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ABSTRUCT
In this paper, we show that if g:E->F is an

1
orientation preserving C -embedding with a )
g—iﬁvar_iant set Y of finite points in Int F, then
the dynamical complexity of g is described by the

link type Lg 5 (=’ x [0,1]/.) in the mapping torus
r

Mg' As an application,‘for .a class of differential

equations, we give a criterion for determining
whether they possess infinitely many periodic
solutions by using finitely many given periodic
solutions. \

1. INTRODUCTION.
Let f be a self-map of a compact, orientable surface F with
an f-invariant set I of finite points in Int F. Let Mf be the

mapping torus of f i.e. M_ is obtained from F x [0,1] by identifying

f
(x, 0) to (£(x), 1) (x€F). Then Ix[0,1] (cFx[0,1]) projects to a

union of circles in M_. In [4,5] the author showed that if £

Pe,n £ _
is an orientation preserving homeomorphism, then the link type Lf 5
(4

is closely related to the dynamical complexity of £. In this paper,

we prove a similar result for Cl—embeddings.

Theorem 1. Let g:F+F be an orientation preserving Cl—'emb'edding

of a compact surface such that - g(F)< Int F, with a g-invariant set I

of finite points in Int F. If the topological entropy h(g) of g 'is

zero, then L is a graph link. Moreover, if L
link, then g 'has infinitely many periodic orbits whose periods are

'is not a graph

mutually distinct.




[
()

We note that, since g is of class Cl, Mg is a Cl—manifold.

As an application of this theorem, in section 4, we will give a
geometric version of the Matsuoka's theorem [7], which give a criterion
for determining whether a given differential equation of certain type'
possesses infinitely many perlodlc solutlons (Theorem 2).

I would like to express my gratltude to Dr. Takashl Matsuoka for

helpful conversations.

2. PRELIMINARIES.
In this section, we review the results in [5]. Throughout this

paper, we suppose that surfaces are connected. A genexal reference of

topological'entropy is {3,Expose 10]. A link L 1is a finite union of
mutually disjoint. circles in a 3—manifold.‘ The exterior of L 1is the
closure of the complement of a tubular neighborhood of L. A

3-manifold M 1is a graph manifold if there is a system of mutually

disjoint 2-tori in Int M such that each component of M cut alphq
these tori is (a surface) xSl A link is a graph link if the exterior
is a graph manlfold. -

Let f:F-»F Dbe an orientation préserving homeoﬁorphism of a
compact surface F with an f-invariant set I of finite points in
Int P. Let M_, L be as in section l; Then in [5] we proved:

£ Tf£,2

Proposition 2.1. If h(f) = 0, then Lf 5 ((:Mf) if_éigraph

link. Conversely, if. L if_é_graph link, then £ ig_isotopic

£.Z
rel § to a homeomorphism g such that h(g) = 0. Moreover, if Lf 5

is not a graph link and f is differentiable at each point of I, then

£ has lnflnltely many perlodlc orbits whose periods are mutually

distinct.

3. PRCOF OF THEOREM 1.
In this section, we prove Theorem 1 stated in section 1.
Throughout this section, let g, F, I, M, Lg 5 be as in Theorem 1.
g P

Let f£:X-+X be a continuous map. A point x (€X) 1is a

‘'wandering point of £ if it has a neighborhood U in X such that

Uf)fn (U) = g for each integer n (>0); otherwise x 1s called

J



nonwandering. Q(f) denotes the set of all nonwandering points of f.

It is easily seen that Q(f) is an f-invariant closed set.

Lemma 3.1. 1If each component of F - Int g(F) is an annulus,

then the conclusions 9£_Theorem 1 hold.

Proof. In this case, by considering Euler characteristic, we see that
each component of ag(F)‘ is parallel to a component of JF. Let
Dl,...,Dn be 2-disks, and F be a surface obtained from F and

D,V ...lan by identifying their boundaries. Then there is a

C -diffeomorphism §:§-+§ such that §[F = g, each Di contains
exactly one periodic point a, and for each :ceDi - a; there is a

K (>0) such that if k >K, then §k(x)¢Di. Let T = ZUalu...Uan.v
; U....\/an. Hence,

Y is invariant by 5. We note that " Q(g) = Q(g) va
by [2;Theorem:2.4] h(g) = h(a). T
If h(g) = 0, then ,h(g) = 0. Hence, by Proposition 2.1 L. g

1

v : g,
is a graph link. We easily see .that the exterior of L§ 5 is
’ . Qs
homeomorphic to that of Lg 5 Hence, Lg 5 is a graph link.
- 14 14
Suppose that L is not a graph link. Then L~ = is not a
g,% - : g,z

‘graph link. Hence, by Propesition 2.1 a has infinitely many periodic
orbits whose periods are mutually distinct. We see that Per(&) =
Per(g)t/alll...|lan, where Per(f) denotes the set of all periodic

points of £. Hence, g satisfies the last conclusion of Theorem 1.

Proof of Theorem 1. The proof is by the induction on the number of the
components of 9F. Suppose that 3JF consists of one component. By
considering Euler characteristic, Qe see that F - Int:g(F) bis an
annulus. Hence, by Lemma 3.1 the conclusion holds.

Suppose that JF consists of n (>1) components. By Lemma 3.1
we may suppose that some component of F - Int g(F) is not an annulus.
Then Euler characteristic argument shows that some component of
F - Int g(F) is a 2-disk Dl. Let Sl be a component of 3F such
that g(Sl) = SDl. Let- F be a surface obtained from F and a 2-disk

D.' by identifying S

1 and aDl'. Then there is an embeddingb g:F>F

1
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such that §|F = g, E(Dl') = Dl_ Since Ma is obtained from Mg by

attaching a 3-disk D.'x [0,1] along a 2-disk (Sl><[0,l])U D

1 1’
(M-, L- ) 1is homeomorphic to - (M L ) as a pair. Then each point
of Dl' is wandwering. By [2], h{(g) = h(g). Hence, by the assumption
of induction we see that the conclusion of Theorem 1 holds for g.

This completes the proof of Theorem 1.

4. HOMEOMORPHISMS OF A DISK.

In this section, we review the results in [4]. Let f be an
orientation preserving homeomorphism’of a 2-disk Dz{ Suppose that
therezis an f-invariant set J = {pl,...,pn} of finite points in
Int D . In [4] we defiped a link mVL from (f,f%), which is called a
link of (f,I). Let us review the construction of mVL. Let g be
a smooth arc properly embedded in D2 such that Ycq and pl""’pn
are on ¢ 1in this ordef. Let Diff(Dz,Z,rel 3) be the set of
T, w[éDz = id, 2 with

diffeomorphisms w:D2?+D2 such that ¢ (Z)
smooth topology. Let Di (i=1,...,n-1) be a disk in Int D such that

D, is a proper arc in D. which contains . and ). D.' a
1rld prop i P; Piv1’ %5

‘ 1
small regular neighborhood of Di' Let S be an element of

Diff(Dz,Z,rel 3) such that S5 rotates Di in counterclockwise
di i i ian, s, (p.) =p.. ., s,{p.;
irection in 7 radian sl(pl) P. sl(pl+l
= 1dD2_Int Di'. Let Bn be a braid group ([1]);

= p, 2
J =Py and Sip2 e D, '

< Opre-ei0p g | 0504 = 040, if |i-3]>1s 05054105 = 0541930541
if 0<i<n-1 >.
Then in [3,Expose 2] the following is shown.

. . ; 2
Lemma 4.1. Bn- i§_lsomorphlc to nO(lef(D ,Z,rel 3)), where g,

corresponds to si.

There is an isomorphic correspondence between an element ¢ of

Bn and a geometric braid ([1]) bd such that:



1

(i) o; corresponds to

the geometric braid bO //
1 [ n

(ii) the product 0C' corresponds to connecting the bottom

endpoints of bO to the top endpoints of bg,.

022633 corresponds to the following geometric
\// \v

Then isotope f rel Z to t (€ Diff(Dz,Z,rel d)). By Lemma 4.1

For example,‘cl
braid.

t defines an element O of Bn; We obtain a link L in the 3-sphere
3 7 N .

S by connecting the top and bottom of the geometric braid bo. Then

the link obtained from L by adding a special component m as in the

following is a link of (£,T%)

0 -

L

We note that the exterior of mVL is homeomorphic to the

exterior of Lf,Z (C‘Mf). Hence, Lf,Z is a graph link if and only if
mUL is a’graph link. v

In [4,Theorem 2], wé‘gave a charactefization of graph links
which are kind of links ofvhomeomorphisms of a aisk. For the statement
of this result, we define two oPerations (Cl); (Cz) which give a new

link L' from a link L.

(Cl) (adding a cable link of a component) let ¢ be a

component of L, N a tubular neighborhood~of 2, and ,E(IBN be a



[
s

link each component of which is not contractible in N then L' = LVL.

(C2) (replecing a component to its cable link) let %, L be as

above then L' = (L -{)V L.
Then we have:

Proposition 4.2. Let mVUL be a graph link, which is a link of

a homeomorphism of a disk. Then L is obtained from a Hopf link

mV ¢ by performing a finite sequence of (Cl) or (CZ) operations on

components each of which is not m.

5. APPLICATIONS.

In [7], Matsuoka considered differential equation of the
following type. |
(*) dx/dt = £(t,x) t€R, x€R’
with the assumptions
(**) (1) £(t,x) is'an]RZ—valued function of class Cl,
(ii) E£(t+1l,x) = £(t,x),
(iii) for any initial condition (tofxo)e ]RX]Rz, there
exj_;ts a solution x = (I)(t;to,xo) of the equation
defined on —-w< t <o, 7

(iv) there is a 2-disk K embedded in ]R2 such that

2 . -
T(K)C K, where T: R -ﬂRz denotes the Poincare

transformation; x- T(x) = ®(1;0,x).
Let xl(t),...,xn(t) be a system of periodic solutions of (*)
such that {xl(O),...,xn(O)} = {xl(l),..-,xn(l)}c K. Then Matsuoka

gave a method to estimate the number of p-periodic solitions of (*)

for each p>1, by seeing the "linking" of xl(t),...,xn(t). ~ He used



the Burau representation of a braid group to describe the "linking". 1In

this paper, we will see the "liﬁking" directlyvby usiné thé‘i;;i-theory;
Let I = {xl(O),...,xn(O)},'t:K’*K be an element of ‘

Diff(X,Z,rel 9) which is isotopic to T - rel .- Let mVUL be a

link of (t,X) defined in section 4. Then it can be shown that the

exterior of m¥L is homeomorphic to the exterior of LTiK)Z (C.MTIK?

Hence, by Theorem 1 we have:

Theorem 2. If mVL is not a graph link, then. (*) has

infinitely many periodic solutions whose periods are mutually distinct.

I would like to thank Professor Hiroshi Kawakami for introducing

me the following example.

Example (Kawakami) Let us consider the differential equation:
dy/dt =+-0.1y - ( - 14 + 3.3 cos(2t)) x - x3

dx/dt = y. 4 _7

It has three periodic solutions such that the trace of them in

X - y plane is as in the following.

i2
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Then these periodic solutions defines the following link. We can show

that: this is not a graph link by using Proposition 4.2. - But we must
note that it is not known whether this equation satisfies the assumption

(**) . (iv). 1If it is shown, then by Theorem 2, we see that this equation

possesses infinitely many periodic solutions.
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