LINKS OF EMBEDDINGS OF SURFACES AND TOPOLOGICAL ENTROPY

Tsuyoshi KOBAYASHI (,1. 本 意)

Department of Mathematics, Osaka University

Toyonaka, Osaka 560, Japan

ABSTRUCT

In this paper, we show that if $g:F \to F$ is an orientation preserving C^1 -embedding with a g-invariant set Σ of finite points in Int F, then the dynamical complexity of g is described by the link type $L_{g,\Sigma}$ (= $\Sigma \times [0,1]/_{\sim}$) in the mapping torus M. As an application, for a class of differential g equations, we give a criterion for determining whether they possess infinitely many periodic solutions by using finitely many given periodic solutions.

1. INTRODUCTION.

Let f be a self-map of a compact, orientable surface F with an f-invariant set Σ of finite points in Int F. Let $\mathbf{M}_{\mathbf{f}}$ be the mapping torus of f i.e. $\mathbf{M}_{\mathbf{f}}$ is obtained from $\mathbf{F} \times [0,1]$ by identifying $(\mathbf{x},\,0)$ to $(\mathbf{f}(\mathbf{x}),\,1)$ $(\mathbf{x}\,\boldsymbol{\epsilon}\,\mathbf{F})$. Then $\Sigma \times [0,1]$ $(\boldsymbol{c}\,\mathbf{F} \times [0,1])$ projects to a union of circles $\mathbf{L}_{\mathbf{f},\,\Sigma}$ in $\mathbf{M}_{\mathbf{f}}$. In [4,5] the author showed that if f is an orientation preserving homeomorphism, then the link type $\mathbf{L}_{\mathbf{f},\,\Sigma}$ is closely related to the dynamical complexity of f. In this paper, we prove a similar result for \mathbf{C}^1 -embeddings.

Theorem 1. Let $g:F\to F$ be an orientation preserving C^1 -embedding of a compact surface such that $g(F)\subset I$ Int F, with a g-invariant set Σ of finite points in Int F. If the topological entropy h(g) of g is zero, then $L_{g,\Sigma}$ is a graph link. Moreover, if $L_{g,\Sigma}$ is not a graph link, then g has infinitely many periodic orbits whose periods are mutually distinct.

We note that, since g is of class C¹, M is a C¹-manifold.

As an application of this theorem, in section 4, we will give a geometric version of the Matsuoka's theorem [7], which give a criterion for determining whether a given differential equation of certain type possesses infinitely many periodic solutions (Theorem 2).

I would like to express my gratitude to Dr. Takashi Matsuoka for helpful conversations.

PRELIMINARIES.

In this section, we review the results in [5]. Throughout this paper, we suppose that surfaces are connected. A general reference of topological entropy is [3,Expose 10]. A link L is a finite union of mutually disjoint circles in a 3-manifold. The exterior of L is the closure of the complement of a tubular neighborhood of L. A 3-manifold M is a graph manifold if there is a system of mutually disjoint 2-tori in Int M such that each component of M cut along these tori is (a surface) x S¹. A link is a graph link if the exterior is a graph manifold.

Let $f:F\to F$ be an orientation preserving homeomorphism of a compact surface F with an f-invariant set Σ of finite points in Int F. Let M_f , $L_{f,\Sigma}$ be as in section 1. Then in [5] we proved:

Proposition 2.1. If h(f) = 0, then $L_{f,\Sigma} (\subset M_f)$ is a graph link. Conversely, if $L_{f,\Sigma}$ is a graph link, then f is isotopic rel Σ to a homeomorphism g such that h(g) = 0. Moreover, if $L_{f,\Sigma}$ is not a graph link and f is differentiable at each point of Σ , then f has infinitely many periodic orbits whose periods are mutually distinct.

PROOF OF THEOREM 1.

In this section, we prove Theorem 1 stated in section 1. Throughout this section, let g, F, Σ , M, L be as in Theorem 1.

Let $f:X \to X$ be a continuous map. A point $x \in X$ is a wandering point of f if it has a neighborhood U in X such that $U \cap f^{n}(U) = \emptyset$ for each integer $n \in X$ otherwise x is called

nonwandering. $\Omega(f)$ denotes the set of all nonwandering points of f. It is easily seen that $\Omega(f)$ is an f-invariant closed set.

Lemma 3.1. If each component of F - Int g(F) is an annulus, then the conclusions of Theorem 1 hold.

Proof. In this case, by considering Euler characteristic, we see that each component of $\partial g(F)$ is parallel to a component of ∂F . Let D_1, \ldots, D_n be 2-disks, and \overline{F} be a surface obtained from F and $D_1 \cup \ldots \cup D_n$ by identifying their boundaries. Then there is a C-diffeomorphism $\overline{g}: \overline{F} \to \overline{F}$ such that $\overline{g}|_{F} = g$, each D_i contains exactly one periodic point a_i , and for each $x \in D_i - a_i$ there is a K (>0) such that if k > K, then $\overline{g}^k(x) \notin D_i$. Let $\overline{\Sigma} = \Sigma \cup a_1 \cup \ldots \cup a_n$. $\overline{\Sigma}$ is invariant by \overline{g} . We note that $\Omega(\overline{g}) = \Omega(g) \cup a_1 \cup \ldots \cup a_n$. Hence, by [2,Theorem 2.4] $h(g) = h(\overline{g})$.

If h(g)=0, then $h(\overline{g})=0$. Hence, by Proposition 2.1 $L_{\overline{g},\overline{\Sigma}}$ is a graph link. We easily see that the exterior of $L_{\overline{g},\overline{\Sigma}}$ is homeomorphic to that of $L_{g,\Sigma}$. Hence, $L_{g,\Sigma}$ is a graph link.

Suppose that $L_{g,\Sigma}$ is not a graph link. Then $L_{g,\Sigma}$ is not a graph link. Hence, by Proposition 2.1 g has infinitely many periodic orbits whose periods are mutually distinct. We see that $Per(g) = Per(g) \ U \ a_1 \ U \dots \ U \ a_n$, where Per(f) denotes the set of all periodic points of f. Hence, g satisfies the last conclusion of Theorem 1.

Proof of Theorem 1. The proof is by the induction on the number of the components of \mathfrak{F} . Suppose that \mathfrak{F} consists of one component. By considering Euler characteristic, we see that F - Int g(F) is an annulus. Hence, by Lemma 3.1 the conclusion holds.

Suppose that ∂F consists of n (>1) components. By Lemma 3.1 we may suppose that some component of F - Int g(F) is not an annulus. Then Euler characteristic argument shows that some component of F - Int g(F) is a 2-disk D_1 . Let S_1 be a component of ∂F such that $g(S_1) = \partial D_1$. Let F be a surface obtained from F and a 2-disk D_1 ' by identifying S_1 and ∂D_1 '. Then there is an embedding $g: F \to F$

such that $\bar{g}|_F = g$, $\bar{g}(D_1') = D_1$. Since $M_{\bar{g}}$ is obtained from $M_{\bar{g}}$ by attaching a 3-disk $D_1' \times [0,1]$ along a 2-disk $(S_1 \times [0,1]) \vee D_1$, $(M_{\bar{g}}, L_{\bar{g}})$ is homeomorphic to $(M_{\bar{g}}, L_{\bar{g}})$ as a pair. Then each point of D_1' is wandwering. By [2], $h(\bar{g}) = h(g)$. Hence, by the assumption of induction we see that the conclusion of Theorem 1 holds for g.

This completes the proof of Theorem 1.

4. HOMEOMORPHISMS OF A DISK.

In this section, we review the results in [4]. Let f be an orientation preserving homeomorphism of a 2-disk D². Suppose that there is an f-invariant set $\Sigma = \{p_1, \ldots, p_n\}$ of finite points in Int D². In [4] we defined a link m VL from (f, Σ) , which is called a link of (f, Σ) . Let us review the construction of m VL. Let α be a smooth arc properly embedded in D² such that $\Sigma \subset \alpha$ and p_1, \ldots, p_n are on α in this order. Let $\mathrm{Diff}(D^2, \Sigma, \mathrm{rel}\ \partial)$ be the set of diffeomorphisms $\psi: D^2 \to D^2$ such that $\psi(\Sigma) = \Sigma, \psi|_{\partial D} 2 = \mathrm{id}_{\partial D} 2$ with smooth topology. Let D_i (i=1,...,n-1) be a disk in Int D² such that $D_i \cap \alpha$ is a proper arc in D_i which contains p_i and p_{i+1}, D_i a small regular neighborhood of D_i . Let s_i be an element of $\mathrm{Diff}(D^2, \Sigma, \mathrm{rel}\ \partial)$ such that s_i rotates D_i in counterclockwise direction in π radian, $s_i(p_i) = p_{i+1}, s_i(p_{i+1}) = p_i$, and $s_i|_{D^2-\mathrm{Int}\ D_i} = \mathrm{id}_{D^2-\mathrm{Int}\ D_i}$. Let B_i be a braid group ([1]);

$$<\sigma_1,\ldots,\sigma_{n-1}\mid\sigma_i\sigma_j=\sigma_j\sigma_i$$
 if $|i-j|>1$, $\sigma_i\sigma_{i+1}\sigma_i=\sigma_{i+1}\sigma_i\sigma_{i+1}$ if 0 .

Then in [3, Expose 2] the following is shown.

Lemma 4.1. B is isomorphic to π_0 (Diff(D², Σ , rel θ)), where σ_i corresponds to σ_i .

There is an isomorphic correspondence between an element σ of B and a geometric braid ([1]) b such that:

(ii) the product $\sigma\sigma'$ corresponds to connecting the bottom endpoints of b_{σ} to the top endpoints of $b_{\sigma'}$.

For example, $\sigma_1 \sigma_2^2 \in B_3$ corresponds to the following geometric braid.

Then isotope f rel Σ to t (\in Diff(D², Σ ,rel ∂)). By Lemma 4.1 t defines an element σ of B_n. We obtain a link L in the 3-sphere S³ by connecting the top and bottom of the geometric braid b_{σ}. Then the link obtained from L by adding a special component m as in the following is a link of (f, Σ)

We note that the exterior of m VL is homeomorphic to the exterior of $L_{f,\Sigma}$ (C M_f). Hence, $L_{f,\Sigma}$ is a graph link if and only if m VL is a graph link.

In [4,Theorem 2], we gave a characterization of graph links which are kind of links of homeomorphisms of a disk. For the statement of this result, we define two operations (C_1) , (C_2) which give a new link L' from a link L.

(C1) (adding a cable link of a component) let ℓ be a component of L, N a tubular neighborhood of ℓ , and \bar{L} C ∂N be a

link each component of which is not contractible in N then $L' = L \lor \bar{L}$. (C₂) (replecing a component to its cable link) let ℓ , \bar{L} be as above then $L' = (L - \ell) \lor \bar{L}$.

Then we have:

Proposition 4.2. Let mVL be a graph link, which is a link of a homeomorphism of a disk. Then L is obtained from a Hopf link mVl by performing a finite sequence of (C₁) or (C₂) operations on components each of which is not m.

5. APPLICATIONS.

In [7], Matsuoka considered differential equation of the following type.

- (*) dx/dt = f(t,x) $t \in \mathbb{R}$, $x \in \mathbb{R}^2$ with the assumptions
- (**) (i) f(t,x) is an \mathbb{R}^2 -valued function of class C^1 ,
 - (ii) f(t+1,x) = f(t,x),
 - (iii) for any initial condition $(t_0, x_0) \in \mathbb{R} \times \mathbb{R}^2$, there exists a solution $x = \Phi(t; t_0, x_0)$ of the equation defined on $-\infty < t < \infty$,
 - (iv) there is a 2-disk K embedded in \mathbb{R}^2 such that $T(K) \subset K$, where $T: \mathbb{R}^2 \to \mathbb{R}^2$ denotes the Poincaré transformation; $x \to T(x) = \Phi(1;0,x)$.

Let $x_1(t), \ldots, x_n(t)$ be a system of periodic solutions of (*) such that $\{x_1(0), \ldots, x_n(0)\} = \{x_1(1), \ldots, x_n(1)\} \in K$. Then Matsuoka gave a method to estimate the number of p-periodic solitions of (*) for each $p \ge 1$, by seeing the "linking" of $x_1(t), \ldots, x_n(t)$. He used

the Burau representation of a braid group to describe the "linking". In this paper, we will see the "linking" directly by using the link theory.

Let $\Sigma = \{x_1(0), \dots, x_n(0)\}$, $t: K \to K$ be an element of Diff(K, Σ , rel ∂) which is isotopic to $T|_K$ rel Σ . Let $m \cup L$ be a link of (t, Σ) defined in section 4. Then it can be shown that the exterior of $m \cup L$ is homeomorphic to the exterior of $L_{T|_K} \Sigma$ (C $M_{T|_K}$) Hence, by Theorem 1 we have:

Theorem 2. If m V L is not a graph link, then (*) has infinitely many periodic solutions whose periods are mutually distinct.

I would like to thank Professor Hiroshi Kawakami for introducing me the following example.

It has three periodic solutions such that the trace of them in \mathbf{x} - \mathbf{y} plane is as in the following.

Then these periodic solutions defines the following link. We can show that this is not a graph link by using Proposition 4.2. But we must note that it is not known whether this equation satisfies the assumption (**) (iv). If it is shown, then by Theorem 2, we see that this equation possesses infinitely many periodic solutions.

REFERENCES

- [1] Birman J., Braids, links, and mapping class groups, Ann. Math. Studies 82, Princeton Univ. Press, 1974
- [2] Bowen R., Topological entropy and Axiom A, Proc. Symp. Pure Math.
- 14, 23-42 (1970), Amer. Math. Soc.
- [3] Fathi A., Laudenbach F., and Poénaru V., Travaux de Thurston sur les surfaces, Astérisque 66-67 (1979)
- [4] Kobayashi T., Links of homeomorphisms of a disk and topological entropy, preprint
- [5] _____, Links of homeomorphisms of surfaces and topological entropy, preprint
- [6] ______, Homeomorphisms of 3-manifolds and topological entropy, preprint
- [7] Matsuoka T., The number and linking of periodic solutions of periodic systems, Invent. Math. 70, 319-340 (1983)
- [8] Thurston W., On the geometry of dynamics of diffeomorphisms of surfaces I, preprint