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FIBONACCI SEQUENCE OF STABLE PERIODIC ORBITS

FOR ONE-PARAMETER FAMILIES OF C1—UNIMODAL MAPPINGS

By Kenshin SHIBAYAMA ( %51 ®@ )

Department of Mathematics, Kyoto University

ABSTRACT
For one-parameter families . of C1—unimoda1
mappings, pay the appearaces of stable periodic
orbits, whose  periods = increase as  Fibonacci
sequences, 1is studied. The convergence rate of

parameter values where they appear 1is calculated
numerically. As a (numerical) result, a kind of
universality, different from  that of the period
doubling phenomenon, is suggested.

1. Introduction

One parameter families of unimodal'mappings have some remarkable
properties, one of which is presented in the accumlation of period-
doublings. When we vary a parameter, superstable periodic orbits of
periods 1,2,4,...,2n,... appear at parameter values

UO<U‘1 <u2<. .o <un<. cee
By numerical calculations of  some one-parameter families,

5,6)

Feigenbaunm discovered the following property:

lim (p -u )/ (wq-u )= 4.669...
where this number is called the Feigenbaum constant, which is
independent of the families. For this independence, such phenomenon is

called universal. Feigenbaum proposed an explanation for the

universality, and mathematical support for his explanation is given by
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3) 1)

Collet, - Eckmann, Lanford III”’, Campanino, Epstein ’, and Eckmann,
Epstein, WittwerA).

' Tsuda7) studied - the bifurcation strucfure in the Belouzov-
Zhabotinsky reaction system, which is one of the chemical systems. He
constructed a one-parameter family of unimodal mappings (Figure 2)
by looking: at the Lorenz plot of experimental data (Figure 1).
Studying numerically +this one-parameter family, he noticed - the
following fact. Vary the parameter starting with the value where the
9-periodic orbit is stable.  Taking notice of periodic orbits stable in
relatively wide ranges of parameters, their periods are 18,36,54,90,144
in this order, or characterized by the Fibonacci numbers ( Py=Pp_1*Pp_o
). He proposed that this phenomenon, which he called as Fibonacci

bifurcations, has another kind of universality, which is different from

that of the period doubling phenomenon.

Figure 1 : Figure 2

=1

as x 1.0

Fb(x)=f<%)+b

In this note, we show the existence of the recursive appearance of

stable periodic orbits whose periods increase as Fibonacci numbers, and
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calculate ' the convergence rate numerically for some families. In
section 2, we express the stable periodic orbits by symbolic sequences.
In section 3, we show the existence of sequences of symbolic sequenceé
which - correspond to the superStable periodic orbits whose periods
increase as . Fibonacci numbers, and give their formation rule. In
section 4, for above sequences some numerical results are given which

suggest the universality.

2. Preliminaries
We give some definitions on symbolic dynamical systems.

Definition 2.1 ( C1—unimodal mappings )

A C1—mapping f:l-1,11+[-1,1] is called C1—unimodal if
(1) f£(0)=1,
(2) f'(x)>0 for =x<0,

(3) f'(x)<0 for x>0.

Definition 2.2 ( symbolic sequences )

A sequence of symbols L,C,R is called admissible if it is either
(1) an infinite sequence of symbols L's and R's, |
or |
(2) a finite sequence of symbols L's and R's followed by C.
For xeg[-1,1], the admissible sequence lf(x)lelj...In... is defined by
C L oif f%(x)el-1,0) |
1= \ C if £ (x)=0

R if £%(x)e(0,1]. ( n=0,1,2,... )



Definition 2.3 ( ordering )

Let A;AOAT... and B=B,B,... be admissible sequences. We say A<B
if B
(1) L<C<R,

(2) 3f AgeeB_(=Bo...By o,

(a) AO"'Ak-1 is even énd Ak<Bk’

Ak¢Bk, either

or

(b) A is odd and B, <A

O"'Ak—1 k "k’
where a finite symbolic sequence is called even or odd according to the

parity of the number of R's included.

Definition 2.4 ( shift operator )

For admissiblevsequenqes, the shift operator is defined by

o(A)=c(A A A )=h A

01 200- 20;0-

Note that oC is not defined.

Clearly ol.(x)=I.(f(x)) holds.

Definition 2.5 ( maximality )

An admissible sequence A is called maximal if

k
0

=g

<A

for all k, Osk<|A|-1. Where |A| denotes the length of the sequence A

(0<|A|ste).

Definition 2.6 ( one-parameter family )

Let C be the space of Cj—unimodal mappings with C1~topolqu.
A continuous curve in C

» f
H u
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is called one-parameter family of C1—unimoda1 mappings.

By the definition of the ordering of admissible sequences, if x=x'
then lf(x)glf(x'). Because fk(1)§1 for all k, we have
k _ k
o L (1)=1.(£7(1))=I.(1).
vSo lf(1) is maximal. The converse is also true in the sense of the

following theorem.

Theorem 2.7
Let fLl be a one-parameter family of 01;unimodal mappings. If a
maximal sequence A satisfies

Loy (1 <A <Lp, (1, | (1)

then there is a parameter value UE(UO’UT) such that

‘ ‘I‘fl.l“ ):A_‘

For the proof, see [2]. In the next section, we shall construct
finite symbolic sequences and it will be necessary to show the
existence of parameter value p's such that fu‘s have stable periodic
orbits whose symbolic expressions coincide with such sequences. Above
theorem says that this is done only by checking the maximality and the
condition (1) of +the constructed .sequences. For the sake of

simplicity, we introduce the following family.

Definition 2.8 ( full family )

A one-parameter family of C1—unimodal mappings fu is called full

if



(1) £,,(1)=0,

(2) fu1(_1):fu1(1)=—1f

For full families, an arbitrary maximal sequence starting with
RL... satisfies the condition (1). Throughout thistnote, we shall deal

with only full families.

3 Main Results

In  this section, we give +the rule to construet recursively
symbolic sequences which correspond to superstable periodic orbits of

period Ps satisfying pn:pn-1+pn—2'

Theorem 3.1
Let AC and EC be maxiﬁal sequénces which satisfy
(1) AC<BC,
(2) |al<|B,
(3) there is no maximal sequence DC such that AC<DC<BC and
|}<|B|.
Then -
(a) BBAC is a maximal sequence where
f R if B is even,
S DR
L if B is odd.

(b) There is no maximal sequence DC such that BC<DC<BBAC and

HEIEE

The proof 1s not difficult but tedious, so it is omitted.
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On the one-parameter family, choose two superstable periodic orbits so
that corresponding symbolic sequences AC, BC satisfy the hypothesis of
Theorem 3.1. By Theorem 2.7 and this theorem, there exists a parametef
value p such that fU has a superstable ?erioaic orbit af the form BRAC.
As |§8§_C|=l§CI+IACI, the period of this stable periodic orbit is  the
sum of the periods of periodic orbits of the forms AC and‘EC.

Next, execute the same procedure taking BC and BBAC in place of AC
and BC respectively. Theorem 3.1(b) says that the hypothesié(B) of
Theorem 3.1 for new AC and BC is fulfilled. - So we can adapt this
theorem repeatedly, and we get a sequence of maximal sequences, and
then a sequence of parameter values |

U1<U2<U3<"'<Un<"'
such that fy have superstable periodic orbits whose period increase as

Fibonacci numbers'pn.

Example 3.2

Take the 2-periodic maximal sequence RC as AC and the 3-periodic
maximal sequence RLC as BC. It is easy to check that these sequences
satisfy the hypothesis of Theorem 3.1. A sequence of maximal sequences

is given as follows.

period 2 RC
period 3 RLd
period 5 RLLRC
period 8 RLLRRRLC

period 13 RLLRRRLRRLLRC



For  the one-parameter  family fu(x)=1—ux2, parameter  values

corresponding to above maximal sequences calculated by a digital

computer are given in Table 1 of section 4. - Graphs of fun(x) and

periodic orbits of period pn's are found in Figure 3.

Figure 3
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Theorem 3.1(b) gives a characterization of the stable periodic

orbits. Varying the parameter y from W, to Woqs no superstable

periodic‘ orbits whose periods are less than P,.q @appear. 0f course

there are stable periodic orbits with longer periods. But the

{

e
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parameter ranges of the existence of these orbits seems narrower. A

conspicuous periodic orbit next to W, appears near W . 4. This agrees

7 with Tsuda's observation of mentioned in the introduction.

AR Numerical Calculations

We give some numerical results. Tables 1-4 are the results for
the family
fu(x)=1—ux2.
In Table 1, RC and RLC are taken as the first two stable periodic
orbits, and parameter value un's are computed. In Table 2, with the
same first two stable periodic orbits, xnzfii(O) is computed. X is
the nearest point to zero among the stable periodic points except zero,
which is considered to be related to the scaling of the mapping when
some renormalization group acts. In Tables 3 and 4, RLC and RLLC are
taken as the first two stable periodic orbits and un‘s and Xn'S are
computed. These calculations suggest the following relations:
(un—um)(umz—um)/(unﬂ—uoo)2 > const.=0.62...
(Xn/xn+1)/(xn+2/xn+3) + const.=0.62....
In Tables 5 and 6, analogous computations are performed for the
family
fu(x):1—u(1—cos x),
and in Tables 7 and 8, for the family
£, ()=1-ul1-(T4x)exp(-x) }.
The results for these families ére the same as the quadratic family,

i.e. the above constant seems universal.



ge]

M WOUMWHN B

0N
0

144

jgel

Y -

A
Moo Wh B

L

W
0

144

u
n
1. 900000000000000000000000Q

1.7348776662466927600495089

1.8607825222048548712322420

- 1.8700038808287653615732964

1.87051216336034892617664659
1.87052831281374016743612462
1.87052862B3554136039953836
1.87052863213626915620236%4
1.87e5286321645129022778814
1.8705286321646445036234603

X
n

1. 00000000200000000M0000000
Q.7348776662466927 600495089
0.3787403911204367026322966

0.14219221094565950263857493

0.04119881283134606376425583
0.009434686446525993418083511
0.001465308919258598642858224
0.00022857059581307453818%4
Q. 0000248494566961974303003
0. 00000213855581958330461674

}Jn

1.7548776662466927600493089

1.9407998065294847532232091e

1.9537058942843962454276222
1.9541658374001347490618013
1.95417739e4B563448139279304
1.9541773337957952538170802

1.9541775552881271856422488

1.9541775552964610050286351

1.9341775552964904383061277
- 1.9341775552964905033977621

(un—un+l)(u

n+2—un+3)

(u

2

ﬁ+l—un+2)

0. 6206399698
©.6330401179
©.5764244197
@.6149521304

. 0.6132456326

0. 6234460129
@. 6237431922

X . X
n - n+3

41 *n+2

Q.4973444745
©.5774893873
@.6101114152
9.60435877672
@.6036442238
Q. 6206231584
Q.6224143815

©.31341066%6
©.7033486561
©.35647331058
Q. 6453396297
0.6111172430
0. 6324392860
0.6242371988

14

(Y]



TABLE 4
Py *n *n " Tn+3
3 - 0.7548776662866927600495089 X 11 %040
4 -~ @.,7178102075530693384661318 ~
7 - 9.1795175081528058258324280
11 ©.0475914528792719269796573 - @.2787976435
18 0. 0EBR372065873681808466447 0.7424876152
29 - ©.0013811542387749336427763 ©.5895287928
47 - 0.00016298B11047769928604876 0. 6355177721
76 0. 00001550051 69535893664708 6. 6085035055
123 0. 000001 1545830545478994339 0.6311974742
199 - 0.0000000684762614191080928 0. 56236265618
TABLE 5
pn un (un_un+1)(un+2—un+3)
2 2.1753426496700214107767868 (W . .=p y2
3 3.79209975318385146783867029 ntl "nt2
5 4.02821279581854254874468834
8 4.0491784070170441065405361 0.4L080122789
13 4, 0S035979215133321624747467 0.6345946758
21 4, 0503981 7566773427955974632 0. 5765928905
34 4.050398943416840743907404 1 0. 56156321666
55 4, 0503989528230562032625769 0.6125216835
89 4. 0503989528949036531836562 0. 46234488569
144 4. 0503989528952458402327114 0. 46235277326
TABLE &
Pn *n - *n " Fa+s
2 1. 0000000000000000MMOAROMO0 X i.x .
I - 0.74321951245466131196910582 o+l "n+2
5 - 0.37499108115063046926800573
8 0. 1452586604110911812343931 ©.52119956033
3 0. 04266661243792175680374609 ©.5821599073
21 - 0.0098B470233224658459258556 0.5980731924
4 - 0.0017505738355439900403163 0. b6029352975
55 0.Q002448452150744761924395 0. 6037202671
89 ©. 0000269174418880461561215 Q. 6206469797

144 — 9.0000023417892621450129409 Q. 6221333994
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2 3. 7B44223823546656287531058 Y
3 5. 67872720220804630926769816 n+1" Hn+2
5 5.8539324182048029150218630 ‘

.8 5. 864693144546327530653031447 0.8021704540
13 5. 8675498106529981524703770 0.6411656178
21 5. 8675669675372330778239102 ©.5832563185
34 5. 867567258824203451 1022906 0.6119122269
55 5. B4675672618774833577389425 0. 6173947377
89 5. B675672618974313561176014 9. 6232856719

144 5. 8675672618975128116010784 9. 6250119154

TABLE 8

n *n *n " *a+3
2 9. 9999999999999999999999999 X a1 Eoto
3 0. 50553222781 3223097150958 ,

5 0. 2705740860102237384028748
8 @.0977101905398183818625134 @.7214452829

13 0.0256199772194124794149590 9. 4850683527

2 0. 0054056051095749607096027 @.5842677527

34 ©. 0OOBE782021594291 25581342 0. 6263856998

55 0.0001146196687206414011172 @.46118832178

89 0. 00001 146644833144632950411 9. 6196203089

144 ©. 00000093I92846067 266152384 Q. 4237313595

)

i

5. Problems

(1) Though numerical results suggest the existence of the universality,

we have no proof at present.

(2) As an extension of Theorem 3.1, we have the following. Before we

state it, we define the *-product.
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Definition 5.1 ( *-product )

Let R=L, L=R. We define the *-product of A and E by

where :
jEk if A is even,

(Ek if A is odd.

Theorem 5.2
Let AC and EC be maximal éequences Which satisfy
(i) AC<BC,
(2) |al<|B|,
(3) if a maximal sequence DC satisfies AC<DC<BC and ]QI§]§|, then
DC=A*(EC) for some EC.
(4) BC#A*(EC) for any EC.
Then o
(a) (B*(RLY"1))AC is maxinmal,
(b) if a maximal sequence DC satisfies §C<QC<(§*(RLq—1))§C and

|D|<(|B|+1)q+|AC|, then DC=B*(EC) for some EC.

This theorem shows the existence of sequences of stable periodic
orbits whose periods are defined recursively by P,=aP, _1*P, -
We give numerical results for g=2. The family studied here is

2
fu(X)=1—uX ’
and as the first two stable periodic orbits we take RC, RLC (Tables

9,10), and RLC, RLLC (Tables 11,12).
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un

1. 00000000000000000RORRBA0
1.7548776b462466927 600495089
1.8100013857280120727260324
1.81033002825499674791993146
1.81033034122257414687989131
1.8103303412693563390411911
1.8103303412693575501617510

TABLE 10

X
n

1. Q000000000000000000000000

0.7548776662466927600495089

@, 1873459724144121537071649

©.0188156948892531444673692
0.00073247188485476560037373
Q. 0000116518635123701203477
Q. 000007 74735988222213193

TABLE 11

SR A

uI‘L

1.7548776662466927600495089
1.940799806529484752232910
1.9449852110535572801956194
1.9449892785382417485245866
1.9449892793560279774548605

1.9449892793561242743828449

1.9449892793561242745366315

TABLE 12

X
n

0.73487766562466927600495089
2.7178102075530693384661318
0.05607169620828%2925722888
Q.00263298694970446681873532
0. 00004462823732305058101222
0. 00000034681 74783031502269
Q. O0Q00AOV109797 44692936536

n+1>(“n+2““n+3)

‘ 2
o1 o)

0. 0816438187
©.1597314152

0. 1354696579417
©.1731912692

X « X
_n_ ot3

*n+1 *n+2

0. 1329033347
2.1566893671
0. 1585593692
©.1707999127

(M) (Moo Hoys)

2

n+l—un+2)

(u
©.0431700108
B, 205690098272
9.1599105113
©.1818802626

« X
Xn n+3

o+l Fn+2

©.04938B23734
0.2250260773
©.1595806%218
©.1801044120
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These computations suggest
(un-uw)(un+2—uw)/(un+1-um) > const.=0.17...

(xn/xn+1)/(xn+2/xn+3) > const.=0.174...

In the case of q=1, this constant seems near (/5-1)/2 (golden mean),
but in this case 0.17... is not near v2-1. What is the meaning of

these constants 7

(3) In the period-doubling phenomenon, the limit of u's plays an
important role as the boundary across which the chaos appears. In our

case, we do not have such characterization of the limit system.
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