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Fine Structure of Interaction of Shock Wave

with Boundary Layer

X S
Shigeru Obayashi

Department of Aeronautics, The University of Tokyo.
Abstract

The a?proximate LU factored method is developed to effi-
ciently compute the compressible Navier-Stokes equations. The
resulting method 1is employed to solve the two-dimensional
interaction problems of shock wave with boundary layer on a flat
plate and an airfoil. The flow fields are precisely simulated by

mesh refinement.
§1. Introduction

The compressible Navier-Stokes equations have been used in
computational fluid dynamics 1in order to solve interaction
problems of éhock wave with boundary layer. It is difficult to
precisely simulate such flow fields because of the large amount
of computational time and computer storage. The dJdevelopment of
efficient methods for the compressible Navier-Stokes equations is
desired.

Various factorization or splitting of the implicit procedure
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of finite-difference methods in delta-form can be applied to
improve convergence rates for steady-state problems. Some
attempts for the Euler equations have been made by employing the
local eigensystem/1l/, such as the diagonal form/2/ and the flux
vector splitting/3/. The use of the local eigensystem implies an
implicit upwind difference algorithm where only a lower or upper
bidiagonal matrix appears and the inversion is easier than that
of tridiagonal matrix. Such algorithm has an advantage over
stability and efficiency.

In this paper, the approximate LU factored method is
developed. The matrices in implicit procedure are decomposed to
the product of the 1lower and upper bidiagonal ones by the LU
factorization derived from the ideas of the flux vector splitting
and the implicit MacCormack method/4/. The resulting method is
of O(at, sz) and reduces the CPU time and the temporary storage.

The two-dimensional interaction problems of shock wave with

boundary layer are solved by employing the present method. One
is the problem on a flat plate. The mesh is refined té precisely
simulate a flow field. The other 1is that around an NACA0012
airfoil. The effects on the pattern of variations in Reynolds

number and Mach number are investigated.

§2. Algorithm Development

A. Basic Algorithm

The governing equations of compressible viscous fluid are

the compressible Navier-Stokes equations. They are written in
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the conservation-law form. For brevity, a one-dimensional
equation of conservation laws is at first considered in order to
construct the new scheme and to analize its stability. The
resulting scheme is then extended to the compressible Navier-
Stokes egquations in the following section.

‘A model equation is written as,
u +fx=0, _ (1)

- where u is the density, f is its flux, and the subscripts t and x
denote partial differentiations. This system can be rewritten

as,

ut+a(u)ux=0. (2)
where a=%f/%u, if f=f(u). The standard implicit finite-differece
method in delta form can be employed to seek steady-state

solutions:
(1+ehDa)Auin=—hD(fin), (3)

where uin=u(iAx,nAt), D(fi)=f. f

i+l/2 “i-1/2'

h=at /ax and 6 is a number between 0 and 1.

DaAu.n=D(aAu.n),
i i

First, let f be a function of u. This case implies the
Euler equations. The flux f on half mesh-points are evaluated

as,
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fiil/2=(fi+fiil)/2. | (4)

Therefore the differece operator D(fi) results in the second-
order central differece for first derivatives:
D(fi)=(fi+l—fi_l)/2. The linearized coefficients aiil/Z can be
chosen/5/ as

3f n

€iv1/27Gu)iv1/2 (5)

qi+1/27

The central finite-difference can be replaced by the sum of the

upwind differece, using the flux vector splitting technique/3/:

D(cAu)=D_(c+Au)+D+(cTAu), (6)
where c+=(c+|c|)/2, c =(c-|c|)/2, D_(ctAui)=c+Aui—c+Aui_l and
D+(c Aui):c Aui+l—c Aui.

The modified implicit procedure of Eg.(3) is rewritten as,
+ - n__ n
(1+6h(D_c +D c ))Aui = hD(fi ). (7)

The usual Neumann's stability analysis for a constant coefficient
results in the condition of & such that 621/2. This scheme is
second-order accurate when 6=1/2. The first-order scheme, when
6=1, 1is adequate to calculate a steady-state solution and thus
used here. The left-hand-side of Eqg.(7) can be replaced by the

LU factored form suggested in Ref.3, because h2=O(At2).
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+

- n__ n
(1+hD_c™) (1+hD,c”)Au, "=-hD(f,

). (8)

For a linearized analysis, this facﬁorization introduces no error
since c+c_=0. The above operators, (l+hD_c+) and (l+hD+c_), lead
to the lower and upper triangular matrices, respectively. This
form requires no invefsion of tridiagonal matrices.

Next, let f be a linear function of U that 1is, f=—yuX
-where p>0 1is the viscosity. This case impiies the diffusion
equations. The values of the flux f on half mesh points are

calculated by the following equations,

fiil/sz(Di(ui)/AX)' (9)

In this case, a describe the differece operators/6/,.

i+1/2

—¢D+(*)/Ax; because,

Afiil/2n=-pDi(Auin)/Ax+O(At2). (10)

The implicit scheme Eq.(3) is written as,

my, ‘ (11)

n—..
(1+eh(’,AD_/Ax—pD+/Ax))Aui = hD.(fi
where 6 must satisfy 92(2hu—4x)/4hy for the stability and 6=1 is
sufficient for a steady-state solution. Egq.(1l1l) can be written

in the LU factored form like Eqg.(8),
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(1+hkD_) (1-hkD_)au, "=-hD(£,"). | (12)

where k=W/ox.

Finally, let f be the sum of functions of u and Uy s that is,
f(u,ux)=fl(u)+f2(ux). This case implies the Navier-Stokes
equations. The evaluations on half mesh-points are described as
Egs.(4) and (9) for fl and f2, respectively. The change of the

flux f in time is estimated as follows,

Afn=cAun+ﬁD+(Aun)/Ax+O(At2). (13)

Corresponding to Egs.(7) and (11), Eg.(3) can be rewritten as,

(l+h(D_(|c+|+k)—D+(|c_l+k)))Auin=—hD(fin). (14)

The resulting LU factored form is written as,

~+ ~= n__ n
(1+hD_a )(1—hD+a )Aui = hD(fi ).
(15)

at =[ci|}k.

This implicit procedure is of 0O(at), but it does not affect the
accuracy of a steady-state solution if it exists uniquely. This
scheme is of O(sz) at a steady state.

The present method is extended to the two-dimensional
problem by modifying the standard implicit ADI factored scheme,

not by applying the LU factored form proposed by Jameson and
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Turkel/7/. The resulting block-bidiagonal matrices are straight-
forward inverted with the procedure similar to the implicit
MacCormack method. These inversions are easy to program and

vectorize.

B. The Navier-Stokes equations
The two-dimensional compressible Navier-Stokes equations are

written in the conservation-law form,

1

€ (RX+Sy), (16)

U, +F_+G_=Re
X 'y

T

U=( p, pu, pv, e) ,

T
F=( pu, pu2+p, pUV, u(e+p)),

G=( pv, puv, pv2+p, V(e+P))Tr

R=( O' T r T ’ r)TI
XX Xy

S=( O, ’ T ’ S)TI
Xy Yy

txx=(x+2p)ux+xvy, txy=p(uy+vx), t&yz(x+2”)vy+xux’

_ 2 _ . 2
r—uI%X+vI%y+a(c )X, s—uT;y+v2§y+a(c )y’

a=WPr(1-1).
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The superscript T denotes transpose of a vector. A perfect and

calorically perfect gas is assumed as follows.
2,.2 2
p=(7-1) (e-p(u™+v™)/2), c"=Tpsp . (17)

The bulk viscosity for diatomic gas, A+2§)/3, can be taken neary
equal to 2n/3, and thus it is assumed that A=0 /8/.
The Beam-Warming-Steger method/5,6/ applied to Egs.(16)

results in the following approximate factorization,

n__ n
(I+hDi(A+P))(I+hDj(B+Q))AUij = erij '
(18)
n_ n_ n n_ n
Lrij _Di(Fij Rij /Re)+Dj(Gij Sij /Re),
_,oF n _(9G n
A (a_fl')ij + B (BU)lj '

where Uijn=U(iAx, jay, nat), Di and Dj are the difference
operator for i and j, respectively, and h=at/ax=at/ay. The
viscous terms R and S are linearized as follows/6/. The elements
of R are of the general form: fm=amabm/3x. Each. element

linearizes in time;

9b
n_ 9 m n
At =3y BX(%E,qu,Aqm' Ve . (19)

where 9, indicates the element of U and it is assumed that
Bam/aqmﬁo. This algorithm requires inversions of the block-

tridiagonal matrices composed of the block matrices A, B, P and
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Q.
The Jacobian matrices A and B are diagonalized/l/ as,
-1 -1
A=XE,X 7, B=YE Y 7, (20)
EA=diag(u,u,u+c,u-c) and EB=diag(v,v,v+c,v—c),
where X and Y are +the eigenvector matrices. The diagonal
matrices EA and EB can be split along the sign of each
eigenvalue;
+ - + -
EA" A +EA and EB—EB +EB . (21)

The operators in Eqg.(18) can be replaced by using the flux vector
splitting/3/, for example,

1

+ -1 -
X +Di+XEA X . (22)

D;A=D; _XE,

The LU factored form can be obtained as,

L))y,  (23)

_ +,.-1. 5 —~
I-l‘hDi(A+P)—(I+I‘1Di_(XEA X +P))(I+I’1Di+(XEA X

if D,P can be rewritten as D, P-D, P. The eigenvalues of the
block matrix P are related to the stability for the discretized
viscous terms. On the other hand, smoothing terms can be added

to the flux vector as a weight of upwind differences/3/;



= EAi + k13, | (24)

+ .
where I-— = 51gn(EAi). The parameter k can be chosen so as to

maintain the stability of the viscous terms as follows,

%

_ ¢
k_RePAX'

= R
H—max(ZP,K+2ﬁ,§E). (25)
This estimation is similar to the implicit MacCormack scheme.

Furthermore, V 1is identically set to 2 if A=0, 7=1.4 and Pr=.7.

Finally, the LU factored scheme is described as,

-+ -~ -+ ‘A"‘ n_ n
(I+hD; _A")(I-hD, A )(I+hDj_B )(I—hDj+B JAU; 4 =-hLr, ",
(26)
AY = XIEAi + k1¥x7L, 8F = Y|EBi + ki¥|yL,
__ 2K _ 2H

Repax Repay’

where the absolute value of a matrix is defined as the matrix
whose elemeﬁts are replaced by their absolute values.

The wusual fourth-order dissipation/5,6/ is added to the
right-hand-side of Eqg.(26). On the other hand, the implicit
smoothing terms are not required in the following test problem.

The resulting scheme is of 0O(at, A x2) and unconditionally
stable for linearized analysis. It is efficient, and needs less
temporary storage because no inversion of Dblock-tridiagonal
matrix 1is required. It is also easy to program and.vectorize

because the only implicit operators of the Beam-Warming-Steger

__]_O_
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method should be rewritten and the resulting procedure is similar
to the implicit MacCormack one.
§3. The Interaction Problem on a Flat Plate

The interaction problem of shock wave with laminar boundary

layer on a flat plate/9-14/ was solved as a test for the present

scheme. The typical feature 1is represented by the numerical
pressure contour map in Fig.4d. An oblique shock wave is
incident on a laminar boundary layer. The regular reflection

imposes pressure dgradients on the boundary-layer flow. When the
adverse pressure gradient is sufficiently large, the boundary
layer separates. The resulting streamline curvature generates
reflected shock waves. At the leading edge, a curvéd bow shock
wave appears due to the streamline curvature associated with
formation of the boundary layer.

The computational mesh (Fig.l) at first contained 32x32

mesh-points. The mesh increments were uniform in the x direction

as 8x=1/15 and exponentially stretched in the y direction as ij=
j _ -4 ey .

Ayminxl.l7 where AY in 8.31x10 . Mesh-points successively

increased‘by multiples of 32 to 256 points in the x direction and
to 96 points in the y direction. The mesh increments decreased,
corresponding to mesh refinement. The shock angle was set to
32.6 degrees, the freestream Mach number; 2.0, and the Reynolds
number based on the distance from the leading edge to the shock

impinging- location; 0.296x106. Molecular viscosity was calculat-
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ed by Sutherland's formula. The Prandtl number was set to .7 and
assumed to be constant.

The initial condition was taken to be uniform flow. The
computation was impulsively started. The incident shock wave was

given at the top of the computational region as the fixed

boundary conditions. The upstream boundary conditions were also
fixed because the freestream was supersonic. The zero-order
extrapolation was employed at the boundary of outflow. The

reflective boundary conditions were used at the plane of symmetry
and the wall; Ulj=d1ag(l,l,—l,l)U2j and Ulj=d1ag(l,—l,-l,l)U2j,
respectively.

The implicit boundary condition of au" at outflow was taken
equal to 0. In the y direction, the implicit procedure swept

first from the top with au™=0 to the wall, then swept to the

contrary. The boundary flux of the later sweep was set to 0.

The results for 32x32 and 64x32 mesh-points were obtained
3

when the residual AU reached 10 , and those for 128x64 and
256x96 mesh-points, when 5x10-4. The smoothing coefficient for
the former was set to the usual value, at. That for the latter

was taken equal to 3at, since the actual stability lessened in
the region of the reflected expansion wave on the boundary layer.

Figures 2a and 2b compare the surface pressure and the skin
friction distributions calculated by the present scheme for 64x32
mesh-points with those by the experiment/13/. Figs.3a and 3b
show those for 128x64 mesh-points. 1In the pressure distribution,

the peak at the leading edge and the plateau at the separated

_12_
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region are clearly observed. The numerical pressure contours for
32x32 to 256x96 mesh-points were presented in Figs.4a to 4d where
the lines indicate the contours of values of 1.05 to 1.40 at
intervals of .05. Shock waves appeared as a near discontinuity
owing to mesh refinement, such as the bow ‘shéck wave and the
double reflected shock waves. Fig.5 shows various numerical
contour maps near the location of incidence for 256x96 mesh-
points. In Fig.5c, incomressibilty was assumed to evaluate
stream function which was set to 0 at the wall and multiplied by

102. The skin friction distribution in Fig.3b suggests a

structure of the separated bubble, and this is consisten; with
that obtained in Fig.5c. These results are consistent with the
experimental and other numerical results.

The CPU time per step is reduced about 20% compared with
that of the implicit MacCormack method. The maximum CFL numbers
were about 60 in the present computations. For the two finer
meshes, the run times required to reach the steady state were
about 15 in nondimensional time. The convergence rates in mesh

refinement decreased owing to the time increments bounded by the

actual stability.
§4. The Interaction Problem on an NACA0012 Airfoil

Algebraic grid generation technique is applied to iterative-
ly construct the nearly orthogonal grid system around an NACA(0012
airfoil. The lack of smoothness is overcome by averaging grid

points. The concentration to the boundary layer is smeared out



149

near the trailing edge. Mesh refinement in the direction along
the body and wake 1is carried out in order to capture the very
fine vortex motion. The number of the used grid points is mainly
321x41 points.

The detailed flow field at the Mach number, .75, and the
Reynolds number, 105, is shown in Fig.6 to 9. A lot of small
separation bubbles are produced around the upper surface of the
airfoil in a very short time. The boundary layer becomes thick
suddenly. Then the bubbles flow away and the boundary layer
returns to thin.

Fig.10 shows the numerical results in the inviscid case.
Fig.1ll shows the results in the turbulent case for 81x41
mesh-points by using an algebraic two-layer eddy viscosity model
due to Baldwin and Lomax. Both results resemble each other.

For the lower Reynolds number, the separation becomes large
and the shock wave disappears(Fig.12). On the other hand, the
separation bubbles become very small and the almost steady shock
wave is found for the higher Reynolds number (Fig.13 and 14).

Finally the Mach number is set to .95 (Fig.l15). The shock
wave moves to the trailing edge and the separation is suppressed.

The lamda shock wave is also found at the upper surface of the
airfoil.

Transonic flows with viscous-inviscid interactions have been
successfully simulated by directly computing the compressible

Navier-Stokes equations.
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— — TYPICAL SHOCK PATH

L S

Fig.1l Computational mesh and incident shock wave.

Shock ang%@ $=32.6%5 Mach number M=2.0, Reynolds' number
Re=.296x10".

L; the leading edgé, S; the incident point of shock wave.
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2, 3 " *
P/Po Cox10*
1t
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1 0 1
L
-1t
a) L S b)

Fig.2 Numerical results for 64x32 mesh-points.
a) surface pressure, b) skin friction.

PRESENT
¢ EXPERIMENT

P/Ps Cex1 o‘[

1} 0t

a) L S b)

Fig.3 Numerical results for 128x64 mesh-points.
a) surface pressure, b) skin friction.
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b)

c)

Fig.4 Numerical pressure contours.
a) 32x32 mesh-points, b) 64x32 mesh-points,
c) 128x64 mesh points, d) 256x96 mesh-points.
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C)O1 — 1
Fig.5 Numerical contour maps near the incident point of shock
wave for 256x96 mesh-points.

a) pressure contours at intervals of .05, b) density
stream function contours

contours at intervals of .05, c)
at intervals of .02.
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Fig.6 Numerical results for NACA0012 airfoil gt an angle of
and T=10.

attack of 2 degrees in case of M=.75, Re=10
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Fig.8 M=.75, Re=10>,

OfHS1T7 CONTOUR

Fig.9 M=.75, Re=10>,

T=24.

M=.75, Re=105, and T=17.
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Fig.1l0 M=.75, inviscid flow.
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Fig.1l1l M=.75, Re=105, Baldwin-Lomax turbulence model,
81x41 mesh-points.
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Fig.1l2 M=.75, Re=104, 81x41 mesh-points.
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Fig.13 M=.75, Re=6.7x10°, T=5.
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