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BAND-TYPE DISSIPATIVE STRUCTURES IN.BIOLOGICAL SYSTEMS
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Band-type electric patterns in many-cell as well as
unit-cell biological systems are investigated. Growing
roots of azuki bean are found to display bands of surface
electric potential in a mature region when they reach
ten cm or so. Together with an experimental result of
electric isolation, the electric current is supposed to
flow into an elongation zone while accompanied by local
current loops in the mature region. To clarify a formation .
mechanism of bands observed in the Characean algae and
bean roots, a simplified model system is treated numeri-
cally and analytically. The results reveal that the
band pattern is a dissipative structure appearing far
from equilibrium.

1. Introduction

‘A spatial pattern of electric current has been observed in many
biological systems.l_s) It appears most evidently in growing or'regene—
rating cells. For example, a rhizoid formation in the brown alga Fucus
is accompanied by an electric current pattern around and within the
egg.l) A causal relationship between the electric current and the spa-
tial distribution of molecules inside and on the surface of egg is
expected for an appearance of polarity after fertilization. In fact,

)

a theory6 based on nonequilibrium thermodynamics has shown that the
rhizoid formation is one of the typical self-organization processes
appearing in far-from-equilibrium conditions. It occurs through a
nonlinear coupling between ion flux and the accumulation of membrane-
constituting molecules. These macroscopic electric patterns can
therefore be regarded as dissipativeastructures realizing far from
equilibrium.7)

The present study is concerned with a band-type electric pattern

in biological systems. As one éxample of electric patterns in growing
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many-cell systems, we measured an electric potential near the surface
of roots‘of azuki bean. A band-type pattern of potential was revealed
while the potential declineé as a whole from the root base to the root.
tip. Another example provided here is related to a well-known band-type
»pattern of electric potential or pH near the surface of internodal or

4)

whorl cell of the Characean algae. A theoretical analysis shows
that this pattern corresponds to a dissipative structure. These kinds
of bands in biological systems can be understood as essentially the same

as the band pattern in B-Z reaction7) or the Liesegang ring.8)

2. Band-Type Pattern in Bean Roots

| 2.1 Materials and method

Seeds of azuki bean (Phaseolus chrysanthos) were soaked for three
hours and then were sown on filter papers moistened with 0.0lmM KC1l in
darkness at about 30°C. Figure 1 shows the experimental setup for
measurements of the electric potential near the root surface.

The growth speed at each point of root was studied by making india
ink dots at lmm intervals along the root surface. Five hours later the
change in each interval was measured. The relative growth (RG) is
calculated, with e the elongation of each district and E the total

elongation, by
RG = (e/E) %100 (%) .. (1)

The pH near the root was measured using pH meter‘(CORNING, model

125) equipped with pH electrode (IWAKI GLASS, model IW202). The tip

p
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Fig.l Schematic illustration of experimental
setup. p, pippete electrode; r, reference
electrode; br, bean root; c, chamber; m, 0.0l
mM KCl medium.
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diameter of the electrode is smaller than lmm.

2.2 Experimental results

Figure 2 shows an example of observed surface potential for a
13.3 ¢cm léngth root.g) A periodic spatial change in potential with the
period of about 2cm can be seen. This‘kind of pattern usually appeared
when the root reached ten cm length or so. So far as the root was
short, the surface potential had only one convex peak around‘the posi-
tion of (5-20)mm behind the root tip and the successive concave peak k

3) The result in Fig.2 also

around (20-35)mm, as is well known.
demonstrates that the surface potential near the root base is more
positive than the potential near the root tip on the whole. As shown
in Fig.3, the spatialbpotential pattern forms a band structure surround-
ing the root.g) '
The baﬁd—type potential pattern was fairly stable in each root:
The similar patterns were obtained when the measurements were repeated
within such a short interval as one hour or less. However, roots grew
withvremarkabie elongation velocity of about 1.5mm/hr and hence, in the

long run the potential changed Slowly accompanied by the elongation.

>
S
Distance from root tip —
£
10 =
>
5
< .
£
~o f& L o
> 5 10
Distance from root tip (cm)
L
Fig.2 Pattern of surface electric Fig.3 Symmetry of potential
potential V when the root grows up pattern on the opposite sides
to 13.3 cm length. of root surface.
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This led to the production of another band with the splitting of one
band to two bands. In this way, longer roots showed more bands.

Figure 4’shows a relationship between the relative growth and the’
surface electric potential:g) The’elongation zone was located at 1 to
2mm behind from the tip, whereas the surface potential has a peak around
7mm behind. This means that the elongation zone lies in the relativély
negative region of surface potential. Thus, it suggests the electric
current flowing out of the potential-peak position into the elongation
zone. To confirm this anticipation, we made an electric isolation of
the elongation zone from the mature region. The experiment showed that
the electric isolation effectively represses the growth of root so as
to reduce the usual growth rate, 1.5mm/hr, to O.5mm/hr.

Next, we must know what kind of ion species pérticipates in the

growth. Taking into account an acid-growth mechanism, we measured
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Fig.4 Relative growth and surface Fig.5 Schematic illustration of

potential pattern. Note the scale a relationship between the ele
in the mm unit. ctric current pattern and the ¢
growth.
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the pH near the surface in elongation and mature regions. Table 1
summarizes the result. The decrease in pH of the measuring point from

the external bulk solution, (pH 6.8) is shown.. This result implies that

Tabie 1. - Change in pH near the root

elongation zone mature rqgioh
Control 0.53 0.46
Electric 0.31 0.80
isolation

the growth rate diminishes due to the suppressionrof acidification in
the elongation zone in the case of electric isolation, while roots
continue to grow mediatgd by the acidification in‘usual conditions.
Protons can therefore be considered to flow out from the mature regiqn
and flow into the elongation zone.

As a consequence, we can image the causal relationship between
the electric current pattern and the growth. Figube 5 illustrates the
electric current flowing into the elongation zone accompanied by local
current loops in the mature region. The elongation zone can grow with
the supply of H' mediated by electric current produced in the mature

region.

3. Dissipative Structure in the Characeae

The Characean algae as Nitella and Chara develop alternating acid
and alkaline bands along their cell walls under illuﬁination.A’ll) An
electric potential near the cell surface also shows a similar band-type
pattern, and hence an electric current flows from the acid to the
alkaline\zones. It is supposed that the acid zones are produced by an
active H' efflux or equivalent OH influx.” In the present section, we
try to demonstrate the band structure as a dissipative structure appeér—

2) : :

ing far from equilibrium.1

3.1 A theoretical model
Figure 6 shows the model system, where a Characean internodal cell
with the radius R lies between z=0 and L surrounded by the external

aqueous solution. Since the band pattern can appear prior to any



7Fig.6 A theoretical model system.
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pattern with circumferential symmetry breaking,l the angular depend-
ence is not taken into account here. ‘ '

Let us denote the H+ concentration by n(r,z,t) with t the time,
then a diffusion equation for n in the external environment and the
cytoplasm is given by

on _ ol 2 32

E=D;§;(Z‘E)+§]n, (2)

where D is the diffusion constant, values of which in the cell exterior
and interior are taken as equal.

Let us next introduce simplified expressions for a passive flux,
J , and an active flux, Ja’ produced by H+—ATPase molegdles within the

membrane at r=R. We adopt the linear relation for Jp:

Jp = -p An , : . (3)

where p denotes the permeability, and the H' -concentration difference

An is defined by

An(z,t) = nes(z,t) - nis(z,t) . (4)

The values of H concentration at the external (r=R+0) and internal
(r=R-0) surfaces’of plasmalemma are respectively designatedkby No
and n, .- The efflux is taken as plus sign.

As for the active flux Ja’ we assume the following nonlinear
function of internal variables h and An:

a .
Ja T 1 +exp[ (h-an)/y] ’ : (5)
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with a denoting the maximum active-flux density of protons when all

H+—ATPase are activated. The coefficient 1/y represents a sharpness

of the sigmoid curve as an increasing function of An. The internal

variable h expresses an inhibitory factor for the pump activation.
Light may produce ATP as an energy source of H pumps via complex

chemical reactions with many steps. In the present stage, it is

natural to assume the following simple relation for the light intensity

I:

gT_oa1 , ' (6)

where a is the numerical coefficient, and the average active flux JaT

is defined by
L . .
JT=~];Jsz. ' (7)
a

a L 0

The boundary condition on the Characean cell membrane at r=R is

expressed by the flux continuity across the membrane as

an an,

e i '
—D(ar)s = "D(ar)s = Jp + Ja at r=R . (8)

The boundary conditions inside the cell (0 <r<R, 0<z<L) are the

nonflux ones:

an/dz 0 at z=0 & L, O<r<R,

dn/ar = O at r=0 , 05zZ<L . (9)

In the external solution a selection of the boundary condition scarcely

alters the obtained results, and hence explicit equations are not shown
12) :
).

The present model system has the following characteristics:

here (see detailsl

i) The kinetic equation (2) holding in the cell interior and exterior
is a linear function. '

ii) The boundary condition (8) with egs.(3) and (5) is nonlinear and
time-dependent. 7

iii) The average active flux JaT is restricted by the light intensity I

in egs.(6) and (7).

~3



3.2 Numerical results

Figures 7(a) and (b) express a homogeneous flux pattern and a band
pattern with a single acid region.accompanying alkaline regions at the:
both sides, respectively.lz) The passive flux,: the active flux and the
total flux as well as the contour lines of H' concentration are shown.
The numerical result of the total flux has a characteristic M-shaped
pattern, which agrees with the experimental observation.l4) This type
of flux pattern indicates a circulation of H flux from the acid region
to the alkaline region. Figure 8 may confirm this expectation, where
the streamlines are drawn so as to cross perpendicularly tc the contour
lines in a band pattern with three acid regions.

Figure 9 shows an example of formation process bf bands arising
from the homogeneous state when the light intensity is abruptly in-

2)

creased.1 A remarkable feature is that the M-shaped pattern appears
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Fig.7 Flux patterns of the homogeneous and band states.
Numerical parameters are p=1, D=3, a =0.75, v =0.153, a=l, ~J
R=0.85 and L=50. (a) I=0.18; (b) I=0.24. The step

size of contour lines is 0.05. .
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Fig.8 Flow pattern of protons. Since the external boundary condi-
tion is taken as a reservoir of n=1.0, the H* flux occurs there.

Fig.9 Dynamics of the band formation from the homogeneous state.
The light intensity is increased abruptly from I=0.18 to I=0.28.

dramatically after the transitory increase in flux along the overall

cell length. Similar changes are also observed in experiments.15’16)

Figure 10 shows the bifurcation diagram in terms of the band width
% for the external variable I,lz) The band pattern with the finite
band width appears suddenly at a critical value, Ic, but disappears to
recover the homogenecus state at the different value of I for decreas-
ing I. These facts for the existence of the critical light intensity
and the appearance of hysteresis are reproducing well the experimental

17)

observation. The bifurcation phenomenon obtained numerically can

be explained from a linear stability analysis and a local potential
prdposed‘by Prigogine to give some intuitive understanding for the

7)

occurrence of self-organized state.
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Fig.10 Bifurcation diagram. Numerical results of the homogeneous
state and the single-acid band state are designated by open circles
and closed circles, respectively. Thick solid lines show analytical
result. The bifurcation point predicted by eq.(13) is denoted by a
large arrow on the I-axis.

3.3 Analytical results

A stationary homogeneous solution is given byL

N =1 : at r >R ,
) e
n =
{N1=1—aI/p ~ at r<R , (10)
h’= aI/p +vln[owaI-1]. , (11)

The stationéry H+—concentration difference An® becomes

An® = Ne‘-Ni =allp . (12)

Applying the linear stability analysis to the present model system,

we can straightforwards get the expression for the critical light

2)

{-/ - 4val p+(—2DR ]}/2 , (13)

-~

(

intensity'l

with k denoting the integer. If we substitute the parameter values

shown in Fig.7, IC=O.221 can be obtained for the one-band pattern.

/0
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This: value shows a good agreement - with the numerical value 0.218. Thus,
the linear stability analysis predicts the stable homogeneous solution
below IC and the unstable homogeneous solution above IC giving rise to
the appearance of band-type pattern.

In the present system, we can introduce the generalized fluxes J

and the generalized forces X by

Jl =J , Xl = —-An/Ar
p } at the membrane,
J2 = Ja , X2 = (h-An)/Ar
J3 = -DW¥n , X3 = -Vn in the cell exterior and interior, (14)

where Ar is the membrane'thickness. The local potential ¢ can be

obtained by using its definition as follows:7’12)
L : .
¢ = 2wR { ¢ dz , ' (15)
Jo

with ¢ denoting a local potential per unit length:

¢ = %(An)z + a(h-An) - 'ya ln [l+exp(b:'$—n)]

D 2 2
bt An-aAn® - .
+35 0, RK I, (8n-an°) alh (16)
In this expression, ay is defined by
o =k w/L for k=1, 2,‘-.. ‘ (17)

k

and K, and I, are the modified Bessel functions of véth order dependent
on akR. It is to be noted that 4&n is a function of the spatiai coordi-
nate z alone and h is independent of z.

The stationary point is given by eq.(15) with eq.(16) as

_9 2 ey L o - ‘
3(an) pAn + Day RK I, (An-an"®) T+ oxp [(han) /¥ ] 0, (18a)
0 _ 1 JL _

Qa : - ,
Sh L /g 1+exp[(h-an)/v}] dz ~al=0. . (18b)

7/
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In the homdgeneous state of An=An®= const. and h =h®= const, the above
equations are reduced to the stationary solution (10} ~ . (12).

From a comparison with the linear-stability analysis, we can
easily show that the potential;¢ is minimgm at the stable homogeneous
state but is maximum at the unstable state. Note that ¢=9 /27RL is
equivalent to ¢ itself in the homogeneous state. Figure 1l shows a
schematicrillustration of ¢ for the homogeneous state on the I-An
plane.lz) The stable homogeneous.solution exists until the minimum
point changes its position to the maximum With increasing I, so that
the stability changes at I=IC.Y This situation is analogous to a first-
order phase transition in equilibrium systqms.

Let us next investigate the self—organiied state realizing as a
result of the instability of homogeneous state. For this purpose, we

had better approximate An(z) in the single-acid band state as (see

Fig.12)
Anﬁ - for (L-g)/2 <z <(L+2)/2 ,
An = ‘ '
Anz otherwise, (19)
\
an
A
h'S an,
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Fig.l1l Schematic illustration of the A 40,
stability of homogeneous state in » Fig.12 The local potential
terms of the local potential per unit per unit length for the
length. band-pattern state.

/2



261

where ¢ is the band width. Two quantities An_ and An, are given

h L

respectively by An =An_ and An, in eq.(18a). When eq.(19) is substi-

h
tuted into eq.(18b), we get

L Ia
—Anz)T +An, = > (20)

(An %

h

This equation gives & "as a function of I, and is shown by a solid line
in Fig.10. A good agreement with the numerical results can be seen.
The local potential ¢ can be written from egs.(15), (16) and (19)
by '
»* * ’
¢ = 2qaR [’¢'(Anz,'h Y(L-g) + ¢(Anh,h )%] ' (21)

. : : , :
with h denoting h in the band state. Minimizing ¢ with respect to %
gives .

oan b)) = e(n b)) . | (22)

This result is quite impressive: the local potential per unit length in
the lower An region is equal to that iﬁ‘the higher An region. The
alkaline band and the acid band keep their balance in the sense of
the equal ¢ . The situation is illustrated in Fig.12. The local poten-—
tial>per unit length can, therefore, be regarded as a chemical potential
in equilibrium systems.

Dyhamics from the homogenéous state to the band state can be

described by the usé of ‘the kinetic equation dominated by the local

potential:lz) '
 Rk I 3££Q-= _ 3¢ (23)
1"1 3t a(an) ’
If we limit our deécription_to the neighborhood of the stationary
homogeneous State, An can be written as
An = An°® + §An (24)

with 6An implying a small quéntity. ‘
By taking account of the condition on h given by eq.(18b), we get

the final equation for 6An:12) ‘

/3
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’(5%—D-a—2:—2-)5An;=ﬁil—I—[—p+ ] §an
2z 1l v(%/Iaf
a(aéIa—l)(a/Ia-Z) : [ ‘(Gm)z - <(6An)2>]’ (2'5)
2Y RK.I (a/Ia? :
171 a
with
2 1 [ | ‘
<(sm)f> = 1 { (sanf dz . - (26)
0

For the unstable homogeneous state the coefficient of the first term
takes a positive value. The coefficient of the second term is also
positive. This term acts to increase 6An in the region where (6An)2
once overcomes the average value <(6An)2> , but to decrease § An where
(GAn)2 is below‘<(5Anf§. In other words, this constitutes a positive-
feedback origin in the formation of a spatial pattern composed of two
types of regions with a higher and a lower magnitude of An. Figure 13
illustrateé a behavior of the system in terms of ¢ on the h-An plane

beyond the bifurcation point.lz)
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The present model system can explain well many observed data such
as the occurrence of/bands beyond the critical light intensity, the
hysteresis, the M-shaped flux pattern, dynamics of band formation and‘
so on. In this case the local potential per unit length ¢ helps us
to understand the properties of theoretical model system. '

Last, we must mention some points. The first is the effect of Ca2+
ions on the band formation. The CaCOB deposition facilitates the

desired positioning’of the acid and alkaline zonés.ls) To explain this

19,20) ¢ the interaction

experimental fact, electrochemical studies
between Ca2+ and the membrane structure may be necessary. The second
point is concerned with the’hysteresis. The present theoretical
analysis is inadequate to explaining it, because the description is
limited to the bifupcation point, This type of hyst?resis may be

21

related to an inverted or subcritical bifurcation. An improvement

of theoretical ahalysis is one of the future works.

4., Discussion

In the theoretical model, the angular dependenée was not taken
into account. It arises from a theoretical conclusion that a symmetry
breaking along a longitudinal axis appears before the one along a
circumferential direction.;a) - This conclusion holds generally in a
unit-cell or many-cell system of a cylindrical shape, accompanied by
the surrounding electric current. In fact, the green alga Acetabularia
exhibits a band-type pattern of chloroplasts.13'22)

In bean roots self-sustained oscillations of surface electric
potential were observed near the root tip for many cases. As shown
in Fig.l4, the periods of oscillations were composed of the integer
ratio of 6, 12, 18 min with the amplitudes 1.5, 3.0 and 4.5mV, res-
pectively. They changed mutually with time. This curious occurrence
of oscillations may reflect some relationship between the cellular
process and the membrane transport. Self-sustained oscillations of
electric pofential have been often observed in the case of growth
and regeneration.l—s) These kinds of oscillations have been also
found in much simpler systems of model membrane constructed from

23-25)

lipids and/or proteins. In these systems an importance of

/S



electrochemical interaction between cations and the membrane is pointed

out. Oscillations iﬁ the growth could;btherefore, be understood more

definiﬁely based on electrochemical studies taking account of non-

equilibrium situations.
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Fig.1l4 Self-sustained oscillations of the electric
potential near the root tip. .
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