non-degenerate in {19 J]) if

39, 29,
gA(u) ZSL—JT (U) = ... = éun

(u) = 0 has no solution in (€*)" for

any face A ‘of S(g). (['5 1). In [15], we have proved

Theoiem (5.1). Let ‘g be a‘globaliy non-degenerate polynomial. Then
(1) x(e*)" - g_l(O)) = (-1)"nt n-dim. volume S(g) | ‘
(ii) If dim S(g) Z 3, %1((@*)” - g_l(O)) is a free abelian group of rank

n+ 1.

- 14 -



By the additivity of the Euler characteristics and (i), we get
Corollary (5.2). ([6], [19]). Let g be as above and let V* =
gl@ A @H". Then  X(v*) = (<1)™!nt n-dim. volume S(g).
In this section, we study the topology of exceptional divisors of
e V—> V which is constructed in §4. Let 76":(Pl,..., Pk+l) be an (unordered)
k-simplex of I*. We define E(¢) =ME(P;) and E(@)* = E@) - U{EW@);
Q# Ppy..e, Pk+l}' We also use the notation E(9) = E(Pl,..;,Pk+l) etc.

Define A(¢) by the intersection of A(Pi). For a fixed strictly positive

vertex P, the collection of E(P, P P

17 k)* gives a canonical stratifica-

tion of E(P) where P and P , P, are adjacent. Let A be a face of

170 k
A(P) of dimension (n - k) and let a(A;P) be the number of k-simplexes
= (P, Pl”"’Pk) of £* on the closure ( A¥.

The main result of this section is

Theorem (5.3). (i) Assume that G’:(P,Pl,...,Pk) be a k-simplex of XI*.

The Euler characteristic ')((E(G’)*) is non-zero if and only if dim ()
n-k. Let 7=(Q,....,Q ) bean n-simplex such that {P,Pl,...,Pk} =

{Ql,..., Qk+l}. Then A(E(O)* ) = (—1)”’k+l

(n=k) ! volume S(g) oy (Yy iosees¥g nyp)):
(ii) The isomorphism class of E(@)* depends only on A(6) if dim A(o) =

n-k. It does notfdepend on the particular choice of I¥* either.

(iii) Let A be a (n-k)-dimensional face of A(P) and let X(A;P) be

X(E(6)*) where o is a k-simplex on the closure (A¥) with Pe < . Then

A
S ae).

Corollary (5.4). (i) The Euler characteristic of the top dimensional

X(EMP)) = T a(a;P) X(A;P) where the sum is taken for every fac

stratum E(P)* is (_l)n+l(n+1)-dim. volume C(O, A(P?%eré C(0,A(P)) is
/d(P)

the cone of  A(P) with the origin.
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(i1) The birational class of the exceptional divisor E(P) depends only
on A(P). If dimA(P) = r<n, there exists a compact complex manifold
M(P) of dimension T - 1 such that E(P) is birationally equivalent to

=T mep).

P
The proof of Theorem (5.3) and Corollary (5.4) occupies the rest of
of this section. |

Let ©'= (P, ..., P ) be a simplex with A(Pl) >... )A(Pn+l). 'Qy

n+l
the definition , ﬁ:::::::l E(Pi yoeeey Py )* c_t%fl and E(Pi yoeees Py )*
1 k 1 k
is defined by y_. = ... =y.. =0 and g (y. ceay Y ) =0
v, 0,4, A(Pik) Uglk+l’ » Jo,n+l

with ye i 20 for j# il, ceey ik' Here we have assumed that il<:i2 <ouo <ik.
’ . ;

The polynomial is defined by fyp ( p(yg)) 41Ty, 1)
® Polynomial Gyp, ) S GG DY Ty )t e We D AL Y1 O, )
~ k

k

Thus it is easy to see that Ip(p ) is globally non-degenerate because f 1is
i
k

non-degenerate on A(Pi ). (Compare with Lemma (5.2) of [15 ]1). As
k

dimS(gA(P )) = dimA(Pi ), the assertion (i) of Theorem (5.3) is immediate
i k
k

from Corollary (5.2). Assume that P =.Pl

) = 0 where fA(P)( Ts (ygs ) =

and dimA(P) = n. Then E(P)*

Is defined by Gy py(Ygy 20 «+es Yp 4

yd(Pl>, P )

o1 Voo nes gA(P)(y632 s enay %y,n+l> . Thus we have the equalities

(n+1)! volume C(0,A(P)) = (n+l)! volume C(O,S(ﬂ}?fA(P)))

d(P)
n+l

(n+1)! volume S(gA(P)) .

n! volume S(gA(P)). d(P)
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This proves the assertion (i) of Corollary (5.4).
~Let ¥ be another simplicial subdivision of  [*(f) and let
x' o V' = V pe the associated resolution. We denote the exceptional divisors

in z' V= Vv by E'(P), E'(®) etc. Let G = (P, ..., P ) be

a simplex of S and let o' = (P}, ..., P! ) be a simplex of >*'. We

assume that

(5.5). A(Pl) D.e. DAMP_ )

n+l v
-and A(Pk) = L\.(Pk)

AP > ... SAP! )

n+l
and dimA(Pk) =n+1-k for some k.
E(Pl, cees Pk) is defined in EZfl by

yo;l 2 ... = )ﬁ;k = Ovand gAk(yo’,k+l’ ven, yo',n+l) =0
d(P.)

where 4 = A(P.) and fAk( o (yg)) =Wy¢,il ) .

gAk%,ml' o Yeonel

E'(P!, ..., P)) is defined in €T%! by

) =0

Yor,1 = +++ =Yg =0 and gék(yGJ’k+l, s Yo nal

d(P' ;)

o1 gAk(yr' yK+17 0 yc-',n+l) :

where fAk( Ty (v = Ty

By the assumption that A(P ) = A(P}) and dimA(P,) =n+1-k, Z-submodules
generated by Pl’."" Pk and Pi, ceey P& are equal and they are equal

to the submodules generated by the integral points g Therefore the matrix
1 closure(Aﬁ).
O~ .Y can be written as

/k\
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N+l k n+l-k

where  /\ ;(1=1,2) arle unimodular. Write G~ as Cg x T and

Yo = (yl, y2) where yle [Ef_“ and yzeﬂln;_l—k - Yy is the coordinate of the ;
subspace tl:r;fl_k where E(Pl’ cees Pk) are defined by gAk(yz) =0 .
Respectively we write Cgf,"l as IDI:_,X G:n;%_k and Yor = (yi , yé). Now we
define a birational mapping T A — ltr;fl'k by 'y, = (yé)/\2

h, o

We will show that 7[/L inducés ‘a desired biholomorphic mapping from E'(P!, ..., P"()*

2

to E(F’l, ceey Pk)*‘ By the definition of A , we have Yo = (yo,)A. In

particular, vy, =y, A2. Thus we have fAk(yu-{\f) = fAk‘( 7(0.,(yd./)) which

implies that

A2 nel bt
t —_ 1 1
gAk(y2 ) = gAk(yz) . il*-k‘ﬂ (yo-’,i) for some o(i PERTRY o(n+l€ y/4

The last equality says that ][/! (E' (P!, ..., Pf()*) = E(Pl’ ceey Pk)*. This
o T2

completes the ;‘JI‘OOf; of the assertion (ii) of Theorem (5.3). The assertion (i)
of Theorem (5.3) is immediate from (ii) and the additivity of the Euler
characteristics. -

To prove (ii) of Corollary (5.4), we take a strictly positive vertex P
such that dimA(P) =t and O<r<n. Let o = (Pl’ ee.y, P_ ) be a\

n+l

simplex with Pn—

rap =P oand AP Do DA ) . E(P,0) s the
product  Cq x {E(P, ..., P rl) 0 ﬂ:':f'l}. Thus we can take.
E(Pl’ Jel, Pn—r+l) as M(P). The isomorphism E(P;0-)— ﬂlg—r)( (E(Pl, ceey Pn—r+l)/\
ngl) extends to a deéired birational mapping. .This cpmpletes the proof.

Corollary (5.6). Let P be a strictly positive vertex with dimA(P) = 1.

n-1

Then each component is birationally equivalent to P and the Euler

- 18 -



»o
M
8.5

characteristic 1is equal to a, = the number of (n-1)- simplexes ¥ =
(Pl""’ Pn) such that P_ = P and A(Pl) > )A(Pn).

Remark (5.7). Two simplexes with the same vertices are counted once.

§6. The surface singularity.
go0d In this section, we study the case n = 2 in detail. Let T7C: V —V be
’ %ﬁéolution of V which is ’constructed in §4. Let Ei (i=1,..., k) be the irre-
ducible components of %‘1(0). The resolution graph f“( is defined in the fol-
lowing way. For any Ei , we associate a vertex vy with weight my which is the
self-intersection number of Ei' When Ei is not a rational curve, we also put the
genus g; of Ei to Vi If EiﬂEj £ 8, Vi‘ and Vj are joined by a line segment.
A lot of information about the resolution is: derived from this weighted
graph ™ . ([131,[4], (31, [71.) |

The 2-skeleton 32 ™(f) can be expressed by a graph through a hyperplane
section. (See Figure (2.1) in §2.) We will show that [ is obtained from
52 [*(f) by a canonical surgery. For a 25dimensionél face A of [(f), we define
an integer g(A) by thfe number of the integral points on A -93A. Similarly for -
a l-dimensional face = of [(f), we define r(E) by the number of integral points
on = -)2. For any line segment PQ of [*(f), r(P,Q) is defined by r(A) where
A* is the interior of PQ. Our main result in this section is

Theorem (6.1). Let 7[: V —> V be the resolution associated with S*.
Then we have V
(i) If P 1is strictly positive and dim A(P) = 2, E(P) has genus g(A(P)).
(ii) If P is strictly positive and dim A(P) = 1, E(P) is rT@(P))+1 disjoint

copies of rational curves.

Kihfthe sense of (B.S)J

Assume that s * is canonical“ Then

(iii) the resolution graph is obtained by the following surgery of Sz(r*(f)).
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(iv)

Let PQ be\a line segment of S,T*(f) and assume that P is strictly
positive. Let c = det(P, Q. If c=1, we put (P, Qj v 1 copies of
rational curves with self-intersection - 1 between P and Q- as
foilows:

: .-
P.\i/'Q or 'P'<: (Q is not strictly

N . positive)
~l
| | 1 1
If e>1, let c, be the unigue integer such that Pl = E-Q + - P
is integral and 0<iCl<fC. Let %—— = [ml, ceny mk]. We insert
! My M M
r(P, q) + 1 copies of a chain of rational curves. —e+——e—---- «—

between P and Q. Those vertices which are not strictly positive are
omitted after the surgery from the resolution graph.

Let P be a strictly positiVe vertex with dimA(P) = 2. Let

Q) ey QS be the vertices of >* which are adjacent to P and

P 93
dima(Q.) = 1. Let P = (p2> and Q. = (q2i . Then the self-intersection
. Pz 1 \G3y , '

number of E(P) is

S

>’
(r(P, Qi) + l)ql,i

Ci=1

'Dl

Before the proof of Theorem (6.1), we explain the theorem by two examples.

Example (6.2). Let f(z z, 223 + 235 . Then

1 23 =7

S,[™(f) 1is as follows. ( o implies "not strictly positive.")

P =t15, 10, 6), a=t(3,0,0)

R = %0,1,0), S = %(0,0,1)



It is easy to see that g(A(P)) = 0. det(P, Q) =

1 1 15 8 1 0 (10
{O. t 5 lOJ [5} As det(P, R) =3 and R' = 3 [ l} = ) =7
o) 6 3 0 4

0
1
N+~

15
we have R l-. As det(P, S) =5 and S' =-l +2l 10| = ,
o2 2 5 s 6
we have 2 = (2, 2, 2, 2. As ©(P, Q) = (P, R) = (P, 9) =
EP2 = - §—1¥%%—i—£2 = - 2. Thus the resolution graph is
2 2 2 2 -2 2 =2

o1 Zg) = 213 + 224 + 234 + 22524 . [(f) has

three 2-dimensional faces with genus O. Szl’*(f) is:

~ Example (6.3). Let F(zl, z

, . p=Y%2,1,1), s= t(1,0,0)
. P /\ . Q =t(49513)1 T-: t(O,l,O)

',/ —-.\ R =t(4’3’5) , U= t(0701l)
s o~ o T '

(1) det(P, S) =1, (P, S)

1}
W
_...
J
[
wn
3
0]

add 4 vertices of self-intersection
number -1 to P.

(2) det(P, Q) =

|
N
H
~
o
[ »]
A
1
o
p
)]

-2
‘add —e¢— between P and Q.

(3) det(@, T) =1, r(Q, T) = 0. Thus we add —e to Q.
1, 1 L -8
(4) det(q, R) =8, r(Q, R) =0. As §Q+5R=[1|, weadd ——
l .

between Q and R. PR and RU are similar with PQ and QT.
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E(P)2 __ 4 - 3 ; >3+3  _ _ 9

E(Q)2 - _ 2% - -2

E(R)2 - - L*_Z'."_l_‘_ - -2

Thus the resolution graph is 2
y 2N

- -3

O~ .
>

which is blown down to

/\

-4 4

- -5

Now we are ready to prove Theorem (6.1). Let P bea strictly positive
vertex of X* with dimA(P) = 1. Then P 1is on the line éégment A(P)*.
Thus there are exactly two vertices Py» P{ on the closure of A(P)* which
are adjacent fo P. '

A(P)*

By Corollary (5.6), we have X(E(P)) = (r(A(P)) + 1) . 2. As E(P) has

r(A(P) + 1) components which are birationally equivalent, each component
‘ 1

must be a rational curve P . We will see this directly.

let o= (P, P, P) and ¢! = (P}, P, P}) be two simplexes where

2

P2 and Pé are taken on the same side with respect to A(P)* for brevity's
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3 . .
sake. In Cg, E(P;6) is defined by y. 5 =0 and yg 3 = g5

(i=1, ..., T(A(P)) + 1). In €, , E(P; ¢*) is definedby y_, , =0
. Gy

and ch’3 = §i' They are glued by the matrix

q
Q
"
I
—
o ~ O
- 0O O

o w

Thus %Y’B = yo‘,’3 and xy,l =y ch,B . Namely on each component

- 32 | Thus it is a rational curve. This

) . s
y 3-y0\.’3—§i, Yo 1 = Yor,1

T
proves (ii) of Theorem (6.1).

To prove the assertion (i) of the theorem, we need

Lemma (6.4). Let A be a compact convex polyhedron in RZ with integral

k

vertices Pis vees P Then 2 volume A = 2 g(A) + fza(r(Ai) +1) -2,

where aA:AlUAz ... VA

K
Proof. Step 1. Assume that k =3, g(Ad) = r(A ) = r(A ) = (A ) = 0.

By a parallel translation if necessary, we may assume that P =[ Then
P2 and P3 are primitive vectors and 2-volume A = det(P2 , )
Assume that c = det(Pz, P3)‘>l. By Lemma (3.3), we can find 0<<cl<:c such

c
that Q = l-P2 + —L Pl is integral. However this is a contradiction to the

assumption g(A) = r(A;) =0 as Q€ - }Pl, PZIPBS . Thus the assertion
is true in this case.
Step 2. k = 3. Assume that r(Al) #0 or g(A) #0. Then we

divide A into two or three triangles respectively.
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rN
(]
Cad

(P' : integral)

P P

P | P, Py

It is easy to see that both sides of the assertion are additive under the above
divisions. Therefore this case is reduced to Step 1 by a finite subdivision.
Step 3. The assertion for general k £ 3 is proved‘by the induction

on k and the additivity of the assertion under the following division:

Pr-1
Let P be a strictly positive vertex of > * such that dima(P) = 2.

Let A, ..., A

1 K be the boundaries of AP). Then P has k-branches in

['*(f) which correspond bijectively to 4, (i=l, ..., k). Each

branch has a unique vertex P, which is adjacent to P in . Let

1

g = (P, P Pl) be a simplex. In Cg , E(P;0°) 1is defined by Yo 1 = 0,
. ) . . : 4

gA(P)(¥r,2’ xy’3) = 0. By Theorem (5.3), we have X(E(P)) = - 2 volume(S(gA(P))) +

f& (r(Ai) + 1). We use the equality g(A(P)) = Q(S(gA(P))) which is
i=1

immediate from the fact that O is a unimodular matrix. Thus by Lemma (6.4),
we get ’ |

XEP)) = - 2 g(a(P)) + 2
which implies that g(A(P)) is the genus of E(P).

Now we assume that $7* 1is a canonical simplicial subdivision. Let
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PQ be a line segment of S, *(f) where P 1is strictly positive.

Case 1. Assume that c

det(P, Q) >1. Let c, be the unique integef "

1

c
such that O<cl< c and P, = % Q + —C—l P is integral. By the definition of

1

S*, S* has k vertices P,, ..., P, on PQ which are inductively defined

1’ k

by

1 i+l .

Pi-&-l:E—.‘Q-‘-_—C——Pi (1—0, ...,k-—l)

i i
where PO = P, D<Ci+l<ci for i=0, ..., k-1 and Cg=¢ and
C, = 1. Observe that Pl’ cees F’k are strictly positive. Let G’i = (Pi’Pi+1’R
be a simplex of X *. In c’ , E(P,) 1is defined by vy = 0 and

Y i o‘i,l ‘

yo_i’3 = gj (=1, ..., r(P,;_Q) + 1) and E(Pi+l) is defined by _yu_i’2 =0
yo,i’3 = ;] (j=1, ..., r(P,Q} + 1). Thus each component of E(Pi) has a non-

empty intersection with only one component of E(Pi+ ). We note-the components

1

(j=1, ..., (P,Q) + 1). We may assume that

f . .
o E(P,) by E;

E. . E, =0 j £ k) and E. ..E. R . . .
1,j ik ER SRR S T O B N R O
: . 2 . . .
Ei,j'Ei-l, .ykzo (j#k). To compute Ei,j’ we consider the divisor of‘theglomorphlc
function 7T *z,. In ﬂ?3 , ¥z, =
1 O’i 1
P, P, . T, . P T, .
11 1,i+1 1,1 P L1 : 1,1
yo’i,l yo‘i,Z y(r-’3 where Pi = {,22'1 and Rl = r2,i
i . T2
3l 3,1

- 25 -
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o
o
<

k+1

Thus (7{*21) -2 pliE(Pi) + D where D has no intersection with any E(Pi)

(i=1, ..., k). By Theorem 2.6 of [ & 1, (7r*z)" Eij = 0. Thus we get

p s '+ p .
- E?. __1,1-1 Lirl by Lemma (3.6) where £ m s eeey m ]
1] P13 1 Cl 1 k
i

Case 2. Assume that c¢ = det(P,Q) = 1. By the definition of the canonical
primitive sequence, > * has a unique vertex Pl =P +Q on PQ. Let

E be the components of E(Pl)‘ Again by Theorem (2.6) of

1 Er(P,Q)+l

2

[ & 1, we get EY = -

1. This proves the assertion (iii) of Theorem (6.1).

The assertion (iv) is proved by the same argument. This completes the
proof of Theorem (6.1).
In practice, the following is useful for the’computation of g(a).

Corollary (6.5). Let P be a strictly positive vertex of >2* with

dimA(P) = 2. Then 2 - 2g(A(P)) = -

d(g) volume c(0,A(P)) + 2= (r(4;) + 1)

i=1

where  J A(P) = AlU "’UAk .

Now we study the resolutions of several interesting singularities.

(A). Weighted homogenecus polynomials.

The surface singularities with C*-action were studied by Orlik-Wagreich
in [ 177 J. Our method gives an alternative description of the continuous
fractions which were derived in [ 177 ] from the orbit-. invariants of the C¥* -
action.

(1). Pham-Brieskorn variety.
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DO
o
<

4 4 dz >
Let fa(z) =2) " 42y "+ 2y where a; = 2. Let s = g.c.d(al, 3, a3)

and let ss; = g.c.d,(ai_l ai+l) modulo 3. Then Sy» Sy, Sy are mutually

’

. X - , _
coprime and we can write a; =555 151,198 modulo 3v for i=1, 2, 3 where

ai, aé, aé are mutually coprime. The dual Newton diagram [ *(f) is

0S5

1 ]
i | 518293 1 0
i e LR PR
' P\ S alal O 0
’ ‘\ 371
! \ 0
' \ Z
Surgery data are
c Cl T+l
PQ cg = @ CQ,lPl +1=0 (CQ) ss,
PR | cg = aé CR,lPZ +1=z0 (CR) ss,
PS Cg = aé CS,lPB +1=0 (cS) S5
-1
g(E(P)) = > sisslszs3 - (s; + 5, + 53)_} + 1.

-t

We assume that $1<Sy <. Then it is éasy to see that g(E(P)) =0

273
if and only if

(#l) s=s, =5,=1 ' or

(.#2)5:2,51—2=33— 7
Note that (#l) is equivalent to g.c.d.(aB,al) =,g.c.d.(83,32) =1 and (#2)

is equivalent to g.c.d.(a;, aj) =2 for any i # j.

- 27 -



Let Karz fa'l (O)(yss. Ka - is diffeomorphic to the boundary of '‘a tubular

neighborhood of the total exceptional divisors. g(E(P)) = 0 1is equivalent

to Hy(Kg; Q) = H(SP; @ (L4 D).

As a special case of (i), H*(Ka; Z) = H*(SB; z) if and only if (#l)'
(a3 = 1 for 145 by (21,

In general, different polynomials may have the same resolution graph. (DU,[ﬂ)‘

For example, Pham-Brieskorn polynomials x2,+ y57‘+ 2114’ x3 + y29 + 287, .

x8 + y9 + 272 have the same minimal resolution: @ (28 is the genus.)
) -/
However we have

Theorem (6.6). Assume that Ky 1s a Q-homology sphere. Then
(1) There is no other polynomial fb which has the same resolution. graph as

faf

(either/
(ii) The fundamental group 7Zl(Ka) isYa cyclic group if a = (2, 2, q}, or’
a central extension of a Dyck (or a triangle) group.

Proof. If a = (2, 2, qg,‘ the resolution is Aah_
3

that a # (2,2,a;) 1i.e. f = is not of A type. We assume that

1 Thus we can assume
a1£a),<az. First observe that the intersection number E(P)2 (after blowing

down exceptional divisors of the first kind) is equal to

c

c c
(*)"{-{%LL SSl + ~%i£ 552 + —%Ll 553' + 375257—}
Q R S 17273
(Here CQ’l =0 if cq = 1.)

Case 1. aij>l. Then the resolution graph has three distinct families
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of branches which correspond to the continuous fractions c./c, ;, Co/Co 1,
: R "g,1’ "R""R,1

3 3 ] H 1
CS/CS,l' Thus the resolution graph determines a,', a5, a3, S8, SS,, SSs.

Therefore s = g.c.d.(ssl, S5, 553) and S5 are also determined. Thus a =

(al, a,, 83) is also unique.

Case 2. Assume that ai 2

ble as a; > 1. Thus the graph has s(s2+53) > 3 branches and E(P) can

=1 and aé > 1. Then s= é =85 = 1 is impossi-

not be blown down. By the graph aé, aé, $S,; SS5 are determined. Thus s =
g.c.d.(ss2, 553) is also determined. By (#l)and (#2), ) = 1 and a is also
recovered by these data. |

=1 and a!

Case 3. Assume that aj > 1. As a # (2,2;83) by the

.

3
assumption, we must have s = Sy =S, = 1 by (#ﬁ and (#2). Thus a = S5 which
implies S > 2. The graph has S+ branches at E(P) and E(P) can not be blown
down. - Thus 33’ and- S5

are determined from the graph, which makes a =
_ (f5;;a2 ay)
to be unique.
The case that ai =1 for i=1,...,3 are impossible from the assumption
and (#ﬁ and (#2). The assertion (ii) is immediate from

Lemma (6.7). Let [ be a star of rational curves in a complex surface M

-m
—ml , Vl / k,)/k
o\_“ —ml /./ )

-~ ] -m '

— l\:/ .

RPN '

"‘o/ -mz'i \‘A_ A
o ~
-m
3,73
Y]
where k Z 3 and -m; j < -2 and -mYare self-intersection-numbers.
b

Let 94/ be the boundary of a sufficiently small tubular neighborhood of
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C.
. i_ : _ i :
rin M. Let —C—i = [le;, e My Vi]' Then Tl(aN)- is a central
o A c, c,
extension of a Dyck group <xl, cers X XgTE eee = X0 = X X5 ;e >.

Proof. By [13 Jor [ 4 1], T,(dN) can be represented by <x, x,

ij
P21, o, K, 1€5 € YGR) <xi’j_lx;jij ST RN I PP
J= 1y eees Yyoand Ryt i) Xo) eee Xy x" = e> where X; g = X and
xi,v;ﬂ = e. By | Rl , Wwe can cancel generétors ><ij (isj g__Vi - 1) so that
T ON) & <xpy veey Xy X5 X = xcl:l = ...=x|ik , X" = xlcl'x;Z' .. xkck'> .

Here X; = Xi,’/i . Clearly x 1is an element of the cente‘r of 7(l(aN)-

and 7z“l(a N)/<x> is isomorphic to

C
] 1 _ _ k _ 1 k _
<xl, ceey Xy Xy = e =X = e, Xy ,"“Xl =8> .
c,'
Rs Cy and ci' are coprime, we can take y; = xj boas generators. Thus
7[1(8 N)/<x> 1is isomorphic to the Dyck group
C c :
. 1 _ -y K -
<yl...yk, yl = e T Y _yl...yk_e>

For the other geometry of K_, see [17 ] and [ 11 1.

al a

2
(II). Let f: z | + zl(z2

s_ t

a
3 . .
+ 2y :) + bz,”z," where b is a gengrlc

constant and s >‘O, t > 0. We assume that f is a weighted homogeneous

by the weights P = (p, B, p3).' Thus we have

(*) plalzpl+p2a2=pl+p3a3=s‘p2+t'p3.

This class of weighted homogeneous polynomials is omitted in the classification
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240

table of Orlik-Wagreich [ \7 ] and this class is special in the sense that the
corresponding sl_action on K = f"l(O)(\ SS has four singular orbit types.
(For the other classes, there are three orbit types.) In fact, the dual

Newton’diégram is

R
\\\\\ /,//’// | 7 =%t,0,1)
L] P '
: S =t(s,l,0) ,
t,)n. t
= (0’1’0)7 R = (O,O,l)
oT
Surgery data are
c c; r+1
a5C
1
o : a,C
PR (p,p,) 1 +cps =0 (c) 5
1
PT Py 1+ ¢py =0 (0) 1
PS p3 1+ Clp2 = 0 (C) l
' a.a,a, + Sag + ta a a
BB ey tE 1(3 3
oE(P)) = —E . {pl<pl,p3> : pl<pl,p2>} ‘L

Example (6.8). f = ziB + zl(zé8 + zg) +‘zg zg.

. ,
f is¥weighted homogeneous,by the weight P = (6,4,9).

polynomial

The resolution graph is
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The other classes of weighted homogeneous polynomials can be treated in the

same way. -

(B). singularity. ([-1 1.

T
pP,q,T

1
+'; < 1. Let

0|

_ P q r 1
Let f = zl * 2yl k25 4 212524 where 5 +

_tf _t _t v :
P = (pl, pz,.p3), Q= (ql, Ay q3) and R = (rl, I, r3) be the vertices

of ["*(f) which correspond to the supports of qu + 23r +2,2,24
zP vzl v z.2.2, and zP+ 29+ 2,22 respectively. They satisfy
1 3 17273 1 2 17273 :
(*) ((PyQ = P3T =Py + Py + Py
qlp = q3r = ql + q2 + q3
rlp = r2q = rl + r2 + I3
Thus S, [*(f) 1is .
oy = (1,0,0)
- Y0,1,00
a -~ u="Y0,0,1

VAN

First observe that g(A(P)) = g(A(Q)) = g(4(R)) = 0. Next we have
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det(P, S) = g.c.d(pz, p3) =1 by (*). It is also easy to see that

r(P, Q) = 0. Thus after blowing down the exceptional curves of the first kind,
we get

Proposition (6.9). The resolution graph of qur is a cyclic chain of

L]

raitonal curves.

Example (6.10). T5 6.7" X y6 2 4 xyz = 0, P = (29, 7, 6),
1+

Q=1(7, 23, 5), R=1(6, 5, 19). The resolution graph by the theorem is

-1 -2

-2 /\o -7
-2,/ “-2
,2./ ]
—3./ \o -5
-/ \.-z
-3/
-2 . ’,
e Ve Bt ——

-2 2 2.2 2-3-2,732

By blowing down, the graph reduces to

-2
_2/'\.—
| AN
s / /' ‘2
\
"2tz

(C). Join type singularity. ([18]1, [16])
Let g(x, y) be an analytic function with a non-degenerate Newton boundary.
We assume that g'l(O) has an isolated singularity at the origin. Let

Qi = (ai, bi) (i=1, ..., k) be the vertices of [ (g) and let
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G. (i=1, ..., k). We assume that. ay<a; <.+ <a, and

o a .
bojgbl‘> .o Db . pet r(x, y, z) = g(x, y)‘+ z® far an integer

a > 1. The Newton boundary T (f) has k 2-simplexes E; (i=1, ..., k)

which correspond to {A. } and T *(f) looks like this:

//\_ atl

O

R

th
(Q 1is either t(l, Q, 0) or (a, o, 1) dependléjx’é gr 1.)

Thus the resolution graph [ of Vv = f (0) is of tke following type.

e i | e

A e M 74
S\Q-“' | S S

-We look for the necessary and sufficient condition for T” to be a
tree of rational curves. We must have
(1) 1Py, Py
(ii) g(Pi) =0 for i=1, ..., k.

) =0 for i=1, ..., k-1 and

The condition (i) is equivalent to

(i)' g.c.d(a, a; bi) =1 for i=1, ..., k-1.

l’

By an easy calculation using Corollary (6.5), we have

Q(P.) = %—{mi g.c.d(a, di) - g.c.d(a, a

i1 bi-l) - g.c.d(a, a5 bi) - mi} + l‘

where m: = g.c. d(a - a;_y, by ; - b;) and d; =(a; by ;-a;., Db )/m, .
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Note that 9, (x, y) 1is a weighted homogeneous polynomial of degree di
i

iy =B 8~ 3 .
with weights ( = , = ). Thus for Z2sifk-1, g(Pi) = 0 (under
i i

(i)) 1if and only if g.c.d(a, di) = 1. As g has an isolated critical point

at the origin, 3y = O or 1 and bk =0 or 1. We assume that (aO, bk) £

(0, 0) if k=1 by (I). We consider g(Pl). If a; =1, we have

g.c.d(a, ag bo) = 1 and therefore g.c.d(a, dl) = 1. Assume that ag = 0.

a,b

%1%
0 bl) and dl = m

As m, = (al, b

1 , Wwe have

>1 _ _ _ X . .
g(P)) 2 5(m - 1) {g.c.d(a, d)) L}. Thus g(P;) = 0 if and only if either

g.c.d(a, bo) = g.c.d(a, dl) =1 or (al, bO - bl> =1 and (a, bo) = (a, albo).
Thus we obtain
Theorem (6.11). (Compare with [ 9 1). Assume that g is not of Brieskorn
type. Then [’ is a tree of rational curves if and only if the following

are satisfied.

(i) g.c.d(a, ais bi) =1 for i=1, ..., k-1.

(ii) g.c.d(a, di) =1 for i=2, ..., k-1.

(iii) If g.c.d(a, ag bo) =1, g.c.d(a, dl) =1.
If g.c.d(a, ag» bo) >1, g.c.d(a, bg) = g.c.d(a, a - bo) and
(al, by - bl) = 1.

(iv) If g.c.d(a, a. bJ) =1, g.c.d(a, d) = 1.
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If g.c.d(a, 3 bk)>]ﬂ g.c.d(a, ak) = g.c.d(a, bk-lak) and

g.c.d(a, a, - ak-l) = 1.

Remark (6.12). [I' is a tree of rational curves

neighborhood boundary K of the exceptional divisors

([ 4 1). The latter condition is equivalent to:

1

of the monodromy of f. Thus Theorem (6.11) can also

Example (6.12). Let g(x, y) = x

5 22
+ X7y

5

+Y .

if and only if the

if a Q-homology sphere

is not an eigenvalue

be proved through [ !9 ].

Then we have

m =m, =1 and d, =d, =10. [ is a tree of rational curves if and only

1 2 1 2

if g.c.d(a, 10) =1 or 5. Here are some examples.

A
~.

a -—
- l

-4
a=>5
_3 '-2 |
-2 .« -2
BN
N
-7 5

§7. Three dimensional singularity.

Let V = f_l

a=>3
-2 5
\.-—-0———0——0——.—— /
S22 sz o oy -2 2\,
o/ T2 -
-2 2
a =10

(0) be as in §4 and we assume that n = 3.

In this section,

we study the topology of the exceptional divisors E(P). We have three types
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of exceptional divisors: The dimension of A(P) is either 1, 2, or 3.
We are particularly interested in the case that dimA(P) =

(I). Assume that dimA(P) =1 or dimA(P)* = 3

Let 0y --e» GL be two simplexes in A(P)* which contain P as a
vertex. P
F) /\.P
| 0‘,'( k

\/

By Lemma (4.8) and Theorem (5.3), E(P) has r(A(P)) + 1 connected components

.ﬂ

-

E(P)i (i=1, ..., t(A(P)) + 1) which are birationally eguivalent to P2
and
(7.1) ’X(E(P)i) =
Note that k 1is greater than or equal to 3.
(II). Assume that dimA(P) = 2 (dimA(P)* = 2).
Let P' and P" be vertices of >* which are on A(P)* and are
adjacent to P. Let C(P) be the curve defined by E(P)n E(P'). By
Lemma (6.4) and the calculation in the proof of Theorem (6.1), we have .
(7.2) g(C(P)) = g(a(P)).
Let ”l, ceey E;t be l-dimensional faces of A(P). Then A(P)* 1is in
the boundaries of Ezi* for i=1, ..., t in [7*(f). Let G?A’ cees GE,V

i

be the 2-simplexes in > * which are adjacent to P and Ciij ¢ closure

‘/ \. .
g %2 '
V2 / /\
(Vg q-
P! = * L% A(-P)*
P Pt



Do
£ N
-3

Thus by Theorem (6.1), we have

(7.3)  XEP)) = - 4gAP)) + 4 + T (V)
i=1

2)(r (EZC) + 1)

2 2(2 - 2g(A(P)).

)

Note that )/, > 2 in general so that X(E(P))

If ))i =2 for i=1, ..., t, the eqguality holds and E(P) canonically
projects to C(P) with the fiber pl.

(III). Assume that dimA(P) = 3.

Let ‘Al’ ..., A, be 2-dimensional faces of A(P) and let
Let )V/. be the number of

"  be 1l-dimensional faces of A(P). 5

51’ eey =q
2-simplexes in Egif' which contain P. By Theorem (5.3) and the calculations

in (I) and (II), we have

(7.4) K(EE)) = 2L AED) 5 & ga.) 4 25 4
i=1

L (Y- ) + D .

j=1

Lemma (7.5). Assume that A(P) is'a simplex. Let § = (P, Pl P2, P3)

be a simplex of ;g*' ahd let j: E(P)* — (C})B be the inclusion map. Then

j# : 721(E(P)*) —_ ‘ﬁl(q¢)3) is an isdmorphism._
Proof. When we move the coefficients of f keeping the non-degeneracy

condition, then E(P)* moves diffeomorphically as there are simultaneous

smooth compactifications E(P). Thus we may assume that
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DO
b
[ 8]

3 i
) =cCc+ = a; Yy where c¢ # 0, aiyéo

W10 Ve,20 Ve,3 =

(i=1, 2., 3) and O, /41, Koo ,UB are vertices of S(gA). Let

h(yo',l’ yg_’z, y6.,3) be the weighted homogeneous polynomial defined by

K. -
2} a; y(Yl . By Theorem (5.3) of [ |5 1, the map b:(ﬂ:oi‘)B -h l(O) — (ﬂ?;)zx Cx*
i=1 v

defined by b(ygs) = (yq, h(ys)) gives an isomorphism of the fundamental

groups. On the other hand, E(P)* = h"l(—c) and (C*)3 - h-l(O) is a fiber

bundle over €* with fiber h'l(—c). Thus the assertion is immediate from the
homotopy exact sequence of the above fiber bundle.

Remark (7.6). Lemma (7.5) will presumably hold for any A(P) with
dimA(P) = 3. |

Theorem (7.8). Assume that A(P) is a simplex. Then the fundamental
group of E(P) is a finite cyclic group.

Proof. Let (O = (P, P P2, PB) be a simplex of =* such that

l,
A(P) > A(P) D A(P,) D A(P5)  and P €4* and P, g 2 * |

(We assume that :—"Jl C Al)' Then by Lemma (7.5), 7[1(E(P7; 0-)) 1is a free
abelian group generated by e; = (0, 0, 1). Let o = (P, P!, 2Y Pé) be

another simplex of >* with A(P)> A(Pi) > A(Pé) > A(Pé) and

dimA(Pé) = 1. Let 0"1 o~ =

* I..*

Write A' = (Aij) .

N

1
0
0
0

th '
Then byf{Van Kampen Theorem, 7[1(E(P; o-) U E(P; ¢')) is a cyclic group generated
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by e wi_th relations )\3’1 e = >\3’2 ey = O Note that XB,l: V» XB,Z? 0
if and only if Pj, P} are on the élosure(EZi). Thus the assertion is immediate
from the existence of o' such that ) £0 or

3.1 7.

Remark (7.9). In fact, the order of the fundamental does not depend
on the choice of X *. The verification will-be done in [21].

Now we study the divisor curves on E(P) which are the intersection
with E(P') such that P' are adjacent to P. We denote by C(P') the divisor
E(P, P'). Oneach &%, there is a point P, which is adjacent to P.

. ~ -
A% and Aj]t are on the boundaries of - * 1if 4./ Aj = Ok

We assume that A*i* and A3€ are on the boundaries of S k* . Let

Pk,l’ cees Pk’Vk-l be vertices of |-, * which are adjacent to P.

: \&

?
A Pkl R

X

— - ——
- - ]

Figure (7.10)

By the calculation of the Euler characteristics, it is easy to see that
each connected component of C(Pk m) is a rational curve and C(Pi) has
, .
1
genus g(A;). Let P = [! |. To calculate the self-intersection numbers
p N
4

P2, P1
of C(Pi) and C(Pk,m)’ we consider the rational function @ = T (z, /25")

- 40 -



250

1 4 the 2 x 2 minor
on E(P). For any vector Q = | ! , we defire |Q, P| by q1Py - Q5P -

%
We assume that > * is canonical at P in the sense of Lemma (3.9).

Namely

(1) ZZ*]SZ'Y*(f) is the subdivision by the canonical primitive

seguences.
(ii) Pk,l’ ey F’k’yk_l are determined by (ii-a) 1if det(P, P.s Pj) =‘1
Vk>= 2 and Pk,l = Pi + Pj or (ii-b) c¢ = det(P, Pi’ Pj) >1 and
c : d
1 m+1 m+1
(*) P = =P P P (m=0, ..., VY, -1)
k,m+1 Cp J * Ch k,m m N ¢
= = ' = 6{ C
where cO c and CO>'Clj> cee D> c”k—l 1 and c)jk 0 and 0g 4w < G
: X
1,m
Pk,O = Pi and Pk,Vk = Pj . Let Pk,m =]
' xa,m
Let C(Pk,m)t s t=1, ..., r(fzk) +1  be the components of C(Pk,m)‘

Then by the same discussion as in §6, we have (%) = ;Z:-!Pknw’ P [C(F’k o)
k,m ’

Therefore we have
(%) - C(P iP P] * ,Pk,m+l’ P[

|

k,m-1’

2
)t

k,m’t ~ 'Pk,m )

for m=1, ..., b& - 1. On the other hand, we can interpret {*) as:

) !Pk,m+l’ Pl cp = ]Pk,m’ PJ “me1 * le’ Pl

By the exact same discussion as in Lemma (3.6), we get

- 4] -
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Theorem (7.10). Assume that > * is canonical at P. Then the continuous

fraction [sl, cees ] is equal to %-'

1
- 1. Otherwise, s; 22.) -C(Pi)2 is

_ 2
s)/,k_l where Sm = "C(Pk,m)t

(If c =1, p& =2 and Sy

equal to

> a2y ]Pk’l, P |
|Pir P

where >' is the sum for k such that E{kc:‘Ai.

Remark (7.11). 1If {Pi, P| =0, we take another 2x2 minor to
determine the intersection numbers.
‘a
1

' _ 1
Example (7.12). Let f(zl, Z,, Z3, 24) =z

vz, "+ z
We assume that g.c.d. (ai, aj) =1 forany i# j. Then

ot . .
P= (823384’ a,a58,, 8,a,3,, 813283)‘ is the weight vector. The dual Newton

diagram ["*(f) is a 3-simplex plus a barycenter F.-

Q

a .

q, = ‘1, 0, 0, 0)

o, = %0, 1, 0, 0)

Q |

Y 3 Q = o, 0, 1, 0)
t

g, = 0, 0, 0, 1)

)
Thus [™*(f) has four 1l-simplexes Eﬁ; and six 2-simplexes A(PQin)

at P. Let >* be a canonical simplicial subdivision. As det(P, Qi) = a
‘ at P
the vertex Pi on PQi which is adjacent to P can be written as

i!
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a.'
i : ' .
+53F for some integer a;', 0 <a;' <« a;. Consider the two-

1
P. = — Q.
S B |

simplex A(P, Qi’ Qj) (i £ 3). As det(P, Pi, Pj) =1, we need only one

vertex Pij = Pi + Pj on A(P, P., P.) at P.

Qil Q;
By Theorem (7.10),
. a,a,a,a
XEP) = 2225 L0484 0
192833,
=9
- [:(Pij)2 -1
leij, P
- C(Pl)z = ‘]Jé' B B =2
[Fir P

We blow down 6 curves of the first kind C(Pij) (i # j) to obtain a surface
M of Euler characteristic (9 - 6) = 3.

Assertion. M is» 2-dimensional projective space.

"Proof. Let o= (P, P

P P') be a simplex of ¥ * such that

1’ 12’
0
Q 4
A(P') = 0 Then, in €, E(P; ) is defined by vy, p =0, and
l b
17253% 1 d(R,.) d(P")
0y = Torfly_ | Ye.2 Ye,3 UiV

More precisely, as 3! volume S(gg) = 1, we have
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( ) - A3 Ay By .
goh yG,Z’ y¢’31 yG-’A - y0.—,2y6-’3 yc.’a + yG—’B yc-’a + yc’a + I

where o 5, (%4, PA are positive integers.

Let L be the hyperplane in P3 defined by Xl + X2 + X3 + x4 =0.

we define the holomorphic mapping Y : E(P;6-) —> L by

oAz d 3
3 Ay 4
) Ye) = U oY 3 a5 Y3 Yes 3 Yp,a s 11 Y can

also be written as w(xr) = [Xl;"' ; Xa] where
a.

a,3,3d,a
(' X = mhz l/yu,’l1234 (i=1, 2, 3,4).

It is easy to see that Y maps E(P; 07) N (Wr 3 = 0) to a point and ¥ is
’
bijective on the complement. By the second expression (*)', W can be

extended to any E(P; o), &' = (P, P!, Pé, Pé) by
a. a,a,a.a

T 132933
K35 T 23 /¥

As V’(C(Pij)) =1 point, ¥ induces an isomorphism 't M—> L as is desired.

The other exceptional divisors of the resolution & : V—v are

2

birationally equivalent to P“ by (I), (II) and Corollary (5.4).

Thus we obtain
a

4

3

1 +22 +Z3 +Za

Theorem (7.13). Let f(z) = z and assume that

a; (i =1, ..., 4) are mutually coprime. Let > * be a canonical simplicial
subdivision of [ *(f) and let T : V' — V be the associated resolution

of V. Then the exceptional divisors are birationally equivalent to P2.

Example (7.14). Let f(z) = zld + 22d + 23d + 24d . This singularity

can be resolved by a single blowing up with an exceptional divisor Ed which
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3

is the projective surface of degree d in P~ defined by f = 0. This

corresponds to the resolution with respect to >* = [*(f). (The condition
(2.2) is not satisfied.)

at P
If we take a canonical simplicial subdivision X */° E(P) -contains

3

6d curves of the first kind and X(E(P)) = d” - 4(d-1)(d-2) + 8. Let M

be the manifold which is obtained by blowing down 6éd curves of the first kind.
Then by the similar discussion as in Example (7.12), we have M GEEd.
Remark (7.15). In general there is no unigue minimal resolution of

3-dimensional singularity.

dal da2 da3 da
+ z

+ 22 4 where a.

Example (7.16). Let f(z) =z 4 i

1
are mutually coprime. Then we can take the same > * as in Example (7.12)
as a canonical simplicial subdivision of ["*(f). The only differences are

(d-1)(d-2)

gap) =4&REB ang n(Z) v 1= d. Thus X(EP)) - &

- 4(d-1)(d-2) + 8.

Blow down 6d curves of exceptional curves of the first kind and let M be

the gquotient manifold. We can define an isomorphism ¢ : M — Edci P>

by the same equation (*)' of Example (7.12).
Further details about three dimensional singularity will be studied

in [21].
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