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Uniformly minimum variance unbiased estimators of the cumulants of arbitrary order and others
are derived for the inverse Gaussian distribution. The variance of the second order cumulant is
given explicitly.

(A part of this article was published in J.A.S.A.[1983].)
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1. Introduction

In wide variety of fields, the (two-parameter) inverse Gaussian distri-
bution is considered as the population model. The distribution is known by
name as the first passage time distribution of Brownian process. Because
of the inverse relationship between the cumulant generating function of the
first passage time distribution and that of the Gaussian distribution,

Tweedie (1957a) proposed the name inverse Gaussian for the distribution.
When the population mean is equal to unity, the distribution is often refer-
red to as the standard Wald distribution. The inverse Gaussian distribution
shares with the gamma and lognormal, and other skewed distributions, asymp-
totic convergence to normality.

Tweedie (1957a, 1957b) discussed the statistical properties of the dis-—
tribution. He gave, among others, the maximum likelihood estimators of some
parameters for a general case and derived a remarkably simple relation between
the positive and negative moments of the distribution. He also studied the
problem of estimating the reciprocal of inverse Gaussian means in a more gen-
eral form and discussed these estimates in greater detail. This type of pa-
rameter estimation problem commonly arises whenever actual observations are
made in inverted scale. A traffic engineer, for example, deals with it while
monitoring the speed of a car where time is recorded for every distance in-
terval.

Chhikara and Folks (1975) have proposed the inverse Gaussian distribution
as a life time model. They investigated the properties of the inverse Gauss-
ian failure rate function and considered maximum likelihood estimation for
both the reliability function and failure rate function. They also showed
that the inverse Gaussian distribution was a viable alternative to the log-
normal distribution as a lifetime model and pointed out several advantages
of the inverse Gaussian model over the lognormal one. Padgett and Wei (1979)
introduced a threshold parameter to the inverse Gaussian distribution and in-
vestigated the esimation of parameters based on the method of moments and the

maximum likelihood estimation for this three-—parameter distribution.



Recently, Korwar (1980) derived the uniformly minimum variance unbiased

estimator (UMVU estimator) for the variance and the reciprocal of the vari-
ance of the (two-parameter) inverse Gaussian distribution. His expression,
however, is extremely complicated. A compact expression for the UMVU esti-
mator was given in terms of the hypergeometric function by Iwase (1981).
The main purpose of the present paper is to construct the UMVU estimator for
the cumulant of arbitrary order. The variance of the estimator of the sec—
ond cumulant is also given in a closed form, together with some numerical ex-
amples.

In the next section, a main theorem is proved and, as a consequence of
the theorem, the UMVU estimator of the r-th cumulant is given. Other esti-
mators, useful in practice, are listed in Table I. Technical detailes of
the proof of the main theorem are described in Appendix. In Sec. 3, the
variance of the UMVU estimator for the second cumulant is given in an arbi-
trary sample size. Some numerical computations for the variances are per-
formed. The asymptotic variance of the UMVU estimator is derived and a con-
nection of this estimator with the consistent and asymptotic unbiased esti-
mator obtained by Iwase (198l1) is displayed in Table IT. The final section

is devoted to some discussions.
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2. UMVU Estimators

A random variable X is said to be distributed as Inverse Gaussian with
mean parameter U and a shape parameter A, denoted as X ~ I(u,A), if its prob-

ability density function is given by

X A (z-u)?
s G z(ﬁzz)]' z>0
fl=) = (2.1)

0, otherwise
where U and A are assumed to be positive. Let Xl, Xz,"-, Xn be a random
sample from (2.1), X (=ziZlXi/ﬂ) be the sample mean and V = Zizl (Xi-l -Xy.
We have the following main
Theorem 1. For any real numbers &, Band T and any integer n such that
(n-1)/2+71> 0 and n >2, it holds that

n-1 Xv

Etﬁ_fa+8+y2 VT'F((I, 3:—2—+T;-———~)]
n
_D(m-1y2+m) | osg+y2 (27 [2mhoadu ,  mA
T T({(n-1Y2) " {)\} T ’(B_a( u ), (2.2)

where F 18 a hypergeometric function and K is a modified Bessel function.

Tweedie (1957a) proved that X~ I(u,nA) and that AV ~ Xn—z-l and that they
are independent. A jointly sufricient statistics for (u,A) is X,V) and
the family of density functions (2.1) is complete. Because of these, the
sté.tistics X and V are the basic ones used in making inferences about the in-
verse Gaussian distribution. Using the Lehmann-Scheffé theorem and the

equality v2nA/wuexpnA/ul-X (nA/u) = 1, we have

/2
Corollary 1. The UMVU estimator of the r-th cumulant
r-1
2 1, 2r-1,1-r
KZ’ = 7,“_—F(Z'—§) -u A Fr 221
is gtven by
s _ Dr-y2) T(n-1y/2) 2r-lp-1 . . 1 n-1 _xv
G = R e DXV Feleg el S0 n22.

(2.3)
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For r=2, this reduces to the result due to Korwar (1980) and Iwase
(1981). Table I gives some other UMVU estimators of parametric functions
of ¥ and A.

Table I

Proof of Theorem 1. Since X and V are independent, the left hand side of
(2.2) is expressed as

T'((n-1)/2 +T) 1.B-1 (1-¢) m1/2 +T-8-1
ATT ((n-1)/2 +7-B) T (B)

T
@2y AN,

x By Syl T T v/

where 5'7{- and EV mean the expectations with respect to X and V, respectively.
It is clear that we can safely interchange the order of _integration, since we
are dealing only with the absolutely convergent integrals. It is to be
noted that the above formula is valid only for (n-1)/2+T>8 >Q, for we have
used the integral representation for the hypergeometric function. From the
fact that £ v I{u,nA) and AV N Xn-z-l’ the above expression is transformed,
with the aid of (A.3) and (A.2), into

T o -~
T((n-1)2+1) [ g] (n)) F -1 (1.125)7B . E_}?{?S+J/2 s As /X 4o

[ ((n-1)/2) {Aj T(a) )
_I{n-1)/2+1) | a+B+1/2 (2 T nA ¢ [2nX_nd/u
= T(m-172) " (}J '[Zu} (o) ¢ mu

x r (g-1) %15 B8/2 Ky (1‘5—/5) d.
1 .

T The expression for' Y in the formula (2.1) given by Korxrwar (1980) should

read tan'}'(T/f)l/2 instead of 2tan -1 (VXW2 for the case n is even.



The last integral can be evaluated with the help of the formula (6.592) in
Gradshteyn and Ryzhik (1971) (abbreviated as G-R hereafter) to give the re-
quired result for the case (n-1)/2+T>B8> 0 and o >0. To extend the domain
of validity of (2.2) in parameter space of o, B and T to that specified in
Theorem 1, we may use the recurrence relation for the hypergeometric function
or make the analytic continuation of both sides of (2.2) with respect to the

(complex) parameters &, 8 and T. This completes the proof.

Theorem 1 has much wide contents cqmpa.red with those of Corollarv 1,
since the latter corresponds to the case B-a=1/2 (and o.=T=r-1) in the
former. All the estimators listed in Table I, on the other hand, are ob-
tained by putting B-@=1/2 and choosing & and T suitably. For the case
B-a is equal to a half integer, the parametric function in the right hand
side of (2.2) reduces to the finite linear combination of the functions for
B-a=1/2. Theorem 1l also gives the estimators corresponding to the other

case (B -a#half integer).
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3. Variance of )22

In this section, the variance of UMVU estimator of the second cumulant
K2=u3/X is considered. The estimator in question corresponds to the case
r=2 in (2.3), so that its explicit fomrm is

n+1 v

Z’n)’

= -1 WBy.pe 3.
Ky =7 &V E(l-’i’ n > 2. (3.1)
Theorem 2. - The variance of the UMVU estimator of the variance of (3.1) is

gtven by

-~ =24 _27_'1_._}_1_ ni/u -nAt/u n-2 . 42
Var[nz] n<u {n—l o J?e Z”(B,—-2 sn3l-t2)de

~2(u/nA)2 + 15 (/)3 } , n22. (3.2)

Proof. From (9.135) in G-R, (3.1) is rewritten as

s _ [y pd -l XV
Ky nX {l c(z,l, 7 n)} .

To obtain the variance of EZ, we must calculate the following expectationms;

n-1. XV

LA 4 Bn2TR2 5, 1505 A

E[E§]=E[n2?*]-—2E[nzf“F(%,l L. 63

Setting «=0, B=7/2 and =0 in (2.2), we find that the first term in
the right hand side of (3.3) is equal to

n2p* (A +6u/nA) +15@/nA) 2+ 15@/na)3) . ‘ (3.4)

The second. term is reduced, with the help of (A.6) and the formula (6.592)

in G-R, to

—272u* (1 + 5@u/nA) +8u/nn)2) . (3.5)
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Through the Euler's transformation for the hypergeometric function and the

expression for the square of ZFl in terms of 3F2 (p.64 and p.185 in Bateman

manuscript project, Vol.l (1953) respectively), the third term is expressed

as

E[nzzu(l_[_XV) 1, F (n-3, l-—2/l—2 n-1 XV v

,2’ ’Z’n/(l+

N1 .

This reduces from the formula (7.512) in G-R to

n2T (n-2)T ((n-1) /2) 1/2 EV
TG/ (=3)T (D) 72) (l—t) E[K A+= ] F( 2 2,t)dt‘ .
Q
From (A.3) and (A.2), the above formula is calculated to be
wad| BB M) (14267 2 (1,52 n-2;-25)ds
0
_ w33 an/u [2nn =5/by Ay 2 i .
=== el 5/7(——f F(1, —-—,n 2;1-z)dz .
1
Since
'5/4 2.__6_1_ 3/4 __—a _?T_._?._\zdz —a\/:x.: v/_
K/, (a arz) == 3/ (a’z)) =e /M(a, —zle /YD)
and
2 2pey P2 o
Z,c—z(x F(1,5=n-2;1-3)) = Z(n K CR& 2 ,n i-x) ,
the expression is transformed through integration by parts into
2n u nAful -nit/u L2 } 3.6
{“n,\"'n-l'ﬁie Je F(3,22= 2 ,n 1-t4)dtp . (3.6)

1
Summing the results (3.4), (3.5) and (3.6), we arrive at. (3.2).

From the representation (3.2), we can immediately obtain the lower and

upper bounds for Var[E2]:



Theorem 3. For any sample size n>2, it holds that
2 21 ¢ g2
o 2 Var[KZ] 20y,

where 0:1 and G;l are defined by

U;,=u {nZI ) l(u) {15 - 6(71 2)(1-{- ]]

it (n=n "
+ ;Z()\) (n-1) (nt1) [l+nl nZAZ]
S’(u) n-2)n (l lSu +15u
(n-1) (n+1) nZ3Z " n3A3 ’
2_ 2, ublan® _(n=2)n(n+s) L45u? 10543 | 105uty
Oy = O T & (n-1) (n+1)(n+3)(1 ozt s

.

3.7

Proof. From the formula (3.2) in Theorem 2, (8.432) in G-R and the in-

equality due to Alam (1980)

r (-2)¥

2ntl (a)_(B) » @
Z (Z) - (_i)l < Fla,bse;-x) < Z »

= CC)r

r=0 r =0

with (a)r=['(a+r)/1"(a) and e¢>min{a,b) >0, x>0, (3.7) can be easily

obtained and the proof may be omitted.

Corollary 2. The asymptotic variance of x22 is gtven by

- 4 -
Var(R,] =22+ +0(7Y), mre. @=w)

(3.8)

Numerical computations of (3.2), (3.7) and (3.8), assuming ¢ to have

0.5, 1.0 and 2.0, are shown in Figs. 1, 2 and 3 respectively.

Fig. 1 Fig. 2

Fig.
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Using a property of a hypergeometric function, we may obtain a con-

sistent and asymptotic unbiased estimator of Ko such that

n

- 123, 2 Z/X
= = -
RE=—TXV = ~—=X% X/Xg-1)

where fé is the harmonic sample mean. A property of the above estimator

was considered by Iwase (1981). From Corollary 2, it may be easily shown
Corollary 3.
i e = i ek
n]:&g nVar[ncz] n];}g nMSE[lCZ]
where MSE[-] denotes a mean square srror.

Numerical computations of MSE[ﬁé}is also given in Figs. 1, 2 and 3.

In order to facilitate the use of the unbiased estimator K Table II gives.

2’

for XV/n=10.25(0.25)2.00 and n= 2(1)10(10)100.

Table IT
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4. Discussion

It may be convenient to use the reciprocal of a variate X having an in-
verse Gaussian distribution. The distribution of X! is called the random
walk distribution. The UMVU estimators of the r-th cumulant of X and XL
are given in Sec. 2. The UMVU estimators of k-th power of the r—-th cumulant
of ¥ and X! can be derived in the same marner. For the mode of X and X7,
however, the UMVU estimators have not been obtained in a simple form.

Corollary 3 implies that the asymptotic efficiency of E;, relative to

A

K., as an estimator for u%/k is equal to 1. As is seen in Figs. 1, 2 and 3,

2
however, when the sample size is not so large, it is dangerous to use Q; in-
stead of £2'
The variance of the UMVU estimator for the second order cumulant was ob-

tained in Sec. 3. By the similar method to that employed there, the variance
of Er may be expressed in a closed form. The resulting formula, however,
will not have a simple form compared with that for 22. This deserves further
investigations.
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Appendix

In this Appendix, we shall derive the formulas used in the proof of

Theorems 1 and 2. Qur starting points are

EronTe 87 - L2 5T (g 4 )~ LV2 7T
for (n~-1)/2+Tt >0 and s >-Y2
and

- -nhs/ X. _ K ¥/2-1/4 (2nk_ni/u 7A
ElX e 1 =1 (1+2s) }—w‘u—e Re v (Txszg),

for s >-y2,

(a.1)

(A.2)

which follow immediately from AV < )(n._z_1 and X v I(u,nX). By noting that

X and V are independent and by using the integral representation

1 _ a1 a-1_-nAs/X_
AT - o r(a)fs‘ ¢ €

it readily follows from (A.l) that

Eylgsevm®! = T(m-1/2) T ]

an® . _ Tir-1y2+n) ,tfa)* 1
()

xrsa—-le—n)\s/X. (l+2ts)—(n-l)/'2 “Tgs.
0

For (n-1)/2+T >8>0 and a >0, the integral representation

n-1 XV, _ T{(n-1)/2 +1)
F(x, 8; S+ Ti- ) = =12 i B T8

1 - —R—~
XJ B=1 gy (m=1)/2 +T-8-1 1

(1 +tXV/n ™ dt

0

together with (A.3) implies that

- 12 -

—Atsvds, for « >0 and >0,

(a.3)
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= - . o
E LN TF@,8; Bher; -y - LllanlyZ2 i) "“.zf(”*] L

n T{(n-1)/2) ¥ T

x r ¥ Lo mAS/X (g ooy Bas. (a.4)
0

A moment reflection reveals that (A.4) is valid for (n-1)/2+T> 0 and a>0.
Combining (A.2) and (A.4) and making the change of the integration variable

s to x=28s+1, we arrive at

KT -l .. _Tlm-iy2+n) | «f2)7 (nA)* 1 [2md ndsu
BV R, 5=+T:= 200 = Ty 0 {x] {211} Tl | e
_1y0-1 (k-a)/2-V4 -8 ni
xr(x - Tz KK-G.—J/2 (—\/u T)dx, (a.5)

1
for (n-1)/2+T>.0 and o> 0.

For K=4, T=0, a=12 and B=1, (A.5) reduces to

n, 1l . n-l XV 4_‘(51 2nX_n/u
TR, 050 -2 = 7 e

E 7 TR

~

Xr(x—l)'l/z /2 -K3 (%/E)dx. (A.6)
1

The above integration is easily performed with the aid of the relation

12 =732 ((z-1)2+2(z-1) +1) and the formula (6.592) in G-R.

- 13 -
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Table I

vwnmamnmnm in A.W.S population parameter sample size uniformly minimum variance unbiased estimator
~1/2 0 ~1 A (a scale parameter) n 4 (n-3)/v
-1/2 0 1 y..u. (reciprocal of \) ny 2 v/ {n-1)
- in, X
/4 3/4 172 Yu¥\ (standard deviation) n 2 2 y%!mdw.\w% GH; Nn..wwnluzw
-1 -1/2 -1 4=Mpn (a dispersion parameter) nz4 (n-3)/Xv - 1/n
0 1/2 0 p (mean) nz2 X
1 3/2 1 w¥A (variance) nz2 the formula (3.1)
-1 =1/2 0 :xw (reciprocal of mean) n> 2 1/X - V/n(n-1)
-2 ~3/2 -1 A3 (reciprocal of variance) n24 (n-3)/X3V ~ 6/nX2 + 3V/M2(n-1)X
- -1/2 S (n=1)/2) /5570, 1 1n, XV
/4 1/4 1/2 3¢ (skewness) n> 2 dw%dﬂmv /xv F( L xv
o 1/2 1 156”1 (kurtosts) na2 15%V/ (n-1)
-1/4 /4 1/2 eL.\m (coefficient of varfation) nz2 !IVM::\MVN‘ VeF( m W.nmn..w..umn\v
r-1 .:W r-1 o (r-th cumulant of X) nz2 the formula (2.3)
2 r p (standsrdized r—th cumlent of X) " 22 a1 /D) 5072 @2l v T
7 7 7 Y, (standardized r~th cumulant o n 3 77 T /2 5072 ARy SRR L
+8-1 rts (r-th ‘moment of X) > 2 ﬂww {r-1+a)/ n..wmﬁw?;wzmv yoirys .m.AmE... E.ﬁw;.m.u
5= 5o 8 n na aso? ! (r=1-8)7 T ((n-1)72+s) 277 7%
- _ ~ -1 P((=1)/2) _ §-1,7-1I(r=1/2 :l. ?-C\ r-1/2
{: /2 -1 k_, (P-th cumulant of X™) nyz 2 S CSAYPEED) v A L2 )+ ( T
w\w 0 r .
r ~28
S = ' ~ ~1 (48)! 2 "r((n-1)/2) ws-r =8 8-r-1 g-r n-1 .,
8 w 1 m.nh R ul, (r-th moment of X™7) ny2 mmoal?m: o) Jats) XV FCET Ty otes
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Table (I

for several values of n and IV/n

Winw 0.25 9.50 4.75 1.00 .25 L.50 .75 2.00
n-- H .300 567 371 500 444 .400 364 333
3 345 .I34 .551 586 .5313 .490 4% .423
4 .373 .778°  .703 544 595 .353 .518 .487
3 .392 .308 741 586 -840 .300 .366 336
3 -906 .331 .70 119 575 .338 .605 .575
7 I -349 793 145 704 .568 .336 .508
3 .325 .363 311 .767 .78 .393 -363 .835
9 -332 .375 .827 .785 2438 715 .385 859
0 -238 -385 L340 -300 .165 733 .10 .879
0 -366 2335 .907 .382 .358 -336 .315 .796
30 377 355 .335 .316 .398 .381 .364 .349
@ 382 965 .49 336 .920 .306 .393 .380
30 .986 372 .959 -346 -334 .322 )N .300
40 .788 .276 .965 -954 .964 -334 .926 .315
0 .990 .980 970 .260 351 .942 .934 -328
30 .291 .982 .973 .365 .957 949 .941 .934
.392 .384 .976 .369 961 -3546 947 .950
100 .93 .986 .979 .372 .965 .I58 952 .346
nevar. /u*
N\
ZMSE(R]
Y 2
{ \
n
L avarisy) i
\
L \\ .
\\
.\“‘v—-—.,.
Lim-t7ar{g, ]
imgVar{<,
7r
L /
/
!
[
{ ut'm
3 I
1 L 1 L i 1 i i L n
0 10 20 30 40 30 60 70 30 90 100
sample size
fig. 1. Numerical results of variances for the case ¢ =0Q.5.
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/ linvar(g,]
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/
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I
8
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Q 10 20 30 40 30 80 70 80 30 100
sample size
Pig. 2. Numerical results of variances for the case ¢ = 1.0.
n-Var./u*
3.4

-_

n
Hm—Var (<, ] .

1.4~ vt 2
1.0~
0.6 1 1 I { i i ! 1 1 i

Q 10 20 30 40 50 60 70 30 30 100

sample size
Fig. 3. Numerical results of variances for the case ¢ =2.0.



