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ABSTRACT

T.Mitsui[2], one of the authors, has estab-
lished a useful numero-analytical method of
investigation of numerical solutions to two
nonlinear quasiperiodic differential equa-
tions, that is, Duffing type and Van der Pol
type. But he fails to estimate the norm of
Green. function to Van der Pol equation.

In the present paper we correct his failures.

1. Notations and Fundamental Theoréms

A function f(t) is said to be quasiperiodic with pe-

riods wl,mz,.;.,wm if f(t) is represented as
(1.1) £(t) = fo(t,t,...,t)

for some continuous function fo(ul,u .,um) with period

5o

w, in each u.,.
i i

A linear differential operator

(1.2) Lz = g—f: ~ A(t)z

is said to be almost periodic (br quasiperiodic) if A(t)
is almost periodic (or quasiperiodic) matrix.
An almost periodic operator L 1s said to be regular

if for any almost periodic function f(t) the equation

(1.3) Lz = £(t)
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has at least one solution bounded for all t e J, where J
denotes the real line. |

A quasiperiodic operator is said to be regular if it
is regular as an almost periodic operator.

Let ®(t) be the fundamental matrix of the linear

homogeneous equation
(1.4) ‘Lz = 0

satisfying the initial condition @(0) = E (unit matrix).

Then we have

Proposition 1 ([1]). L is regular if and only if

there iska square matrix P such that
2

(1) P~ = P,
(i1) || ®(t)P®_l(s) | < ce~0(t=s) for t 2 s,
(111) || e(t)(E=P)e 2(s) || < ce™9(5 ) por ¢ < s,

where C and ¢ are positive numbers.

Proposition 2 ([3]). If a quasiperiodic operator L

with periods WysWos e sW defined by (1.2) is regular,
then for any quasiperiodic function f(t) with periods Wy s
Wos e oo sW the differential equation (1.3) possesses a
unique quasiperiodic solution z = z(t) with the same

periods given by

(1.5) z(t) = so_G(t,s)f(s)ds,
where -1
¢(t)P® “(s) for t > s,

(1.6) G(t,s) = { -1

-9(t)(E-P)® “(s) for t < s.
G(t,s) is called a Green function for L, and satisfies the
inequality
(1.7) | G(t,s) || < ce™OlE=sl,

Our numerical analysis for the quasiperiodic oscil-

lations is based on the following theorem.
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Theorem 1 ([3]). Given a nonlinear differential
equation

(1.8) L - X(t,2),

where z and X(t,z) are vectors and X(t,z) is quasiperiodic
and is continuously differ-

in t with periods wl,w 5 W

YRR
entiable with respect to z belonging to a region D of the
zZ-space.

Suppose that there is a quasiperiodic function zo(t)

with periods wl,w',...,wm such that

zy(t) € D,

dzo '
I ze(6) - X[tz ()] || s r

for all t € J. Further suppose that there are a positive
number §, a nonnegative number k < 1 and a dquasiperiodic
matrix A(t) with periods Wy sWhs e e v 50 such that

(i) the quasiperiodic differential operator L
defined by (1.2) is regular;
«255 = {z;llz-zo(t) | < 6 for some t ¢ J} < D,

(1.9) (11)9 Il ¥(t,2)-A(¢) || 5 j; whenever || z-z,(t) || < 6,
Mr
I« < ¢
Here ¥(t,z) is the Jacobian matrix of X(t,z) with respect
to z and
2
(1.10) M= =2

where C and‘o are positive numbers satisfying (1.7).

Then the given equation (1.8) possesses a solution

7z = 2(t) quasiperiodic in t with periods Wy sWyse e e 50 such
that

Mr
(1.11) I zo(t) - 2(e) || < 7=



L
=

for all t € J. For the solution Z2(t), a quasiperiodic
differential operator [ defined by

ty = $L - vit,2(6)1y

is regular. Furthermore, to equation (1.8) there is no
other quasiperiodic solution belonging to 236 besides z =
2(t). '

2. Van der Pol equation

- Consider a Van der Pol equation with a quasiperiodic

forcing term such as

d2x 2.dx

(2.1) —= - 2AX(1-x")== + x = ascosv.t + becosv,t ,
2 dt 1 2

at
where A is a positive parameter, vy = 2ﬂ/wl, v, = 2ﬂ/w2,
w2/w1 is irrational, and neither vy nor v, are equal to 1.

The equation (2.1) can be written into the vector

form '

dz _
(2.2) gt - Az + ¢(t) + An(z),

where

| 0 1 ' 0
z = (;) , A(A) = (—1 gk) » n(z) = (_2X2y)

0
p(t) = .
a-cosvlt + b-cosv2t

Consider a linear differential operator depending on
A such that

(2.3) L(Mw = %ﬁ“— - A(M)w,

then we have that L(A) is regular as a quasiperiodic bper—
ator for A < 1 and that the Green function for L(X) is
given by

(2.4) G(t,s) 0 for t 2 s,

and



cose(t—s)—%sine(t—s) Loine(t-s)

| 5
G(t,s) = —ek(t-s)

—%sine(t-s) cose(t—s)+%sin6(t—s)
for t < s,

where 6 = /1-1°. Hence, for the J_ norm, the Green func-
tion G(t,s) satisfies the inequality

(2.5) I ate,s) || g 22E2AeAE=s]

and the quasiperiodic solution to the linear equation

(2.6) L(A\)z = ¢(t)

. x4 (t32)
is given by z = zo(t,k) = .yo(tsk) , Where
x,(t;A) = 2 ~{(1-v )cosv t-2Av.sinv t} +
07’ (1= v2)2+4A2 i 1 1 1
g 5 2{(l—vg)cosvgt—2xvzsinv2t} s
(1-v ) +4A%v3 :
avl ‘
yo(t;k) = 2 5{~(1-v )s1nvlt 21v cosv, t} +
(1- -vy ) +hk vy
bv2 5 :
{-(1-v3)sinv, t-2Av, cosv,t}.
(1- V ) +4A2 2 2 2 2 2

V2

Define the constant number K by

| ~alv || v

(2.7) K = max (=24 1ol 1 2

11-v2]  1-v2|  |1-v3|  |1-ve|
1 2! 1 2

then we have the following estimate

(2.8) |xo(E50)] 5 lyg(esa)] < K

for all t € J and 0 < A < 1. Using the estimate (2.8) for
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xo(t;A) and yo(t;A), we can estimate the residual function
for z,(t;A) in the following form: ‘

H £2(650) = Az (E50) = ¢(8) - Anlzy(t31)) ||

| =AnCzg (632000 || g 2A[x3(E30)y(t50) |

2AK3.

A

Hence we can choose
(2.9) Cp o= 2AKS.

Let Dy = {z ;5 || z || g 2K} , D' = U {z ; || z-z,(¢; Al < K.

It is clear that Z (t3X) € DK for any t € J and D'C DK
Let us denote the Jacobian matrix of the right-hand

side of (2.2) with respect to z by ¥(z;A). Then we have

for z € D' the inequality

A

(2.10) I ¥(z30) - AV || < 2a(2]y| + |x])]x]

2UAK®

A

By (1.10), the inequality (2.5) implies

2v2+2A
Av1=-A

(2.11) M

In order to apply Theorem 1 to the present case, we
have to check the inequalities in (1.9). The question is
"Is it possible to take a nonnegative number k < 1 satis-

fying the both inequalities

2 _ A

(2.12) 2urk® g AL,

(2.13) SLEEo0K3 ¢ (1-0)K
A1

under the assumption 0 < k < 1 ?2".



The answer 1is affirmative when the inequality

/1-2°

K 2 W 527372x

holds, because then we have the inequalities

2/2+2; 24AK2 < %g ,
xﬁ¢x

2V2+2A 2)\Kz < §§ ,
AV1=A .

so that we can obtain such a nonnegative number k < 1
that the both inequalities (2.12) and (2.13) hold. Hence

we have

stant :
laé,-+ _Ib] , IalY% + ]blvg
|1-vil - |1-v |1-v7| [1-v5 |

K = max (

satisfies the inequality

/1 12
(2.14) K < g%%%;gx s

then the given equation (2.1) possesses a quasiperiodic

solution z = Z(t) with periods wy,W, such that

| 2(¢) - Zo(t;52) | < X for all t e J.

If the inequality (2.14) does not hold, in order to

assure the existence of an exact quasiperiodic solution

2(t) to (2.1) we have to compute a more accurate approxi-'

mate quasiperiodic solution than zo(t). For this purpose
we have considered an approximate Quasiperiodic solution

written in the form

Theorem 2 ([2]). If 0 < A < 1 holds, and if the con-
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, om ,
xm(t) = o(0,0) + Z 2 {a_cos(p,v)t+B_sin(p,v)t},
; r=1|p|=r P p
=3 = . = »
v, (t) = ggx,(t), where (p,v) = p;vi+p,v,s [PI=]p|+]p,]

and determined the unknown coefficients o(0,0), ap, Bp by
means of the Galerkin method. For the detail computation,
see [2]. |

Thus for the computed .Galerkin approximation

m ——
"§m(t) = 0(0,0) + % v {a_cos(p,v)t+B_sin(p,v)t}
r=1|p|=r b b

we have the residual function

2i% —o, 94X —
r(t) = 5 (t) - 2A(1-Xm(t))—ag(t) + Xm(t)
dt

-a*cosv,t - b-cosvzt
L

which can be expanded into the finite double Fourier

series as follows:

3m ' ~ ,
r(t) = £(0,0) + £ T {f _cos(p,v)t+g_sin(p,v)t}.
r=1 |p|l=r P P
Put
o 3m o
(2.15) r = |£(0,0)] + 2 z {lfpi + |gp[},

r=1 |p|=r
then we have

Ir(t)| £ r for all t e J.

Define
_ 3 m _ -
(2.16) Q= la(0,0)| +2 = (la_| + |B.]),
r=1 |p|=r P P
and
m _ - .
(2.17) Q' = I | (e,v)| (e | + |B.]),
1”=l Ip =r p p
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then we have the inequalities
2 2 sup [x (t)| and @' 2 sup [y _(t)].

For z which lies into the §- nelghbourhood of z (t)
(x (t), y (t)), we have

(R ICTPORE ICON 2A{Q(29'+9)+2(Q'+29)a+352}.
By (2.11), for the Green: functlon G(t, s), we have

2/2+2X
AV1-A

(2.18) M =

If there exist a non-negative number k < 1 and a posi-
tive number § satisfying the both inequalities

1-A

(2.19) 2x{9(29'+9)+2(9'+29)a+35 }o< /5:5_ K,
r 2/2+2A
(2.20) FK—_'———- é s
AV1-A

then by Theorem 1, the exact quasiperiodic solution 2(t)

= t()’i(t), §(t)) with periods wy and w, exists and the

error estimate of E&(t) is given by

— N 2/2¥2A
(2.21) | Z,(8) - 2(e) || ¢ 755,
| m = 1= 3 /A
that is,
_— d - r 2/2+2A
| () - &(t)], | ) - =R(E)] < .
m dt m dt = l-x K/&-A2

for all ¢t ¢ J.
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